THE
BRITISH AND FOREIGN
MEDICO-CHIRURGICAL
REVIEW
OR
QUARTERLY JOURNAL
OF
PRACTICAL MEDICINE AND SURGERY.

VOL. XIV.
JULY—OCTOBER 1854.

LONDON:
JOHN CHURCHILL, NEW BURLINGTON STREET;
AND
SAMUEL HIGHLEY, JUN., 32, FLEET STREET.
MDCCCLIV.
LONDON:
SAVILL AND EDWARDS, PRINTERS, CHANDOS STREET,
COVENT GARDEN.
CONTENTS OF NO. XXVII.
OF THE
BRITISH AND FOREIGN
MEDICO-CHIRURGICAL REVIEW.

JULY, 1854.

Analytical and Critical Reviews.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2. The Diseases of the Heart and the Aorta. By WILLIAM STOKES, Regius Professor of Physic in the University of Dublin</td>
<td>1</td>
</tr>
</tbody>
</table>

| REV. II.—1. Maladies du Placenta. By MURAT. ('Dictionnaire des Sciences Médicales.' 1820) | 21 |

<table>
<thead>
<tr>
<th>Page</th>
<th>CONTENTS OF NO. XXVII.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ib.</td>
<td>3. Précis d’Anatomie Pathologique. Par G. ANDRAL, M.D.</td>
</tr>
<tr>
<td>ib.</td>
<td>4. Pathological Anatomy. By ROBERT CARSWELL, M.D.</td>
</tr>
<tr>
<td>ib.</td>
<td>5. On Cancerous and Cancroid Growths. By J. H. BENNETT, M.D.</td>
</tr>
<tr>
<td>ib.</td>
<td>7. On the Nervous Centres, &c. By ROBERT B. TODD, M.D., F.R.S. ('Cyclopedia of Anatomy and Physiology')</td>
</tr>
<tr>
<td>62</td>
<td>REV. IV. —Medico-Chirurgical Transactions. Published by the Royal Medical and Chirurgical Society of London. Vol. xxxvi.</td>
</tr>
<tr>
<td>98</td>
<td>REV. VII. —1. Lehrbuch der Nervenkrankheiten des Menschen. Von MORITZ HEINRICH ROMBERG, M.D.</td>
</tr>
<tr>
<td></td>
<td>A Manual of the Nervous Diseases of Man. By MORITZ HEINRICH ROMBERG, M.D. Translated and Edited by EDWARD H. SIEVEKING, M.D., for the Sydenham Society</td>
</tr>
<tr>
<td>ib.</td>
<td>2. Clinical Lectures on Paralysis, Disease of the Brain, and other Affections of t’er Nervous System. By ROBERT BENTLEY TODD, M.D., F.R.S.</td>
</tr>
<tr>
<td>111</td>
<td>REV. VIII. —1. Observations on the Mortality of the Scottish Widows’ Fund and Life Assurance Society, from 1815 to 1845. By JAMES BEGBIE, M.D., F.R.S.E.</td>
</tr>
<tr>
<td></td>
<td>2. An Investigation of the Deaths in the Standard Assurance Company. By ROBERT CHISTISON, M.D., V.P.R.S.E., Professor of Materia Medica in the University of Edinburgh, &c. &c.</td>
</tr>
<tr>
<td>ib.</td>
<td>3. Observations on the Causes of Death among the Assured of the Scottish Widows’ Fund and Life Assurance Society, from 1846 to 1852. By JAMES BEGBIE, M.D., F.R.S.E., Fellow of the Royal College of Physicians, &c.</td>
</tr>
<tr>
<td>ib.</td>
<td>REV. IX. —Observations on the Structure and Development of Bone. By JOHN TOMES, F.R.S., Surgeon-Dentist to the Middlesex Hospital; and CAMPBELL DE MORGAN, Surgeon to the Middlesex Hospital. ('Philosophical Transactions,’ 1853)</td>
</tr>
<tr>
<td>119</td>
<td>REV. X. Reports on Epidemic Cholera. Drawn up at the desire of the Cholera Committee of the Royal College of Physicians. By WILLIAM BALLY, M.D., and WILLIAM W. GULL, M.D., Members of the Committee</td>
</tr>
</tbody>
</table>
CONTENTS OF NO. XXVII.

REV. XIII.—Beobachtungen über die Körperwärme in Chronischen Fieberhaften Krankheiten. Von Dr. Paul Alex Jochmann .. 179

By Dr. Jochmann ... ib.

Bibliographical Record.

ART. I.—The Life of Girolamo Cardano, of Milan, Physician. By Henry Morley, Author of 'Palissy the Potter.' Vols. i. and ii. .. 183

ART. III.—The Irish School of Medicine as it is, and as it ought to be. An Address introductory to a Course on Pathological Anatomy and Histology. By Thomas S. Holland, M.D. .. 186

ART. IV.—A History of the British Stalk-Eyed Crustacea. By Thomas Bell, F.R.S., F.G.S., F.Z.S., President of the Linnean Society, Professor of Zoology, in King's College, London. Illustrated by 174 Wood Engravings 188

ART. V.—The West Indies, before and since Slave Emancipation; founded on Notes and Observations collected during a Three Years' Residence. By John Davy, M.D., F.R.S., &c., Inspector-General of Army Hospitals 189

ART. VI.—1. The Microscope, and its application to Clinical Medicine. By Lionel Beale, M.B. Lond., Professor of Physiology and General and Morbid Anatomy in King's College, London .. 191

ART. IX.—Cholera Morbus. Guide du Médecin Praticien dans la Connaissance et le Traitement de cette Maladie. Par le Dr. Fabre, Rédacteur en chef de la 'Gazette des Hôpitaux.' .. 193

ART. X.—Summary of New Publications .. 194

Original Communications.

ART. II.—Scarlatinal Dropsy. By John W. Tripe, M.D. .. 212

ART. IV.—Notice of some Eudiometric Researches. By Dr. G. Valentin.
(Communicated by William Brinton, M.D.) 236
CONTENTS OF NO. XXVII.

Chronicle of Medical Science.

Report on Materia Medica. By Edward Ballard, M.D. PAGE
II. Upon a New Combination of Iodine.—Formulæ for a Syrup and for Solutions of Iodo-Tannin 238
III. On the Operation of Glauber's Salt. By Professor Buchheim 239
IV. Notice of the Leech-morass at Clairefontaine. By M. G. Soubeiran 242
V. Opium and its Adulterations 243
VI. The Application of Histology, or the Science of Tissues, to Pharmacy. By Henry Sugden Evans 244
VII. Essay on the Preparations of Squill. By Dr. Chateau 245
VIII. Influence of Digitalin upon the Excretion of Urea. By G. Siegmund 245
IX. On Delphinin. By J. Leonides van Praag 246
X. Some Remarks on the Vegetable Astringents, with especial relation to the Root of the Arbutus Uvedo 247
XI. On Poisoning by Solanin. By Dr. Fraas 248

Annals of Physiology. By Hermann Weber, M.D. PAGE
I. Food and Digestion 249
II. Respiration and Circulation 250
III. Lymphatic System and Ductless Glands 252
IV. Metamorphosis of Matter, Organs of Secretion and Excretion 253
V. Nervous System 256

I. Operations 258
II. Affections of the Genital Organs 261
III. Affections of the Rectum 262

Quarterly Report on Midwifery. By Robert Barnes, M.D. (Lond.) PAGE
I. Diseases of the Unimpregnated Uterus. Ovarian Disease 263
II. Pregnancy, and Theory of Parturition 266
III. Labour 270

Quarterly Report on Forensic Medicine, Toxicology, &c. By W. B. Kesteven, M.R.C.S. PAGE
I. Wounds 272
II. Toxicology, &c. 275

Medical Intelligence:
Letter from Dr. Benecke 279
The Elections at St. Bartholomew's 281
Nurses for the Poor 282
Sir John Forbes' Medical Bill 283

Books received for review 283

Appendix.
Annual Report of Cases admitted into the Medical Wards of St. George's Hospital, during the year ending December 31st, 1853. By Dr. Barclay, Medical Registrar of the Hospital 285
CONTENTS OF NO. XXVIII.

OF THE

BRITISH AND FOREIGN

MEDICO-CHIRURGICAL REVIEW.

OCTOBER, 1854.

Analytical and Critical Reviews.

<table>
<thead>
<tr>
<th>Rev. I.—1. Change of Climate considered as a Remedy in Dyspeptic, Pulmonary, and other Chronic Affections; with an Account of the most eligible Places of Residence for Invalids in Spain, Portugal, and Algeria, at different Seasons of the Year; and an Appendix on the Mineral Springs of the Pyrenees, Vichy, and Aix les Bains. By D. J. T. FRANCIS, M.D., Physician to the Margaret Street Dispensary for Consumption, &c.</th>
<th>293</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. The Climate of Port Philip. By J. B. CLUTTERBUCK, M.D., Nine Years' Resident in the Colony</td>
<td>ib.</td>
</tr>
<tr>
<td>3. The Climate of Australia. By WILLIAM H. ARCHER and WILLIAM HOWITT. (Extracts from 'The Times' and 'Atheneum.') 1853</td>
<td>ib.</td>
</tr>
<tr>
<td>Rev. II.—1. Grundzüge der Pathologischen Histologie. Von Dr. CARL WEDL. 311 Outlines of Pathological Histology. By Dr. CHARLES WEDL.</td>
<td>ib.</td>
</tr>
<tr>
<td>Rev. III.—An Inquiry into the Pathological Importance of Ulceration of the Os Uteri; being the Croonian Lectures for 1854. By CHARLES WEST, M.D., Fellow of the College of Physicians, Physician-Acoucheur to St. Bartholomew's Hospital, and Physician to the Hospital for Sick Children, &c.</td>
<td>321</td>
</tr>
<tr>
<td>('Sydenham Society's Translation')</td>
<td>ib.</td>
</tr>
<tr>
<td>Rev. VI.—The Subject-Matter of a Course of Six Lectures on the Non-Metallic Elements. By Professor FARADAY; arranged by J. SCOFFERN, M.B.</td>
<td>356</td>
</tr>
</tbody>
</table>
CONTENTS OF NO. XXVIII.

REV. VIII.—The Pathology and Treatment of Stricture of the Urthra, both in the Male and Female, being the Treatise for which the Jacksonian Prize for the year 1852 was awarded by the College of Surgeons of England. By Henry Thompson, F.R.C.S., M.B., Lond. 372

REV. XII.—1. Die Speck oder Cholestrinkrankheit. Von Prosector H. Meckel. (‘Annalen des Charié Krankenhauses zu Berlin.’ Vieter Jahrgang, Heft 2, s. 264.) 413

The Lardaceous or Cholesteroline Disease. By Dr. Meckel ib.

REV. XIII.—1. A Treatise on Diseases of the Heart. By O'B. Bellingham, M.D., F.R.C.S. ib. 419

2. The Diseases of the Heart and the Aorta. By William Stokes, Regius Professor of Physic in the University of Dublin. ib.

On the Structure and Relations of the Corpora Amylacea of Man. By Dr. R. Virchow ib.

On a Substance found in the Brain and Spinal Cord of Men, having the Chemical Reaction of Cellulose. By Dr. Virchow ib.

Further Communications on the Occurrence of Vegetable Cellulose in Men. By Dr. Virchow ib.

On the Cellulose Question. By Dr. Virchow ib.

b. Bericht über die Leistungen in der Physiologischen Chemie. Von Prof. Dr. Scherer. p. 98 ib.

Reports on the Progress of Anatomy and of Physiological Chemistry. By Professors Henle and Scherer ib.

The Bacony or Cholesterine Disease. By Dr. Meckel ib.

REV. XV.—Notes on Pericarditis, Endocarditis, and Organic Disease of the Heart and Aorta. By C. Morehead, M.D., and Professor of Medicine in the Grant Medical College, Bombay. 1853. 8vo, pp. 195. (From the 'Transactions of the Medical and Physical Society of Bombay.') 448

Bibliographical Record.

Art. I.—Six Lectures on the Pathology of Strabismus, and its Treatment by Operation, delivered at the Westminster Hospital. By C. Holthouse, F.R.C.S.E., Assistant Surgeon to the Hospital, and Lecturer on Anatomy in its Medical School. London, 1854. 453
CONTENTS OF NO. XXVIII.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical and Practical Treatise on the Diseases of Old Age. By Dr. Durand-Fardel.</td>
<td>454</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscopic Anatomy. By Dr. Kölliker. (The second and concluding part of the second half of the second volume.)</td>
<td>ib.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ib.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ART. V.—Result of an Inquiry into the invariable existence of a Premonitory Diarrhoea in Cholera. By David MacLoughlin, M.D. London, 1854</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>456</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>457</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ART. VII.—Summary of New Publications</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>458</td>
</tr>
</tbody>
</table>

Original Communications.

<table>
<thead>
<tr>
<th>ART. I.—On the Peculiarities in Figure, the Disfigurations, and the Customs of the New Zealanders; with Remarks on their Diseases, and on their Modes of Treatment. By Arthur S. Thomson, M.D., Surgeon of the 68th Regiment of Foot</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>461</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ART. II.—Observations on Calcareous Deposits in the Brain, known as Brain Sand and Amyloid Bodies. By J. T. Arlidge, A.B., M.B. Lond.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>470</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ART. III.—Historic Data, &c., in reference to some points of Infantile Pathology. By W. Hughes Willshire, M.D. Edinburgh, Physician to the Royal Infirmary for Children, &c.—No. II. Scrofulous Meningitis</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>482</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ART. IV.—The Action of Liquor Potassae on the Urine in some Chronic Diseases. By E. A. Parkes, M.D., Professor of Clinical Medicine in University College, London</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>498</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ART. V.—Pathological Observations on the Bodies of known Drunkards. Part II. By Francis Ogston, M.D., Aberdeen</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>507</td>
</tr>
</tbody>
</table>

Chronicle of Medical Science.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>511</td>
</tr>
</tbody>
</table>

- **Quarterly Report on Pathology and Medicine.** By E. A. Parkes, M.D. (Lond.) | PAGE |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>523</td>
</tr>
</tbody>
</table>

- **Quarterly Report on Midwifery.** By Robert Barnes, M.D. (Lond.) | PAGE |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>532</td>
</tr>
</tbody>
</table>

- **Quarterly Report on Forensic Medicine, Toxicology, &c.** By W. B. Kesteven, F.R.C.S. | PAGE |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>538</td>
</tr>
</tbody>
</table>

- **Report on the Ophthalmoscope.** By T. Wharton Jones, F.R.S. | PAGE |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>549</td>
</tr>
</tbody>
</table>

- **Therapeutical Record.** | PAGE |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>558</td>
</tr>
</tbody>
</table>

- **Medical Intelligence.** | PAGE |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>566</td>
</tr>
</tbody>
</table>

Books received for review | PAGE |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>569</td>
</tr>
</tbody>
</table>

Title, Contents, Index.
THE
BRITISH AND FOREIGN
MEDICO-CHIRURGICAL REVIEW.

JULY, 1854.

PART FIRST.

Analytical and Critical Reviews.

Review I.

1. A Treatise on Diseases of the Heart. By O'B. BELLINGHAM, M.D.,

2. The Diseases of the Heart and the Aorta. By WILLIAM STOKES,
 Regius Professor of Physic in the University of Dublin.—Dublin,
 1854. pp. 689.

Fifteen years ago, the publication of Dr. Williams' 'Lectures on the
Diseases of the Chest,' and of Dr. Hope's work on the 'Diseases of the
Heart,' induced a general belief that it was possible to make an accurate
and minute diagnosis in almost every case of heart disease. Dr. Stokes
contended against this belief at the time. The remarkable work of Dr.
Skoda, while it shook this over-confidence in the powers of physical
diagnosis, introduced, by a necessary reaction, a spirit of over-distrust.

Under these circumstances, the two works which head this article are
valuable contributions towards a right knowledge of the diseases of the
heart. Although both of them are upon the same subject, and emanate
from the same city, so long distinguished for the eminence of its phys-
icians, yet they treat the subject in a totally different manner. Dr.
Bellingham begins at the beginning—describes systematically the heart
in health and the heart in disease, brings together faithfully the later
researches of various observers, and presents us with a very valuable
compendium.

Dr. Stokes, on the other hand, plunges at once into the midst of
his subject, takes us to the bedside of his patients, exhibits to us, with a
vigorous pen, disease, not in a systematic manner, nor as we find it in
systematic works, but as it is; every case being a fresh study, differing in
origin, in features, in complications, and in the required treatment, from
every other case. His work is, indeed, a series of original observations,
27-xiv.
which come before us, like our own cases, in no very exact order, but fresh and full of instruction.

Dr. Bellingham’s work is, in its very profession and nature, written for the present day: the record of what has been done by others, it will be succeeded by some future record of the labours of coming observers. Dr. Stokes’ treatise, composed as it is of living pictures of disease, like his former volume on the diseases of the lungs, will last as one of the standards of experience, and take rank beside the works of Abercrombie, Cheyne, and Laennec.

A great part of Dr. Bellingham’s work is occupied with a clear and detailed account of the healthy heart. The student of heart-disease cannot be too familiar with the heart in health, both in its actual and relative anatomy, and in its movements, its powers, and physical signs during life. Our author’s descriptions are too condensed for an abstract, and we therefore strongly recommend the reader to study the work for himself.

Dr. Stokes commences with pericarditis. Previously to the appearance of Dr. Stokes’ papers on Pericarditis in 1833, the diagnosis of that disease was most obscure. Collin and his friend Devilliers had noticed leather-creaking in isolated cases of pericarditis; and Broussais had observed parchment frôtement in the early stages of the disease. With these exceptions, pointed out by Dr. Stokes, the only physical signs previously established were the increased extent of dulness on percussion, and marked prominence over the cardiac region. In the important paper referred to, our author established that, in pericarditis, a double frôtement existed, often closely resembling a bellows or rasping murmur; disappearing gradually from below upwards with the increase of effusion, and returning with its decrease; and again disappearing from the apex to the base with the progressive formation of adhesions; limited usually to the region of the heart; changing in its character and seat from day to day; remarkably modified by local bleeding, passing from a loud frôtement to a soft bellows-murmur; most rough and intense in some cases during inspiration; sometimes accompanied by a rubbing sensation communicated to the hand; and ceasing with the cessation of pericarditis. That paper—the value of which can scarcely be over-stated—found pericarditis the most difficult, and left it the most easy of detection of any of the diseases of the heart. The present work recapitulates, almost without modification, the points stated in the former paper—nay more, the six cases given there are repeated here: this is well, for those cases cannot be too closely studied; but we own that we would gladly have had in their stead some fresh studies from the hand of the same master.

Dr. Stokes divides the cases of pericarditis into three forms:

“In the first are to be placed those in which there is but a slight, though general effusion of coagulable lymph. In the second we have superadded, the secretion of serum in abundance, causing distension of the sac. And in the third class we find, in addition to the preceding conditions, the signs of muscular excitement, if not of myocarditis.

“Let us contrast these forms.
First Form.
Absence of pain or local suffering frequent. No sign of muscular excitement, nor any special character of pulse. No increase of dulness over the heart.

Second Form.
The local and general symptoms more decided, though often very trifling. Irregular action of the heart and pulse, often more manifest in the advanced periods. Remarkable increase of dulness over the heart.

Third Form.
Local distress, often extreme, even at the outset. Tumultuous action of the heart. Irregularity of pulse. Dyspnoea, orthopnoea, oedematous swellings, syncope, death.

"These forms are not merely different in the degree of violence of the disease, but draw their distinctive characters from other circumstances. That there is a progressive increase in the violence of the original inflammation, as we ascend from the first to the third form, may be admitted. The great characteristic of the second form, however, is the effusion of fluid, while that of the third is the irritative or inflammatory excitement of the muscles of the heart. It is this which causes the great suffering, and, as we shall presently see, constitutes the danger in the advanced stages of the disease; for there can be little doubt that death occurs by syncope, induced by paralysis of the left ventricle, the result of its preceding excitement or inflammation. The muscles of the heart are then in the same condition as that of the intercostals after violent pleuritis; and when the weakened organ has not only to propel the column of blood, but to struggle with the pressure of a large body of fluid, while its action is clogged by a deposit of coagulable lymph, it is no wonder that it should fail to fulfil its function."

These three forms are, in reality, stages, or degrees of intensity, of the same disease. We doubt whether, in any case, coagulable lymph is effused, without, at the same time, increased effusion of serum. The amount of serum and of solid exudation are both proportioned to the severity of the attack. Dry pericarditis does not exist, we consider, as a variety; it does, however, as a stage. In the later stages the serum is removed, and the solid and dry exudation remains, and frequently glues the opposing surfaces of pericardium together. The paralysis induced by the inflammation of the muscular tissue is undoubtedly the most formidable effect of pericarditis. Rokitansky states that, under the influence of pericarditis, the muscular substance of the heart is paralysed, being of a dirty brown or yellow colour, flabby, and easily torn; a condition which speedily leads to passive dilatation of the heart, and general cachexia and dropsy.

"Two conditions of the muscles may be supposed to exist. One, simple atony or paralysis; the other a true myocarditis, attended with deposition of new matter among the fibres, or by ulcerative absorption. In the first of these conditions recovery is possible, just as we see in pleuritis that the action of the paralysed intercostals is restored, while in the second the organ appears to be irreparably injured.

"We may then conclude, that when death takes place as a consequence of pericarditis, the contractile power of the left ventricle at least has been seriously injured, and that the organ is either simply paralyzed, or that its structure has been altered more or less deeply by inflammation of the fibres themselves."

But, in many cases, death is not to be attributed to the cardiac inflammation alone, but to its complication with other diseases, general and local.

Dr. Stokes ranges acute rheumatism, gout, phlebitis, typhus, dropsy, and delirium tremens, as the chief general complications; pleuritis (generally of the left lung), pleuro-pneumonia, chronic empyema, chronic hypertrophy, fatty degeneration of the heart, and a group of typhoid
inflammations, as the principal complications with local diseases. Among these complications, Dr. Stokes does not specify Bright's disease, which existed in about 12 out of 40 cases detailed by Dr. Taylor, in the 'Lancet;' of these, 23 were complicated with acute rheumatism. Dr. T. K. Chambers states, that out of 135 fatal cases of pericarditis, occurring during ten years in St. George's Hospital, the probable direct causes were—

<table>
<thead>
<tr>
<th>Causes</th>
<th>Cases.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatic fever</td>
<td>in 18</td>
</tr>
<tr>
<td>Diseased kidneys</td>
<td></td>
</tr>
<tr>
<td>Diseased heart and dropsy</td>
<td>in 18</td>
</tr>
<tr>
<td>Pyaemia</td>
<td></td>
</tr>
<tr>
<td>Pneumonia</td>
<td>in 10</td>
</tr>
<tr>
<td>Vomicae</td>
<td></td>
</tr>
<tr>
<td>Pleurisy</td>
<td>in 5</td>
</tr>
<tr>
<td>Other causes</td>
<td>in 22</td>
</tr>
</tbody>
</table>

Dr. Barclay* specifies the cause of pericarditis in 16 fatal cases:

<table>
<thead>
<tr>
<th>Causes</th>
<th>Cases.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheumatic fever</td>
<td>in 5</td>
</tr>
<tr>
<td>Diseased kidneys</td>
<td>in 8</td>
</tr>
<tr>
<td>Other causes</td>
<td>in 3</td>
</tr>
</tbody>
</table>

The first stage of pericarditis, before exudation, is not discoverable, Dr. Stokes says, by physical signs: this period rarely lasts longer than thirty-six hours. The question of the effect of the greatly increased vascularity of the inflamed surface, in causing friction sound, before exudation of lymph, is not handled by our author. His cases prove, however, that such is capable of exciting, or, at least, modifying the frottement; since he found that the application of a few leeches immediately modified and softened the morbid sound. Now, the application of leeches could not alter the exudation on the surface of the membrane, though it could and would materially lessen the turgescence of the minute vessels. The friction sound, therefore, in the cases referred to, must have been influenced by the inflammatory vascularity.

We need not follow our author in his description of the tactile signs, friction sounds, and extension of dulness over the heart.

The friction sounds differ over different parts of the heart, being stronger and rougher, especially during systole, over the right ventricle, to the left of the lower sternum, than over the right auricle, to the right of that bone; the two sounds being there nearly equally smooth and prolonged. In an established case of pericarditis, the exocordial can be distinguished from the endocardial noise by the nature and nearness of the exocordial sound—by its existence with diastole as well as systole—its limitation to the region of the heart—its non-existence over the great vessels—its variation over different parts of the heart—its rapid and frequent change in character, or its disappearance from day to day—its want of correspondence with the rhythm of the heart, while it seems to follow upon its movements (Skoda) or to precede and follow the impulse, or to come between the heart's sounds (Wunderlich), its co-existence with tactile vibration, and, where there is much effusion, with an extensive cone-shaped region of cardiac dulness—its apex pointing to the top of the sternum—its broad base extending downwards to the right and far to

* Medico-Chirurgical Transactions, vol. xxxv.
the left of the epigastrium:—if these signs, or a portion of them, co-exist, or are marked, the diagnosis of pericarditis is easy and certain; but in some cases of the disease throughout, and in the earlier stages of most cases, the exocardial so resemble the ordinary endocardial signs, that the most practised ear is occasionally deceived.

We have found the character laid down by Dr. Stokes, that the exocardial noises are limited to the region of the heart, usually borne out; but now and then a case occurs that offers a remarkable contradiction to this law. A case in which friction sounds have been exactly limited to the region of the heart suddenly presents a remarkable diffusion of harsh rubbing or grating noises over the front of the chest. We have in several cases found this diffusion of the friction sound to coincide with the disappearance of the fluid effusion; and we have noticed that the sound spreads in preference over the whole of the lower cartilages and ribs, from below the edges of the lungs. In these cases, it is manifest that the heart playing against the dry sternum produces a sound which resonates over the cartilages in connexion with that bone, where they lie, not over the lungs, but over the solid organs.

That the exocardial are often mistaken for endocardial murmurs is evidenced by the records of all the best observers. Thus, in only 8 of the 40 cases so accurately recorded by Dr. Taylor, was distinct friction sound heard from the first; while in 17 cases the reporter was doubtful whether a friction or a bellows sound was heard; and in 4, bellows-sound, heard one day, was subsequently superseded by a rubbing noise. Dr. Stokes, Dr. Law, Mr. Mayne, and Dr. Graves, all present cases in which it was more or less doubtful whether a friction or a bellows-noise was heard. Weber, in his excellent manual on auscultation, recently translated by Dr. Cockle, says that the murmur of pericarditis possesses no decidedly pathognomonic character.

Skoda, as rendered by Dr. Markham, thus expresses himself:—"According to my own experience, indeed, there is no kind of endocardial murmur, with the exception of the whistling, which may not be imitated by a friction sound of the pericardium; and no pericardial murmur which may not resemble an endocardial murmur." Skoda, perhaps, here goes too far; but there can be no doubt, that, although in most cases, especially in the advanced stages, the friction sounds are quite characteristic, yet we are in want of signs, in addition to those enumerated, to enable us to distinguish every case of pericarditis, especially in the earlier stages.

We believe that, in nearly every case, such a distinguishing sign is here afforded us:

"I have spoken of the effect of pressure. If, while the stethoscope is applied, we make a strong downward pressure with the hand, or increase the pressure of the head on the ear-piece, we shall often find a notable increase in the loudness and distinctness of the friction sounds; so that, in a case passing towards cure, we may reproduce, to a certain degree, the harshness and loudness which existed in the earlier periods of the attack. The same effect can be even better produced by causing an assistant to make pressure with the open hand on the cardiac region, during the application of the stethoscope. As might be expected, this modification by pressure varies directly as the elasticity of the chest. It is very remarkable in children, in women, and in young, feeble men.

"This mode of proceeding may be adopted in certain cases where we are in doubt as to the nature of the sounds. I have not made any extensive series of
observations on the effect of pressure in modifying the character of valvular murmurs, but it is certain that the pericardial sounds are much more influenced by pressure than those arising from valvular disease.” (p. 19.)

It gives us deep satisfaction to find the valuable testimony of Dr. Stokes, in addition to that of Dr. Walsh, enrolled in favour of the aid afforded by pressure in the diagnosis of pericarditis; an important additional sign, which we thus brought before the profession, for the first time, in 1844:

“In the early stages of inflammation, where the old capillaries are enlarged, become spiral, and give existence to new vessels, and bulge up and roughen the pericardial surface, the ordinary friction of surface against surface is not sufficient to give birth to a rubbing sound. By pressing gently on the costal cartilage or sternum with the end of the stethoscope (I employ the flexible stethoscope), any fluid that may be interposed between the surface of the heart and the costal walls is now displaced. The opposed surfaces now touch; if they touched before, they are now pressed close together; and where the normal sounds were heard on light application of the instrument, or on applying the ear, a rubbing sound is now heard, due to the increased and now noisy friction of two turgid surfaces.”*

“Very often a smooth friction sound, audible on applying the ear or the stethoscope lightly, becomes rough and harsh, or high and musical, on firm pressure. When the sound is audible on light pressure it is always increased in loudness, often in tone, by exciting firm pressure.”†

By the aid of pressure, applied gently over the region of the heart, we have a test decisive as to the cause of the sound, when we are in doubt as to whether it be endocardial or exocardial. If the noise be a valve murmur, pressure does not increase or modify it, except in some anemic persons, over the aorta; but if it be an attrition-murmur, but soft and bellows-like, pressure intensifies the noise, and converts it into a rustle or rub. This sign is of peculiar value in the stage of effusion, when pressure, by displacing the intermediate fluid, brings the roughened surfaces again in contact, and in the early stages, when it is in reality most important to arrive at a correct diagnosis,—since it will then often at once replace the prolonged rather rough systolic noise, noticed by Dr. Latham to be the frequent precursor of attrition-sound by a characteristic frottement.

Extensive effusion does not necessarily obliterate the friction sound. Dr. Stokes says:

“Again, as in pleuritis, the existence of a liquid effusion does not necessarily prevent the occurrence of friction signs, so in pericarditis does the same rule apply. . . . I have often found the friction sounds to remain at the base of the heart, long after extensive liquid effusion had taken place into the sac; and it is particularly necessary to insist on this, as it has been stated by some writers, that the third stage of pericarditis is not accompanied by frottement.

“In a case observed in the Meath Hospital some years ago, in which there was extensive dulness, the friction signs could be heard when the patient lay on his back, but disappeared on his assuming the erect position. The explanation of this is obvious. A case is given by Dr. Corrigan, in which the pericardium was enormously distended, so as to reach to the first rib. When the patient sat up, the friction sounds diminished, and sometimes altogether disappeared, but became well marked whenever he lay on his back. The heart was covered with a pulpy lymph, and there was a vast effusion of liquid into the sac.” (pp. 19, 20.)

Dr. Walsh relates a case in which friction sound was heard at the mid-sternum, although sixty ounces of fluid were found in the pericardial sac, which reached a thumb's breadth above the clavicle. When exten-

* Provincial Medical Transactions, vol. xii. p. 540.
† Ibid. p. 542.
sive pericardial effusion takes place, the heart is pushed upwards to the second, third, and fourth, intercostal spaces; consequently, the seat of the heart's impulse, of the rubbing sounds, and of tactile vibrations, are all correspondingly raised. This fact, which we noticed in 1844, is corroborated by Dr. Latham's 'Lectures,' and has been recently confirmed by Dr. Walshe.

"Case I. Simple Dry Pericarditis.—Development of friction sounds and tactile vibrations. The sounds may at first be general or partial, and then spread over the whole surface of the heart. They may be at first soft, but rise to a maximum of roughness and loudness; when they commence to decline, becoming softer and more feeble. This change generally takes place first towards the apex, and extends to the base of the heart. They finally cease, the cardiac region remaining all the time with its natural sound on percussion.

"Case II. Pericarditis with Liquid Effusion.—Friction signs are first developed with various degrees of intensity, but are generally less loud and rough in this case than in the preceding one. They soon disappear, either wholly or over a great extent, being still heard in some cases, principally at the base of the heart. The dulness diminishes, and with the return of clearness the friction signs reappear, though still generally feeble than in their first stage; then finally subside, leaving the sounds of the heart natural. The tactile signs may or may not be present at the commencement or resolution of the disease, but are seldom so well developed as in dry pericarditis.

"It is plain that in both these cases the diagnosis of an adhesion of the pericardium, more or less complete, can be easily made, not, however, from any direct signs of the condition itself, but from the fact of our having observed the exudation of lymph, with or without liquid, formed in a serous sac, and passing into organization. I more than doubt that there is any certain physical sign of adhesion of the pericardium, and have never been able to verify the sign relied on by Dr. Hope, of the double jogging impulse." (pp. 20, 21.)

Among the causes of modification of the friction signs, Dr. Stokes ranks the co-existence of air with the usual products of inflammation. He gives an interesting case, in which he inferred the presence of air in the pericardium. The rubbing sounds, though loud and distinct, had nothing unusual in their character, and the patient suffered but little distress. After two or three days his appearance was haggard and worn. The rubbing sounds, of the existence of which the patient was previously unconscious, had suddenly become so loud and singular, that the patient and his wife, who occupied the same apartment, were unable to obtain a moment's repose:

"On examination, a series of sounds was observable which I had never before met with. It is difficult or impossible to convey in words any idea of the extraordinary phenomena then presented. They were not the rasping sounds of indurated lymph, or the leather-creak of Collin, nor those proceeding from pericarditic with valvular murmur, but a mixture of the various attrition murmurs with a large crepitating and a gurgling sound, while to all these phenomena was added a distinct metallic character. In the whole of my experience I never met so extraordinary a combination of sounds. The stomach was not distended by air, and the lung and pleura were unaffected, but the region of the heart gave a tympanitic bruit de pot félé on percussion; and I could form no conclusion but that the pericardium contained air in addition to an effusion of serum and coagulable lymph.

"In the course of about three days the signs of effusion of air disappeared, leaving the phenomena as they were at the first period of the case. The convalescence of this patient was slow, and the rubbing sounds continued for an unusual length of time. His recovery was ultimately perfect." (p. 22.)
Dr. Graves, in his 'Clinical Medicine,' gives a case in which an hepatic abscess found its way, simultaneously, into the stomach and the pericardium. There was air in the pericardium, over which, on the day before death, a loud metallic tick, audible at each stroke of the heart, could be heard, combined with sounds having the character of an emphysematous crackling. Here the supply of air was manifestly from the stomach.

Dr. Stokes, in a foot-note, says:

"It may be placed in that important category of cases, which, independent of their rarity, may be taken as introductory to the diagnosis of new forms or combinations of diseases, or of affections previously known, but for the discerning of which no clear rules existed." (p. 24.)

Our author is mistaken in supposing that this important case is the first in which the signs of air in the pericardium have been recorded. M. Pigeaux, in his work on the 'Diseases of the Heart,' page 238 (1839), refers to two such cases previously published by him, in which there was "gargouillement," synchronous with the heart's beat, resembling the quick lapping of a dog when drinking. In one of the cases, the air entered and left at each stroke of the heart, producing a peculiar sibilant noise. M. Pigeaux—whose work, though sound and often original, is provokingly deficient in cases and references—does not state where these cases are published. Laennec, as our author states (page 28), considered that air in the pericardium might be diagnosed by unusual resonance on percussion over the lower sternum, by a noise of fluctuation caused by the beating of the heart, and by the heart's sounds being heard at a distance of from two inches to two feet from the patient. Andral, in his note on this passage, cites a case observed by himself, in which he heard a peculiar gurgling each time the heart beat against the ribs, and in which he inferred the existence of air in the pericardium; and another, recorded by Brichetant, in which a noise like that of a mill-wheel was heard over the pericardial region with each beat of the heart. Percussion over the heart, after death, excited a "bruit de flot." The pericardium was filled with foetid pus, and a certain quantity of gas.*

Dr. B. M'Dowel gives a case of pneumo-pericarditis, caused by its communication with an anfractuous cavity in the upper lobe of the right lung. The physical signs gave evidence of a large cavity, containing air and fluid, in the antero-inferior region of the left side of the chest; indicated by metallic tinkling (bourdonnement amphorique), and splashing of fluid, caused by the action of the heart.

"In Dr. Graves's case, the signs, though singularly modified, were still those of pericarditis; while in that by Dr. M'Dowel these were wanting; and a group of signs, closely resembling those of the ordinary empyema and pneumo-thorax, were produced." (p. 26.)

In a case of traumatic communication between the oesophagus and pericardium, referred to by Dr. Walshe, although no peculiar sound was heard, there was tympanitic resonance over the cardiac region, changing its seat with the change of position.

We possess the notes of the case of an old man who was run over by a

* Laennec, tom. iii. p. 394.
wagon, with the effect of rupturing the left upper lobe at its lower extremity. The air, which filled the whole of that side of the chest, had almost disappeared in a few days. "On applying the stethoscope lightly (over the heart), the sounds are heard dull, feeble, normal. On moderate pressure a very loud sharp click is heard during the impulse; this is preceded and followed by sounds resembling those caused by the successive movements of a spatula on a slab when triturating ointment." On examination after death, it was found that the small rupture in the lung was closed, but little air remained in the left pleural cavity, and the pericardium and adjoining pleura were remarkably dry.

Dr. Stokes warns us against being deceived into mistaking distension of the stomach with air for pneumo-pericarditis, when the friction signs of pericarditis may present a distinct metallic character:

"The last source of modification is the existence of valvular disease, either contemporaneous or previously existing. In certain cases this combination may cause some obscurity in diagnosis, but I believe that writers have over-estimated the amount of the difficulty. If we take the case of a previously existing valvular disease, the following circumstances will serve as means of diagnosis:—

"First. The actual acoustic character of the sound.

"Second. Its arising from a point comparatively deep-seated, and where it is at its maximum.

"Third. Its not being equally, or nearly equally, diffused over the surface of the heart.

"Fourth. Its greater extension over the thorax.

"Fifth. Its frequent want of the double character, the first or the second sound of the heart being often unattended with murmur.

"Sixth. Its being frequently transmitted along the aorta and its primary branches.

"Seventh. The absence of friction sensation communicated to the hand.

"On the last character it is to be observed, that the valvular tremor, like the sound, has, in many cases, a point of greatest intensity, and is not extensively diffused, as in pericarditis. Indeed, unless in some of the rare cases of varicose aneurism, the maximum point of the tremor is generally determinable without difficulty.

"There is, perhaps, a greater difficulty in settling the question when the disease affects the mitral valve, leaving the aortic orifice free; for in this case we have no transmission of the murmur along the vessels. A careful consideration, however, of all the phenomena will, in almost every case of doubt, lead us to a correct conclusion.

"I have already observed, that the signs of pericarditis must have often been mistaken for those of diseased valves. But their sudden supervention in a case where they had never before existed, the accompanying sign (when present) of the rubbing sensation communicated to the hand, the rapid change of situation, the equally rapid modification by treatment, and the occurrence of the signs with both sounds of the heart, in a case which previously presented no evidence of organic disease, form a combination of circumstances which can hardly mislead.

"But when it happens that, coincident with the attack of pericarditis, a diseased action is set up in the valves, the determination of the latter may be difficult, during the continuance of the true friction murmurs. If the valvular sign be, as it commonly is, a bellows-murmur, it may be completely masked by the loudness of the friction sounds, and only become manifest on their cessation. For some time, too, before these latter have wholly subsided, but when they have lost much of their loudness and roughness, it may be difficult to say how far the two sounds are intermingled. Yet the determination of the question is of importance only as relating to the prospects of the patient. It is a question of prognosis
rather than of treatment; and the case in question illustrates this important maxim, that in acute affections, when the diagnosis of the diseases of adjacent parts is difficult or impossible, it is often unnecessary, so far as treatment is concerned.” (pp. 32—34.)

Perhaps the most important proof of the absence of mitral endocarditis is the existence of healthy heart sounds to the left of the apex—beyond the region of frottement. If, however, we hear a systolic bellows-murmur to the left of the apex, there is probably mitral endocarditis. We say probably, because the character of the bellows-murmur of endocarditis in no respect differs from that of established mitral disease. Indeed, if the patient has had a previous attack of acute rheumatism, attended by chest disturbance, followed by breathlessness or palpitation on going upstairs, the sound is most probably caused by pre-existing valvular disease. Under any circumstances, the presence of the mitral-murmur does not amount to a proof of endocarditis; for such murmur may unquestionably be induced by the mere disturbance of the muscular function of the heart, or by some other unexplained cause.

“It may be inquired, whether any assistance can be derived, in the diagnosis of pericarditis, from studying the acoustic signs which are proper to the muscular contraction of the heart, simply considered. This is a subject on which new researches are required, yet I cannot but think that some important results would follow from the investigation. It is to be determined whether any sign, independent of the irregularity of the heart’s action, could be discovered, which would indicate the extension of disease to the muscular structure; whether the ringing sound of the ventricular contractions may be taken as a proof of the first stages of myocarditis; whether any purely muscular murmurs are developed; and lastly, whether, in the advanced stages of inflammation, the muscular sounds become weakened or destroyed.

“With reference to the last point I can state, that I have observed the disappearance of the first sound of the heart in cases of severe pericarditis; so that if we except the irregularity of action, the signs closely resembled those of the softened or weakened heart in typhus fever; and although the cause of this condition is pathologically different, yet, physically considered, it is the same in both diseases, and proceeds from the weakened state of the muscular fibres, resulting in one from the effects of inflammation, in the other from relaxation, with or without the interstitial typhoid deposit.” (p. 35.)

Dr. Stokes finds, that in cases of dry pericarditis there is no alteration of the sound on percussion over the cardiac region. We have already stated that we doubt the existence of “dry” pericarditis, excepting as a stage of the disease. The healthy pericardium, we find, can hold, when distended, about six ounces in the boy, and about twelve or twenty ounces in the adult. It is not exactly ascertained what quantity of effusion must be present, before the lungs are pushed aside by it, so as to increase the cardiac dulness; perhaps the presence, in the boy, of between one and two ounces, and, in the adult, of between two and three ounces, would suffice. The increased dulness takes place upwards, over the great vessels, as Corvisart first pointed out. If the quantity of fluid be great, the fluid, by pushing aside the lungs, causes cardiac dulness not only upwards to the top of the sternum, or even up to or above the left clavicle, and sideways, sometimes even to the right nipple and to the left lateral region of the chest, but it also pushes downwards the central tendon of the diaphragm from one to two inches, so as to displace the
stomach and liver, and to replace the gastric resonance by pericardial dulness.

Avenbrugger and Corvisart describe, with great accuracy, the depression of the diaphragm below the end of the sternum, caused by extensive pericardial effusion. This effect of pericardial effusion is illustrated by our own diagrams in the ' Provincial Transactions' for 1844, and elsewhere; and by Piorry, in Plates 13, 15, and 18, in his 'Atlas de Plessis-métrisme' (1851). Bock, in his 'Lehrbuch der Diagnostik' (1853), fig. 58, represents, with wonderful inaccuracy, the effects of pericardial effusion. In this figure, although the effusion is extensive, its lower boundary is actually an inch above, instead of one or two inches below, the lower end of the sternum. It by no means follows that the latest observers are the most accurate. Piorry's figures, 15 and 18, above referred to, show very clearly, but to an exaggerated degree, that change in position from the right side to the left, or vice versa, causes the fluid in the pericardium to depend to the right or left, so as to alter considerably the right and left outlines of pericardial dulness. In figure 13, the outline of dulness is not sufficiently far to the right of the sternum. Dr. Stokes makes the valuable remark, that when the left side is dull in front, and resonant behind, it is a pericardial, and not a pleuritic effusion.

This large increase of fluid tells itself, especially in the young, by the protrusion of the left cartilages and ribs, the widening of their interspaces, and the prominence of the lower sternal; and in some extreme cases, as Serac and Avenbrugger pointed out, by an epigastric tumour.

Gendrin states, with unequivocal decision, that prominence over the epigastrium and lower part of the sternum exist in every case, and through every stage, of acute pericarditis, even when cardiac dulness is not increased, and the attack is of the slightest! This is anatomically impossible, and is contradicted by the evidence of the best observers. Thus, Rilliet and Barthez found that the thoracic prominence only existed when the extent of pericardial dulness was markedly increased, the one being proportioned to the other.

Perhaps the most important part of Dr. Stokes' chapters on pericarditis, is that relating to its vital symptoms and history.

The discovery of Laennec, while it illuminated disease in its local and physical changes and signs, turned away men's minds from the practical observation of the vital symptoms. The condition of the whole system was overlooked in the nice appreciation of minute visceral changes. While our view of disease gained accuracy, it lost breadth. The effect of this circumscribed diagnosis on treatment was disastrous. Your clever "stethoscopist," hearing a rustle, or perhaps a bellows-murmur, over the heart, at once subjected his unfortunate patient, though weak and free from actual distress, to a destructive course of bleeding, leeching, blistering, and mercurialization, with diète absolue. It is true, that he arrested the inflammation; but then he often arrested the heart also. What was lost in lives was gained in pathology. Under the eyes of Bouillaud, and of other physicians, post-mortem examinations revealed, with an amazing frequency, the existence of pericarditis; but then, they had had the signal satisfaction of predicting the disease during

* Sir John Forbes' translation, p. 57.
† Maladies du Cœur, p. 469.
‡ Maladies des Enfans, tom. i. p. 626.
life. Their diagnosis was in every instance confirmed. The startling fact seemed to come out, that acute rheumatism, so long thought to be a disease only in the joints, was deadly in the heart. The older physicians, keen searchers many of them, had failed to detect this. There could be but one inference: acute rheumatism had suddenly assumed a new and a formidable type, and instead of limiting itself to the limbs, as in former days, it had spread to the heart also.

But the fact is, that it is not the tendency of rheumatic pericarditis to kill. It was too often the zeal of the physician that destroyed the patient. Meddlesome medicine is as mischievous as meddlesome surgery. A marked improvement in the knowledge and treatment of disease has prevailed of late years; and now the great discoveries of Laennec, taking their due proportions side by side with the other features of disease, are becoming daily of more real service to the physician and patient. We are indebted to the Dublin School of Medicine, more perhaps than any other, for this great improvement.

Dr. Stokes teaches that, in acute rheumatism, the pericarditis may precede the arthritis—that the liability to pericarditis is in direct proportion to the violence and duration of the fever—and that every variety and degree of pericarditis may occur in connexion with acute rheumatism, from the simple, dry, latent pericarditis, to the worst forms combined with inflammation of the endocardium and muscular structure.

"Although, as we might expect, the complication of acute rheumatism with pericarditis occurs under a variety of forms, yet three principal divisions of such cases may be made by the clinical observer. In the first, the disease, as regards symptoms, is truly latent, so that its discovery, which is only attainable by physical examination, is often accidental. In the second form, this latent disease may become manifest, and be indicated by a new train of symptoms, which at once draw attention to the internal disease, and it will then be found that the pericarditis has changed from the simple plastic form to a more severe affection, accompanied with copious effusion. This sudden change of dry, latent pericarditis into the more important forms of disease, is an accident which must always excite great alarm.

"In the last form the invasion of the pericarditis is attended by distinct symptoms of cardiac suffering, and these, as Dr. Mayne has shown, may exist for one or two days before the appearance of any tactile or acoustic sign of the disease. Of the local symptoms, pain and weight in the region of the heart, with an increased impulse of the organ, are not uncommon. The pulse may, in some cases, be wiry and regular, while in others, irregularity of the heart's action is one of the first symptoms. It is important to notice this, as we may commonly connect the idea of irregularity of the pulse with the weakened state of the organ in the advanced stages of the disease. Evidences of irritation of contiguous organs are often seen. The left pleura may present symptoms of disease, bronchitic or pneumonic rales may appear in the left lung, while vomiting and epigastric tenderness indicate that the stomach sympathizes with the diseased organ, or itself partakes in the irritation. In some cases the invasion of these symptoms is attended with a mitigation of the arthritis, but this is by no means usual. I have been more than once led to suspect pericarditis from a sudden increase of fever, without corresponding increase of tumefaction in the joints. The countenance is anxious, with a sense of sinking about the heart, and apprehension of death." (pp. 47, 48.)

The pain in pericarditis, when present, is frequently attended with a sense of constriction about the heart; it is seated over the sternum, and sometimes over the epigastrium and between the scapula. It is increased or excited by pressure, especially if made over the intercostal spaces, and
upwards, over the epigastrium. Sometimes it is agonizing; sometimes a mere uneasiness; frequently altogether absent. It resembles the pain of angina pectoris more than that of pleurisy.

The breathing is often difficult, high, and accelerated: while the movement of the upper chest is increased, that of the epigastrium is often arrested. This is a marked feature, especially when the central tendon of the diaphragm is involved.

In some cases, the patient stoops forward, so as to increase the space between the sternum and vertebrae.

The effects of pericarditis on breathing and on attitude depend chiefly on the amount of exudation. If the effusion be slight, the patient can generally lie upon the back, and the respiration is not usually distressed; if, however, the effusion is extensive, it compresses the trachea at its bifurcation backwards and upwards against the spine, so as to impede the entrance of air. Seven out of eleven cases given by Senac, of extensive pericardial effusion, were unable to lie down. In one, the patient sat with his legs bent. In a case detailed elsewhere, the patient sat all night in his chair, leaning on a table. When the patient lies down, the pressure upwards and backwards on the trachea is great; but if he stoop forward, the fluid gravitates upon the diaphragm, the space between the sternum and spine is widened, and the pressure upon the trachea is lessened. In a patient suffering from pericarditis with extensive effusion, we observed that the respirations were thirty-five in the minute when she lay down, twenty-nine when she sat up. The excessive dyspnea, so often present in pericarditis with effusion, is not due to the compression of the lung—even extensive pleuritic effusion is often latent—but to the compression of the trachea, the inflammation and depression of the central tendon of the diaphragm, and perhaps to paralysis of the diaphragm itself, from compression of the phrenic nerves.

The pulse is very variable: it may be small and rapid, or singularly slow, or quite unaffected; it may be irregular, rapid, and feeble; while the action of the heart is sometimes feeble, sometimes violent.

Sometimes the face and lips are of a violet hue, but sometimes of a constricted pallor. The jugular veins are frequently distended. If the effusion be great, the distension is proportionate; if extreme, the venous distension does not lessen during inspiration. This last sign is to be observed in all cases where there is an absolute obstruction to the flow of blood through the chest; and whether the obstacle be in the heart or pericardium, the lungs or pleura, we believe it to be the most absolute and important sign of obstruction to thoracic circulation.

Edema and great coldness of the lower extremities is noticed in cases of extreme pericardial distension, particularly in some of those given by Morgagni and Senac, Louis, Graves, and Mayne. This is readily explained by the compression of the thoracic aorta between the swollen sac and the vertebrae. In some cases, the left arm is swollen, probably from compression of the left subclavian at its origin.

The increased pulsation of the carotids, referred to by Dr. Stokes, is really a sign of accompanying aortic regurgitation.

By far the most formidable cases of pericarditis are those in which the functions of the nervous system are very seriously disturbed, although no organic change can be detected in the brain.
Jactitation, an extreme agitation, not permitting the patient to rest for a single instant in the same position, who, now sitting, now lying, in vain seeks for relief, is graphically described by Corvisart (see c. 14), in more than one case of pericarditis. M Pigeaux truly remarks, that this jactitation is always a most alarming symptom.

Chorea in childhood, Dr. Walshe holds to be a most ominous complication: of 4 well-marked cases of the kind occurring in rheumatic pericarditis, 3 terminated in death. Dr. Kirkes gives 29 cases in which chorea was associated with heart-disease; of these, 16 had pericarditis, of which 9 died:* all had rheumatism but 2.

A tetanic affection was present in a young girl affected with carditis, whose case was related to Dr. Davis by Dr. Birkbeck. In Andral’s case, (No. 8,) of pericarditis with delirium, there was, from time to time, tetanic rigidity of the arms, frequent retroversion of the head, and brusque movements of the body.

Among the same class of symptoms are the convulsive startings that suddenly rouse the sufferer when falling asleep, sudden starting out of bed, the twitching of the limbs and the convulsive distortion of features that present themselves to us in some of the worst cases of rheumatic pericarditis, and which are noticed by many authors.

Delirium, so often accompanying, alternating, or following the symptoms just described, has been admirably portrayed by our own observers —Dr. Davis, Dr. Latham, Dr. Watson, Dr. Bright, and Dr. Burrows.

Dr. Stokes has seen several cases complicated with delirium tremens, in which the pericarditis was but one of a group of irritations, all of them connected with that form of typhus which follows on an excessive debauch, and exposure to cold.

Testa gives some interesting cases of pericarditis with dysphagia. When we consider that the oesophagus lies between the pericardium and the bodies of the vertebrae, it is remarkable that dysphagia is so seldom noticed, for it must necessarily be exposed to the backward compression of the distended sac. Dysphagia existed in one of Dr. Watson’s cases; and in one of Bouillaud’s, epigastric pain was aggravated by swallowing. In a case of rheumatic pericarditis, related by Dr. Davis, the patient swallowed with difficulty on the day previous to death.† The same author (p. 133) states, that Daniel and Vogel both mention hydrophobia as a symptom of carditis. Gendrin‡ relates the symptoms observed by Trécourt in a remarkable epidemic of pericarditis, with copious purulent effusion, that occurred in the garrison of Rocroy, in 1746. The patients suffered from extraordinary thirst, but as soon as they desired to drink they were attacked with symptoms of hydrophobia. Schönlein enumerates hydrophobia among the symptoms of serous carditis.§ This symptom is undoubtedly due to the distress excited by drinking. Dr. Walshe states that spasmotic dysphagia occasionally occurs in pericarditis.

In one case, given by Morgagni, the patient was obliged to swallow everything cold, owing to the distress excited by anything hot. In one of Louis’ cases, the uneasiness and oppression increased after a meal, and lasted for two or three hours. Sir John Forbes states, that oppression of the chest after eating exists in almost all diseases of the heart

† Maladies du Cœur, p. 434.
‡ On Carditis, p. 71.
§ Pathologie, p. 160.
and pericardium.* When we consider that the oesophagus is so immediately behind the pericardium, and between it and the spine, and that the stomach lies so immediately below the heart, it is remarkable that dysphagia and oppression after food are so rarely met with in cases of pericarditis, especially when there is extensive effusion. Dysphagia is not unfrequent in aortic aneurism, and Dr. Stokes has observed it in thoracic inflammation, when its accompanying phenomena seemed to prove that it was less the result of a mechanical condition, such as pressure on the oesophagus, than of some excited irritability, either of that tube, or of parts immediately in contact with it. We have analyzed the greater number of the published cases of pericarditis, and, with the above exceptions, we find no mention of the symptom in question.

"In a young man attacked with pericarditis, the voice underwent a great variety of changes of tone, and was not restored for several weeks. In this case, the liquid effusion was never very considerable. The phenomena were slight dulness, with various modifications of the rubbing sound." (p. 56.)

Dr. Davis gives a case in which there was hoarseness; and Wunderlich places aphonie and hoarseness among the general symptoms.

Dr. Stokes, in reasoning on the cases of dysphagia, says that it may be asked whether it may not proceed from inflammation of the retropharyngeal network of veins.

In connexion with the intimate anatomical relation of the oesophagus with the pericardium, we may mention two cases of great interest that we observed in St. Mary's Hospital. In one of these, which was under the care of Dr. Chambers, pericarditis was caused by an ulcerated opening from the oesophagus into the pericardial sac, through which the food found its way. In the other case, which was under our own care, and which is related in the Transactions of the Pathological Society, pericarditis was caused by extensive malignant disease of the oesophagus, where it lay behind the pericardium. Dr. Parkes relates the unique case of a juggler, who, when swallowing a blunt sword, thrust its point through the oesophagus into the pericardium, thereby causing pericarditis. In this case, Mr. Tidmas heard friction signs 40 minutes after the receipt of the injury. M. Pigeaux enumerates the arrest of a fragment of bone in the oesophagus among the causes of pericarditis, but, as usual, he does not refer us to any case.

We strongly recommend the close study of the cases of pericarditis related by Dr. Stokes. The seventh case is one of chronic empyema of the left pleura, with latent pericarditis affecting the displaced heart. The movements of the heart not unfrequently excite coinciding friction sounds, by the rubbing of the pleural surface of the pericardium on that of the ribs, in cases of pleuritis. It is very difficult in such cases to decide whether the pleuritis be associated with pericarditis or not. Usually, in such cases, the frottement is limited to the ventricles, and especially to the apex. There is seldom that equal to and fro sound over the right auricle which is heard in pure pericarditis.

Dr. Stokes makes some valuable remarks on the treatment of pericarditis, in which he warns us of the evils of a too energetic practice, especially as regards too free or repeated blood-lettings, a line of treatment

* On the Stethoscope, &c., p. 50.
which may weaken the muscles of the heart, as well as the system at large, and which is unnecessary as well as dangerous. In such cases, the boldness of treatment often betrays the timidity of the practitioner; he is terrified at discovering the disease, and his mind is more occupied with its name than its nature.

"It is my conviction that the fatal result of some cases of pericarditis is mainly attributable to the perseverance, beyond the proper time, in the antiphlogistic treatment; the practitioner looking at the disease merely as a case of scrous inflammation, and forgetting not only the results of irritation on muscular fibre, but the effect of great losses of blood in producing reaction.

"Let us now suppose that we have a case of uncomplicated pericarditis in its earlier stages, and occurring in a patient whose strength is but little impaired: in such a case, a single bleeding from the arm appears, on the whole, justifiable, but its repetition will be a matter for careful consideration. Under these circumstances, we must examine the force of the heart, not only as indicated by the pulse at the wrist, but by the actual strength of the impulse, and the character of the first sound especially. If the impulse continues vigorous, and the first sound undiminished, we may be less apprehensive of the use of the lancet. On the other hand, if, after depletion, the impulse has manifestly declined in force, while the first sound is lessened, great caution must be used before we repeat the general bleeding....

"But our great reliance is to be placed on local bleeding, and the best mode appears to be the employment of leeches, in relays, beginning with twenty or thirty, and gradually reducing the number on each application. Two or three applications may be made in the twenty-four hours, a warm poultice being employed during the intervals. At the same time, it will be advisable to induce a mercurial action by such means as are within our reach, and it is probable that the plan of giving a full dose of calomel—say from ten to twenty grains—at long intervals, as recommended by Dr. Graves, will best answer our expectations....

"In the second stage of the disease our principal reliance must be on blisters; but we may apply leeches again and again on any new excitement of the heart....

"On the use of stimulants in pericarditis little or no information has been given by authors, yet they are often imperatively called for. I am convinced that cases are often lost from want of stimulation at the proper time. These considerations have pressed strongly on my mind since I made my observations on the state of the heart in typhus fever; and it is certain that in every case of dangerous pericarditis, after the first violence of the disease has been subdued, we should be anxious on the watch for the moment when the weakened heart requires to be supported and invigorated....

"It may be laid down as a general principle, that there is no local inflammation whatever, the mere existence of which should prevent the use of wine, if circumstances require it. In two cases especially—namely, cerebritis and pericarditis—we find the greatest timidity in practice with respect to the use of wine. Yet, even in the first case it may be required, and in the second its employment is imperative, when, as too often happens, excessive depletion has been resorted to. Again, if the signs of muscular weakness, such as we have indicated, have appeared; if there be evidence that the heart, previous to the attack, was in a weakened state; and lastly, when a collapsed or typhoid condition of the system exists, we must give wine, quite irrespective of the physical condition of the heart. This may be done safely, and with great advantage....

"If we consider that extensive series of cases in which pericarditis occurs, either as secondary to a general or essential disease, or as one of a group of local inflammations, we shall find many cases in which wine may be used with liberality, even though endocarditis be present. Excluding the complication with ordinary rheumatic fever, we have to deal with pericarditis in connexion with the diffuse inflammations, or the low cryspelatous state; and again, in the pyrogenic condition, as in the remarkable cases described by Dr. E. M`Dowel; in typhoid pneumonia;
and in the complication with delirium tremens from excess, already alluded to, which is so often attended with a typhus or typhoid fever. Many other cases might be specified, but enough has been said on the general question. There are two cases, however, sufficiently common to deserve notice here; one is the occurrence of the disease in the broken-down, gouty constitution, and the other that in which pericarditis attacks a heart in the earlier stages of fatty degeneration. Here the greatest faults in practice, both of commission and omission, are often seen; the original disease is unsuspected, and the patient held to have been in good health up to the time of the appearance of carditis, when the lancet on the one hand, and the debarring of stimulants on the other, at once reveal his condition, in most cases when it is too late to mend it. In truth, it may be said that no man is fit to treat general disease or local inflammation, especially its secondary forms, until he has conquered that fear of stimulants which a long course of erroneous teaching has instilled into his mind.” (pp. 83—90.)

M. Merat, in the ‘Dictionnaire des Sciences Médicales,’ xl. 370, quotes two cases of pericardial effusion, in which M. Romero, of Barcelona, made an opening between the fifth and sixth cartilages and then, by a pair of scissors, into the pericardium, so as to let a portion of the fluid run off; he plugged up the wound with a doll of lint, by the removal of which daily, for two or three days, a further drain of the fluid took place. These two cases recovered.

We would strongly recommend paracentesis in all those cases in which the effusion is so great as to cause alarming distress, orthopnea, obstruction to the venous circulation, and interference with the heart’s action. In such cases we would employ the fine exploring trochar and canula, plunging it in below the heart, either to the left of the xypothid cartilage, or through the fifth intercostal space, close to its anterior extremity. The fluid can be very easily drawn off through the finest canula by means of a syringe. This plan has been practised with great success by Dr. Bowditch, of Boston, in alarming cases of pleuritic effusion. There can be no necessity for attempting to remove a large quantity of the fluid; it will suffice if the tension be thoroughly relieved; this will be indicated by the disappearance of turgescence of the jugular veins. This turgescence is, no doubt, chiefly caused by the pressure of the effused fluid on the auricles, as was well remarked by Dr. Markham, and on the descending vena cava. M. Pigoux suggests, that M. Recamier’s fine exploring trochar and canula should be plunged in, an inch and a half to the left of the sterna, between the fourth and fifth cartilages (o. c., p. 209).

With regard to the treatment of rheumatic pericarditis, Dr. Stokes remarks—

"Whether rheumatic pericarditis demands any special modification of treatment is still an open question. The degree of activity of interference with the disease will, of course, depend not only on the character of the attack, but on the period of the fever in which it arises, and the strength and actual condition of the patient. In the two last forms it will be generally right to use mercury, pushed to salivation, not only with the view of controlling the pericarditis, but with the hope of preventing a chronic disease of the valves. Opium is generally useful, but I have never found that colchicum had any beneficial effect either in pericarditis or rheumatic arthritis, while the inflammatory fever continued."

Most of the above remarks by Dr. Stokes are of the highest practical value, especially those which relate to the judicious use of stimulants, and the true indications for their use.

27-xiv.
But while we value this portion of Dr. Stokes’ remarks on treatment, and that which applies to general blood-letting and calomel, we own that we are surprised to find that his treatment is really heroic:—leeches in relays of from twenty to thirty, gradually reducing the number on each application—two or three applications in the day—and doses of calomel of from ten to twenty grains! Surely the exhaustion of the system caused by such a plan is a real and serious evil, not less deplorable than the problematical evil so much dreaded. Seeing the great weight that rightly attaches to any plan of treatment recommended by our author, we would protest all the more strongly against these ill-advised measures. We are the more surprised that Dr. Stokes should recommend this plan, since we find, at p. 47, the following passage:

“The treatment consisted in the exhibition of opium in large doses, as recommended by Dr. Corrigan, and succeeded admirably, none of the deleterious effects of the drug having been produced.”

This relates to a patient treated by Dr. Graves, whose plan of leeching and calomelization is that so profusely enforced by our author. If we turn to Dr. Graves’ own account of the case in question, we find that the opium, in doses of one grain every third hour, seemed to expend itself solely on the disease; for during the whole time she was taking it, it never produced contraction of the pupil, headache, hot skin, furred tongue, or constipation.* In this case, the mouth had been made sore, and a blister applied. In our own experience, we find that opium in such cases seems “to expend itself solely on the disease.” The great value of this plan of treatment is, that the patient has a short convalescence, and, provided the endocardium escape, returns almost at once to the previous standard of health. In the early stages, it is advisable to apply a few leeches, and perhaps to conjoin calomel with the opium for one or two doses, treating, at the same time, the disease that lies at the root of the attack, on its own grounds. Pericarditis from acute rheumatism necessarily calls for a totally different line of treatment from that associated with Bright’s disease, or diffused inflammation of a low type. One of the most important considerations in the treatment of pericarditis is the stage of the disease during which we detect it for the first time. It should never be forgotten that in pericarditis, as in pleuritis, the loudness of the friction sounds, and harshness of the tactile vibrations, are far from being in relation to the intensity of the disease—since, when the tide of the affection has turned, and the effusion is disappearing, the roughened surfaces, bearing the exuded but passive products of the earlier stages, come into closer and more diffused contact, and increase the extent and harshness of the rubbing noise, which then often bears an inverse ratio to the severity of the disease. If, under these circumstances, when the disease is of itself dying out, active measures be employed, the effect may be most disastrous.

Pericardial Adhesions.—Dr. Stokes remarks that—

“From our general knowledge of the history of serous inflammations, we must conclude that resolution without adhesion must be of very rare occurrence in pericarditis; and, consequently, it is fair to infer that, in most of the cured cases of the disease, an adhesion has really taken place.”

We take exception to this inference, which is quite unsupported by

proofs, and is opposed to the general evidence. The very frequent occurrence of white patches on the surface of the heart, which are proved by Mr. Paget to be the result of pericarditis, shows that adhesions are not even the usual result of that disease. Mr. Paget discovered signs of old or recent pericarditis in 58 out of 110 bodies examined by him after death; in 4 only were there complete adhesions.* Dr. Kirkes' later observations confirm those of Mr. Paget.†

Dr. Stokes says, very justly—

"Without denying that a general adhesion may induce hypertrophy and dilatation, experience leads me to doubt that such an effect necessarily, or even commonly, follows the condition indicated. . . . It is in those cases of pericarditis which we have before indicated, and when valvular disease is either co-existent with, or subsequent to, the first inflammation of the sac, that hypertrophy and dilatation appear as remote consequences of pericarditis. In the cases of recovery without murmur, we have little apprehension of the after-occurrence of organic disease. . . . Where alteration of the muscular condition of the heart is found in connexion with this obliteration, it is not necessarily a state of hypertrophy, but is often one of an opposite nature." (pp. 11, 12.)

These remarks corroborate our own observations in the 'Provincial Med. Trans.,' for 1844. We there, after figuring three cases of adherent and greatly enlarged heart, cite four cases of loosely-adherent hearts, of normal size, that were free from valvular disease, and from any heart-disturbance during life. We also state, that—

"If the adhesions be dense, strong, and contracted, and unaccompanied by valvular disease, they often gradually lessen the bulk of the heart's cavities, and impede their expansion. A case of universal strong girdling pericardial adhesions, preventing the expansion of the cavities, the valves being healthy, and the heart weighing only 6½ oz., presented the following symptoms: The heart's region of superficial dulness, impulse and sounds normal; pulse very feeble; palpitation, dyspnea, and anasarca; lips blue."

Lancisi, Laubiis and Garnerus, and Dr. Waugh, give each one case in which the pericardium was adherent and the heart small.

Dr. Chevers, in the seventh volume of the 'Guy's Hospital Reports,' gives four cases of firm pericardial adhesions, in which the heart was unusually small; in one of these there was also disease of the valves; at least two of the cases were in perfect health during life. Dr. Barlow, in his 'Gulstonian Lectures' for 1844, gives two cases of pericardial adhesions without marked valvular disease, in which there was hypertrophy and dilatation of the heart, especially of the right ventricle; and one case in which a ring of ossification surrounded the heart, and in which there was atrophy of the organ. Dr. W. T. Gairdner, Professor Smith, and other observers, have amply proved the truth of the above position as laid down by Dr. Stokes.

Senac and Corvisart considered that pericardial adhesions, unless partial or loose, prove very injurious to the action of the heart; while Laennec and Bertin thought adhesions usually by no means formidable.

When the friction sounds disappear gradually, from the apex to the base, as our author states, the diagnosis of an adhesion of the pericardium, more or less complete, can be easily made. He doubts, however, whether there is any certain physical sign of adhesion of the pericardium,

* Medico-Chirurgical Transactions, vol. xxiii.
† Transactions of the Abernethian Society, vol. iii.
and has never been able to verify the sign relied on by Dr. Hope, of the
double-jogging impulse. Dr. Stokes also contends against M. Forget’s
view, that a general adhesion may be diagnosed, when, after the
subsidence of the friction sound of pericarditis, the heart assumes a per-
manently tumultuous and irregular action.

When the heart is large, and attached by the adherent pericardium to
the sternum and cartilages, the obstacle to its contraction is real and great.
When to this condition is added valvular disease, or fatty degeneration,
or resistance to the circulation through the capillaries, either of the system,
as in Bright’s disease, or of the lungs, as in emphysema, then the impedi-
ment to the circulation is truly formidable, especially if the whole of these
causes co-operate.

Palpitation was present in 14 of the 55 cases of adherent pericardium
included by Morgagni in his masterly analysis. In such cases, Burns
noticed strong impulse extending to the epigastrium, which was accom-
panied, in a case of Dr. Rutherford’s, by a jarring motion. This jarring
sensation is also described by Dr. Ferrier, who found that the stroke
seemed to be restrained, and was succeeded by a thrill, different from the
shock of palpitation. Heim observed, during systole, retraction of the
lower intercostal spaces, and of the space to the left of the xyphoid car-
tilage, followed during diastole by a shock; the retraction being greater
and the shock less during inspiration. Sander describes similar retraction
followed by a shock.

When general adhesions exist without enlargement, or with atrophy of
the heart, it is impossible that any physical sign can indicate their pre-
sence. This cannot be said, however, of adhesions with enlargement of
the heart, especially if the pericardium be adherent to the ribs and
sternum. In such cases, we have observed a great extent of pericardial
dulness on percussion, extending upwards to the second or third cartilage;
great extent and strength of impulse; non-diminution of the extent of
dulness on percussion, and of impulse on a deep inspiration; forcible
retraction of the sternum during systole, followed by a shock during
diastole; movement of the skin on the precordia, during systole, from
right to left; and lessened mobility of the lower left ribs and cartilages.
Skoda, in corroborating most of these signs, adduces three cases in which
there was systolic retraction of the intercostal spaces over the heart, an
observation which had been previously made by Dr. Williams. We have
observed this sign in cases in which post-mortem examination revealed
that there were no adhesions, but in these instances, the retraction ceased
during a deep inspiration. The presence, however, of systolic retraction
of the intercostal spaces over the heart, and its persistence during a deep
inspiration, may be regarded as a physical sign of pericardial adhesion.
Skoda found that the heart’s apex gave no systolic beat in three cases, but
he is wrong in generalizing this sign, since, whatever he may say to the
contrary, the apex-beat was low, forcible, and systolic in two of our cases.
In one of these cases, the pulse was intermittent during inspiration, and
strong during expiration. The whole subject of the formation, frequency,
effects, signs, and symptoms of pericardial adhesions is, however, imper-
fecely known, and demands a thorough investigation. F. Sibson.

(To be continued.)
1854.]

The Diseases of the Placenta.

21

Review II.

1. Maladies du Placenta. By Murat. ('Dictionnaire des Sciences Médicales.' 1820.)

2. Maladies du Placenta. By DANCE. ('Répertoire Général d'Anatomie.' Tome iii., 1827.)

4. Maladies du Placenta. By CRUVEILHIER. ('Anatomie Pathologique.' Livraisons i. et xvi., 1828.)

5. Die Krankheiten des Mutterkuchens. By WILDE. ('Medizinische Zeitung.' 1833.)

10. Eine Krankheit des Mutterkuchens. By Dr. FRANZ M. KILLIAN. ('Neue Zeitsch. für Geburtskunde.' Vol. xxvii., 1850.)

11. On Fatty Degeneration of the Placenta, and the Influence of this Disease in producing Abortion, death of the Fetus, Haemorrhage, and Premature Labour. By ROBERT BARNES, M.D. ('Medico-Chirurgical Transactions.' 1851.)

12. Specimen of Degenerated Placenta. By HANDFIELD JONES, M.D. ('Transactions of the Pathological Society of London.' 1852.)

15. On the so-called Fatty Degeneration of the Placenta. By JAMES COWAN, M.D. ('Edin. Med. and Surg. Journ.' April, 1854.)

The placenta, an organ located externally to the economy of the mother and of the fetus, belonging exclusively to neither, and subserving but a temporary purpose, has been, until very recently, almost utterly neglected in the active and minute researches which modern pathologists have so successfully carried out to the elucidation of disease. And yet it may be safely anticipated, that the study of the physiology and pathology of this organ, connecting, as it does, the mother and the offspring, associated, as it is, with the earliest processes of nutrition and development, pre-
senting and elaborating, for the use of the embryo, the elements carried
in the maternal blood, the medium for the elimination from the fœtal
economy of its waste materials, cannot but be fruitful in splendid
results. The great pathological as well as physiological agent is the
blood. Hæmatology, taken in an extended sense, is a term almost syno-
ynymous with, and inclusive of, physiology and pathology. The changes
in the constitution of the blood, in health and disease, in their action and
reaction, are at once the source of, and the clue to, all the variations in
the character of the secretions and excretions, and all the alterations of
structure to which the solid parts are liable. There is no organ, not
perhaps excepting the spleen, the lungs, and the liver, in which such
active and diversified processes of hæmatosis are carried on as in the
placenta. In the adult, the spleen fulfils one office in the function of
sanguification, the lungs another, the liver a third: the placenta, by itself,
performs, or at least completes, the duties assigned to each of these organs.
Harvey distinctly pointed out that the placenta performed for the embryo
the function of the liver: “The liver, I say then, is the nutrient organ of
the body in which it is found; the mamma is the same of the infant, and
the placenta of the embryo.” Lobstein has called the placenta a physi-
ological lung. In this comparison he has but expressed a fragment of the
truth. Goodsir expressed another portion of the truth when he attributed
to the placenta the function of the intestinal canal. To complete
the physiological history of the placenta, it must also be regarded as a
spleen, as a kidney, and as skin. It may, indeed, be true, that the
changes in the constitution of the blood essential to fit it for the purpose
of nutrition, and the processes of purification and elimination rendered
necessary by its contamination with effete matter, are partially wrought
in the liver, the Wölffian bodies, the thymus gland, and other organs of
the fœtus. The fœtal lungs are probably altogether passive; the liver
is undoubtedly actively engaged in developing blood-corpuscles; the
glandular structure of the skin is giving out an unctuous material, which
is, however, largely mixed with epithelium scales;—this is probably a
means of eliminating a certain proportion of carbon;—the intestinal canal*
exhibits, at the period of birth, an accumulation of meconium, also a
result of depuration; the Wölffian bodies, in early embryonic life, fulfil to
a certain extent the function taken up by the kidneys at a later period;
and the bladder, at the period of birth, usually contains a small quantity
of urine.† Thus, that the blood, during its circulation in the fœtal
vessels, undergoes numerous changes of a formative and depurative
character, is certain.

But still we must look upon the placenta as the ultimate medium, the
complementary agent through which all these processes are perfected.
All the blood of the fœtus is successively brought by the umbilical arteries

* The opinion entertained by Harvey, that the embryo derives a considerable portion of its
nourishment from the liquor amnii, can hardly be substantiated, although hairs derived from
the lanugo, or first hairs of the fœtus, have been occasionally found in the stomach.
† Wöhler found urea in the liquor amnii in one instance. Dr. McClintock has established
the existence of this substance in others; but numerous negative results prove that it is not a
constant ingredient: and the source of it, when present,—i.e., whether it be maternal or
fœtal—is doubtful. According to Stass, urea may be extracted from the blood of the placenta.
The urine of young children scarcely contains a trace.
to the placenta, where it exchanges, with the maternal blood, its waste materials for fresh alimentary matter. The placenta is the final emunctory channel, and the prime restorative source. It may be comprehensively stated, that the placenta is the organ in which all the functions of ingestion and egestion of the fetus are performed. Where is the other organ that is so vascular, so overflowing with blood? The placenta is literally a mass of bloodvessels. It undoubtedly contains a greater proportion of blood than any organ of the adult body. Where there are so many blood-vessels, so much blood, such activity and diversity of function, there must surely be a corresponding liability to disease. Further, reflection must convince every one that the physiological and pathological conditions of the placenta must exercise the most important effects upon the economy of the mother on the one hand, and on that of the fetus on the other. The investigation of these conditions of the placenta cannot but reflect a brilliant light in both these directions, maternal and fetal. Placed between the mother and the fetus; forming, for the time, a part of each, in which reciprocal changes are being constantly effected, in which the properties of the circulating fluid of each organism are transmitted to the other, can we conceive it possible that a perfect comprehension of the pathology, either of the pregnant woman or of the fetus, can be obtained, if we overlook the intermediate link?

We will state an illustration. The frequent presence of albumen in the urine of pregnant women is a remarkable fact. It has been attempted to explain it in various ways, but mostly without reference to any other condition than that of the mother individually. Dr. Lever, who was the first to point out the fact of the co-existence of puerperal convulsions and albuminuria, still adheres to the opinion that the presence of albumen in the urine of pregnant women is to be accounted for on the principle of mechanical obstruction to the function of the kidneys, created by pressure of the gravid uterus upon the kidneys and emulgent vessels. And yet it is certain that this phenomenon is occasionally observed at periods of pregnancy, and under circumstances which do not admit of this explanation. The real cause must be sought elsewhere. The albumen found in the urine is the result, and an indication, of the degradation of the mother's blood, wrought, chiefly at least, by the abstraction of its healthy elements in the placenta, and the reception of the effete materials of the fetus, discharged into it through the same organ. It frequently, indeed, occurs also, that the womb, enlarging, encroaches on the space required for the perfect play of the abdominal and thoracic organs; and that an increasing indisposition for exercise augments the difficulty of ridding the blood of its impurities by means of the excretory glands, and of replenishing it by the assimilation of new materials; and that there are thus superadded other causes of deterioration. It can scarcely, however, be disputed, that the first origin of the contamination lies in the embryo and its appendices.

Let us point to another illustration. What do we know of the pathology of the fetus in utero? In how many instances is the fetus cut off at various epochs of intra-uterine existence? How seldom are we able to trace the problem of its death to a satisfactory solution! The most diligent dissection of the fetus leads to no result. The cause is sought
where only the effect is visible. Functions all-essential to the development and life of the fetus are performed externally to its organization.

It is in the seat of these functions,—in the placenta,—that the cause of their interruption or arrest, and the consequent destruction of the fetus, must be looked for. The integrity of the placental structure, or at least of so large a portion of it as is required to perfect the necessary reciprocal changes between the maternal and fetal blood, is of more vital importance to the fetus than perhaps is that of any internal organ. A somewhat extensive, and certainly careful observation, justifies us in affirming, that the fetus perishes less frequently in consequence of any defect or disease commencing in its permanent organs, than it does in consequence of an improper condition of the maternal blood, or of disease obstructing the placenta in the performance of its functions. The evil effects, therefore, of disease of the placenta radiate in two opposite directions: they influence the mother, and may be fatal to the embryo.

In the adult, certain pathological conditions of the body are traced distinctly to obstruction or disease in the lungs, heart, liver, and kidneys. Congestions, various effusions, especially dropsy and serous inflammations, are amongst the more remarkable of these. All these conditions are frequently observed in the fetus. What is their source? Does it lie in the lungs, heart, liver, or kidneys of the fetus—organs which only partially perform the functions they are, at a future time, destined to fulfil—or in the placenta, which is as yet the chief agent for their accomplishment?

There are three relations of the affections of the placenta which may be studied with advantage:

1. There are morbid conditions of the placenta which may originate in its own structure, just as inflammation may develop itself in a particular organ of the body.

2. The morbid conditions may result from the state of the blood of the mother brought into it, or from contact with diseased uterine structures. Both of these two classes of alterations imperil the well-being of the fetus, and may be the primary causes of its destruction.

3. The morbid conditions may be secondary to disease, or defective developmental force, in the embryo itself.

In this last case the changes in the placenta are the effect and not the cause of the decline, or death of the fetus.

In any given case, the task of unravelling the complicated pathological relations, whether of causation or of consequence, associated with the morbid alterations observed in the placenta, is a matter of difficulty; and in many instances a satisfactory analysis is impossible.

But however difficult the inquiry, it is one of deep interest to pathology, and promises to be not less fruitful in important improvements in obstetric practice.

Our endeavour, in this article, will be to paint the actual state of our knowledge of the pathology of the fetal investments, and of the developed placenta in particular. The result, if we succeed in this object, will be to indicate the directions in which further advances may be usefully sought.

The anatomy of the fetal membranes and the placenta has engaged the
attention of many celebrated men. Although it cannot be said that this, the fundamental element of our inquiry, has been finally settled, or that on several points there is not still verge for controversy, it may nevertheless be asserted, that the cardinal points have been demonstrated with sufficient certainty to admit of a successful investigation into the pathology of these structures. For example, the weight of authority in support of the doctrine of the Hunters, that there is no direct passage of the maternal blood into the vessels of the fetus, and that the placenta is essentially a double organ, partly an offset from the mother’s system, and partly an offset from that of the fetus, is now so preponderating, that we may safely discard the theory of Galen and Fabricius as inconsistent with well-determined anatomical facts, and as obsolete, notwithstanding the occasional attempts which have been made, down to a very recent date, to revive it.

The admission of this doctrine of the Hunters as a recognised truth, will instantly place the functional importance of the placenta in a strong light: for whilst it was believed that the regenerated blood of the mother ran in uninterrupted channels into the fetus, and that the deteriorated blood of the fetus found an equally direct escape into the circulating apparatus of the mother, the office of the placenta could only be regarded as of very subsidiary importance. On the other hand, if it be established that the vascular systems of the mother and the fetus are individually perfect and distinct from each other, then it follows that all those vital changes which have to be effected in the fetal blood to fit it to support the life, and provide for the development, of the embryo, must take place at the point of contact of the maternal and fetal vascular systems, that is, in the placenta. Disease is perverted function. The seat of function must also be the seat of disease. If the placenta is of so great physiological importance, it cannot be of less importance in pathology. Again, if the structure of the placenta, the physical medium of its functions, be diseased or degenerated, then we must necessarily expect to find those functions impaired or destroyed.

The observations of Weber, Sharpey, Reid, Dalrymple, Good sir, concur in establishing the leading fact of the Hunterian doctrine. Their points of difference amongst themselves in no way invalidate the main conclusion. Indeed, however obscure may be the anatomy of the structure connecting the utero-placental arteries, and the utero-placental veins or sinuses, the perfect individuality of the fetal circulatory apparatus is a matter of easy demonstration. The umbilical arteries may be traced down to the terminations of the placental tufts; and the umbilical veins may be seen arising from these tufts as their source. There is perfect continuity. Now, if it be proved that one circulatory apparatus is complete in itself, and has no direct open communication with the other, then it follows, as a necessary consequence, that that other must also be complete.

The now-received doctrine of the anatomy of the placenta may be thus briefly stated:—The organ is made up of a maternal and a fetal portion. The maternal portion consists of the utero-placental vessels, arteries, and veins, preserving an unbroken continuity: these vessels, on entering the placenta, push before them a thin investment of decidua, a membrane
derived from the inner wall of the uterus. On the other hand, the fetal portion consists of the fetal-placental or umbilical vessels, arteries, and veins, also perfectly continuous: these, which branch out from the umbilical cord on entering the placenta, carry before them an investment of chorion, the external membrane of the ovum. In the substance of the placenta these two portions, the maternal and the fetal elements, meet in apposition. The changes effected between the blood circulating in these separate systems, are wrought through the walls of the containing vessels.

So much is generally admitted; and we conceive that we may usefully abridge this article by omitting any detailed analysis of the labours of the various anatomists which illustrate the minute structure of the placenta.

But there is one anatomical question which is still keenly contested, and which, as it has a direct bearing upon the object of our present inquiry, the pathology of the placenta, it is of importance to settle. What is the real nature of the decidua? If it be a maternal structure, as the weight of evidence proves, it is still an important question to determine the exact nature of its relation to the uterus. About this latter point there has been greater diversity of opinion. Out of this diversity it will be our endeavour to draw a consistent and definite solution. The necessity of this task will be seen, when it is remembered that altered conditions of the decidua, in connexion with abortion in the early months, are frequently observed; and that, therefore, upon the right understanding of the maternal source and exact nature of the decidua must depend the accuracy of our conclusions as to the origin of those changes or conditions which led to the abortion.

Until, then, we have determined whether the decidua is maternal or fetal, we cannot settle the important preliminary question, whether abortion from disease of the decidua must be assigned to a maternal or to a fetal cause. Again, unless we can arrive at some distinct notion of the true nature of the decidua, we are precluded from reasoning upon many of the relations of diseases of the decidua to the pathological conditions of the mother and the fetus.

There are three leading opinions concerning the nature of the decidua, which we may usefully discuss:—1st. The opinion of William Hunter, which has still many adherents, that the decidua is a newly-developed membrane, secreted by the mucous coat of the uterus; 2nd. The opinion adopted by Sharpey, Coste, Good sir, Robin, Bischoff, and others—viz., that the decidua is simply and truly the mucous membrane of the uterus, in an exalted state of development; 3rd. There is the opinion advocated by Dr. Lee, that the decidua is not of uterine origin at all, but properly a membrane of the ovum, acquired in its descent from the ovary. The most convenient course will be to simplify the case at the outset by eliminating, as may be readily done, the opinion of Dr. Lee. Dr. Lee advances the following arguments against the Hunterian view, and in favour of the embryonic character of the decidua:—1st. He adduces observations of tubal gestation in which no decidua was found lining the uterus; 2nd. He describes a case, and refers to other cases, of tubal gestation, in which the decidua was found covering the ovum in the Fallopian tube; 3rd. He describes and figures a gravid uterus at the second month, in which the ovum was attached to the inferior segment, and not to the fundus, of the uterus.
"The decidual membrane," says Dr. Lee, "closely adhered to the inner surface of the uterus. It was divided by two incisions parallel with the long and transverse incisions previously made in the walls of the uterus. The ovum, about the size of a pullet’s egg, was situated at the lower part of the uterus, altogether below the orifice of the Fallopian tube, leaving a large cavity—the decidua, between the upper part of the fundus and the ovum. Into this cavity the Fallopian tubes opened by palpable orifices. . . . In all diagrams from Hunter, Wagner, &c., the placenta has invariably been represented as adhering to the fundus, and the decidua reflexa has been situated near the cervix, and appearing as if pushed down before the chorion or ovum. But in this preparation, it is obvious that the decidua reflexa could not have been pushed down by, because it lies above or covers, the ovum; and as the ovum enlarged, the decidua reflexa must have been forced upward to the fundus, which was lined with decidua vera. . . . If the statements of the above authors were well founded, it would follow that in all cases the ovum would attach itself by the placenta to the uterus, either directly over the edges of the Fallopian tube, or to its immediate vicinity, and that the decidual membrane would never be found interposed between the placenta and the uterus as it always is."

Let us endeavour to estimate the value of these objections. The following facts and considerations dispose of the conclusion that the decidua is of embryonic origin, as Dr. Lee supposes. A structure which all observers concur in describing as decidua has been repeatedly seen lining the uterus in cases of tubal gestation, and which, consequently, could not be regarded as an integral part of the ovum. Dr. Lee’s supposed negative cases cannot be held to outweigh the positive observations of others; and when he describes a case of tubal gestation in which he found “a soft thick substance lining the uterus,” but which, he says, “was entirely different from the decidua of an ovum aborted at two months,” we do not think he adduces a very fortunate argument. It could not be expected that the decidua, under the two opposite circumstances described, should be identical in character: indeed, we are disposed to think that the true explanation of Dr. Lee’s dissent lies in this circumstance—viz., that his idea of what constitutes a decidua differs from that now generally entertained: he looks for a distinct, peculiar membrane, readily separable from the uterus, such as Hunter described; whilst others recognise in the decidua merely a development of the mucous membrane. If Dr. Lee, therefore, could not determine that this “soft thick substance lining the uterus” was a distinct membrane, however strongly this might militate against the view which regards the decidua as a simple exudation from the mucous membrane of the uterus, it rather lends weight to the view which regards the decidua as the mucous membrane itself in an exalted state of development. In this “soft thick substance” may not Dr. Lee have seen the mucous membrane of the uterus altered to a certain extent under the influence of conception, and which would have been still further altered had the ovum descended into the uterus? But Dr. Lee has observed that, in cases of tubal gestation, the decidua surrounded the ovum lying in the Fallopian tube. What does this fact, undoubtedly true, prove? The Fallopian tube is fulfilling the function of the uterus. It is a structure of exactly analogous constitution. It forms a muscular cavity, and is lined, like the uterus, with mucous membrane. What wonder if, when the ovum takes up its abode in the Fallopian tube, this mucous membrane undergo the same changes as the mucous membrane of the uterus?
With regard to the specimen, the description of which we have quoted at length, and which Dr. Lee appears to consider conclusive against the uterine origin of the decidua, we are at a loss to perceive that it supplies the smallest evidence in favour of his own view, that it is of embryonic origin. How could a purely embryonic membrane be, at this early period, "closely adherent to the inner surface of the uterus," investing its entire cavity, whilst the ovum itself, figured as occupying but a very small portion of the uterine cavity, was situated at the lower part of the uterus? If this specimen proves, as it may be admitted it does, that the ovum does not always, in its passage from the Fallopian tube into the uterus, push down the decidua reflexa before it, it is by no means inconsistent with the views of those anatomists who regard the decidua as the altered mucous membrane of the uterus, and who universally describe the Fallopian tubes as remaining open even after the entrance of the ovum into the uterine cavity. We cannot but coincide in the opinion of Velpeau after examining this very specimen, that the membrane which lined the fundus uteri was really the mucous membrane. Nor are we satisfied that the supposed demonstration of Dr. Lee, of the mucous membrane of the uterus remaining entire after detaching the membrane he describes as the decidua vera, is conclusive. He may have split the membrane. It is almost impossible, by any ordinary dissection, to separate the mucous membrane completely from the uterus.

We may now usefully discuss together the opinion of William Hunter, and that adopted by more recent anatomists. It will be seen that these opinions, whilst equally excluding the view we have just commented upon, are perfectly reconcilable with each other. It is true that Dr. Hunter* described the decidua as appearing, in the earliest state, to be nothing else than an effusion of coagulable lymph; but he, in numerous passages, clearly shows that he was aware of the intimate relationship between the decidua and the uterus. He says in one place, "though the decidua be allowed to be the outer membrane of the secondines, yet as it is really the internal lamella of the uterus, we may retain the old language, and say that the outer membrane of the ovum is chorion, and that the chorion is in contact with, and adheres to, the uterus." Von Baer also, whilst concurring with William Hunter in describing the decidua as an exudation, so describes its structure and formation as to leave no doubt of its maternal origin. "Upon examining," he says, "the internal surface of the uterus, I could see the villi of its lining membrane, which in the unimpregnated uterus are very short, remarkably elongated: between these villi, and passing over them, was a substance not organised, but merely effused, evidently the membrana decidua of Hunter. The uterine vessels were continued into this substance, and formed a number of little loops round the villi; thus anastomosing with each other." (The drawing of Baer, representing this arrangement, is a familiar illustration in our text-books.) This, according to Baer, is the early state of the mucous membrane, and of that secondary development of its structure to which the specific name of decidua has been attached. In the later periods, he agrees with Seiler in affirming that what is called decidua has the mucous membrane also attached to it, and that in labour, as also in the abortions

* 1774, Plates; 1794, Anat. Descr.
of advanced pregnancy, the mucous membrane comes away with the decidua. The condition of the uterus after delivery has an important bearing upon this subject. The following is Mr. Hunter's account: —

"I stretched the uterus carefully in warm water, then inverted it. The remains of the decidua had been melted down and passed off with the lochia, so that the fasciculated stratum of muscular fibres appeared to be bare, and to make the internal surface of the uterus."

In like manner Sir Charles Bell says: "Upon inverting the uterus, and brushing off the decidua, the muscular structure is very distinctly seen."

If the mucous membrane were not identical with the decidua, what had become of it in these cases? This Journal of September, 1853, contains a very valuable paper on this subject by Dr. Duncan. This gentleman indeed questions the fact that the muscular structure of the uterus is laid bare after delivery, a fact strongly insisted upon by Cruveilhier and others; but he clearly states that the mucous membrane which is left is undoubtedly "the remains of the uterine decidua." Weber and Sharpey distinctly ascertained that when impregnation has taken place, the mucous membrane swells and becomes lax, the follicles increase in size and secrete a granular matter, and the capillaries increase in a proportional degree. Dr. Sharpew indeed supposes that there is in addition a deposition of lymph, but he does not regard this as constituting the decidua, which he considers to be the altered mucous membrane. Goodsir describes the decidua as consisting of two distinct elements: 1st, the mucous membrane of the uterus thickened by a peculiar development; 2nd, of a non-vascular cellular substance, the product of the uterine follicles. The former, he says, constitutes at a later period the greater part of the decidua vera, the latter, the decidua reflexa. The descriptions of these eminent observers have received a striking confirmation from a memoir by M. Coste.† The facts adduced in this paper are so important as to merit quotation in extenso. His observations go beyond those of other anatomists in this, that they appear to establish not only the identity of the decidua with the mucous membrane of the uterus, but also that this mucous membrane undergoes at every menstrual period a change perfectly analogous to that which takes place in pregnancy. He says: —

"Among the young women whose bodies I have opened at the Morgue, there were several who had destroyed themselves at the moment when the ovule was in a state of perfect maturation. In all these women, without exception, I found the uterus lined with a mucous membrane so thick, that if the constancy of this phenomenon had not been the guarantee of its normal condition, I should have taken it for a morbid alteration. The membrane was, in great measure, formed of glands opening on its internal surface by orifices visible to the naked eye. Its thickness not only equalled one-fourth or one-third that of the muscular coat, but it formed circumvolutions, or folds, pressed against each other in the uterine cavity. . . . In cases of extra-uterine gestation, this membrane may undergo still greater development; it then forms folds as voluminous as the cerebral circumvolutions. . . . In women who had committed suicide from the twentieth to the thirtieth day after conception, as in those of whom I have just spoken, I have always found the Fallopian tubes communicating freely with the uterine cavity, the mucous membrane thicker, and possessing the same organization, but

† Comptes Rendus, 21 Oct. 1850.
the ovum, instead of being found in the cavity of the uterus, was buried in the
wall itself of the hypertrophied mucous membrane. To discover the ovum, it was
necessary to incise the membrane, and to seek for it in its thickness.”

M. Coste then compares the position of the ovum in the lining mem-
brane of the uterus to that of the eggs of the Pipa in the dorsal skin of
the female.

“When the ovum has become buried in the hypertrophied mucous membrane,
it gradually increases in size, and distends the cell which incloses it. The cell
dilates accordingly, and also grows in proportion, forming on its free side a pro-
jection into the cavity of the uterus, and by the opposite side remaining attached
to the muscular coat. The projecting portion becomes what anatomists designate
as the decidua reflexa; the portion which adheres to the muscular structure con-
stitutes their decidua serotina or placentalis, and the remainder of the mucous
membrane is their parietal or true decidua. These three decidua have, in fact,
the same organization as the uterine mucous membrane whence they proceed, and
it is only in the progress of development that they lose the characters of this
organization. It follows, therefore, that the uterine mucous membrane of which
the decidua is formed must exfoliate after delivery. This in reality takes place,
and the seventh specimen, taken from a woman who died twenty-four hours after
delivery, exhibits the muscular coat almost entirely denuded and stripped of
mucous membrane. Lastly, when the lochia have cleared the uterus of all the
débris of the exfoliated mucous membrane which remained, there is formed on
the bared surface a vegetation which regenerates this mucous membrane, and
renders the organ fit for a new impregnation.”

It is worthy of remark that Dr. Sharpey* had already suggested an
explanation similar to that above described by Coste as the result of
observation; viz., “that the minute ovum on reaching the uterus becomes
imbedded in the substance of the then soft and pulpy mucous membrane,
and that in its subsequent enlargement it carries along with it a covering
of the membrane, which is expanded into the decidua reflexa.”

The following case by Dr. Ad. Hannover† presents a confirmation of
this view:

“A servant girl died fourteen days after menstruation had commenced. It had
entirely ceased. The thickening of the mucous membrane of the uterus (which
attends menstruation, and is considered as a sign of the formation of a decidua,)
also extended to the membrane of the tube through which the ovum had passed.”

Meckel, Ritchie, Paterson, and Warwick also confirm the opinion that
the formation of a decidua is quite independent of fecundation, and is
coincident with the maturation of a Graafian vesicle. The investigations
of Bischoff, of which an abstract is given in the Midwifery Report in
the last number of this Journal, supply further demonstration of the truth
of this doctrine. But although the identity of the decidua and the
uterine mucous membrane be now established, still the name of “decidua”
is as characteristic and applicable as ever

The uterine origin of the decidua is again enforced by the analogy of
the uterine cotyledons in ruminants.

Numerous observations of the reviewer, in many of which he has
been aided by Dr. Hassall, entirely confirm this view. In one specimen
of a perfectly healthy gravid uterus at the fourth month, taken from a
woman who had committed suicide, and which was carefully injected, the

* Müller’s Physiology, p. 1580.† Medical Gazette, Oct. 10, 1861.
mucous membrane could be readily separated, leaving the muscular wall bare. The uterine, or outer surface of the membrane, showed everywhere the broken ends of the vessels which had connected it with the uterus. Again, in every example, and these are now numerous, in which we have examined the decidua in aborted ova of the early months, as early even as the sixth week, we have detected on the outer surface nucleated fibres with twisted tails, which could not be distinguished from fibres taken from the inner surface of the muscular coat. The inference to be drawn from this fact has to our mind been obvious, namely, that in the violent disruption of the ovum which takes place in abortion, the hypertrophied mucous membrane, as we must now call the decidua, is torn off from the muscular wall of the uterus. In the early months this process of separation is, as might be expected, owing to the still intimate vascular connexion of the mucous membrane with the uterus, a violent one. In most instances of early abortion, the entire mucous membrane of the proper uterine cavity is torn away. Hence the profuse hemorrhage which so often attends this condition. In the later months the mucous membrane becomes more and more freed from its intimate adhesion to the uterus; the numerous vessels of large size, which at an earlier period connected the muscular and mucous coats, disappear; the membrane acquires a more and more distinct character, and at the epoch of delivery it is cast off by a much gentler process than that which attends upon abortion. Not that the detachment of the mucous membrane on this event is necessarily completed by the act of delivery and the expulsion of the placenta; portions of it may exfoliate gradually. Our examinations of the mucous membrane, under the form of decidua, and of the muscular structure, have further led us to this conclusion, that there is an easy transition from muscular tissue to mucous membrane. In one specimen, indeed, this transition was remarkably manifest. A woman died on the second day after the expulsion of a hydatiginous placenta. Portions of the uterus, with mucous membrane or decidua attached, were taken for examination. The decidua consisted of loose shreds, exhibiting elongated fibres and nuclei. A piece taken from close to the wall of the uterus showed more of the fibres and less of the nuclei. The wall of the uterus itself consisted chiefly of fibres, with but few nuclei. The characters of the muscular wall and of the decidua bore a close resemblance. There was an obvious transition from one to the other. It would thus appear that the reproduction of mucous membrane after its exfoliation consists in a modified development of the inner layer of nucleated fibres, or more probably of the cells themselves, from which fibres would otherwise have been formed: the ultimate form assumed by these cells being, in all likelihood, determined by their position in the wall of the uterus, or on its free internal surface.

We have now to examine a part of this question which offers greater complexity, and which is in a corresponding degree more difficult of solution. All anatomists who have examined this subject agree that the umbilical arteries and veins, and their connecting capillaries, are clothed with chorion. But the particular structure which must be held to be chorion is a matter in dispute. The late Mr. Dalrymple described as chorion, "the membrane enclosing the vessels and capillaries, and studded
on the exterior by nucleated cells, resembling an irregular epithelium.”

This membrane, which is figured by Mr. Dalrymple, is the same structure that Professor Goodair has more recently described as decidua. It is this latter view which has been the more currently adopted. But whether this more general adoption be the result of subsequent verification of the observations of Professor Goodair, or of the credit given to that distinguished physiologist, may fairly be questioned. The point is one of great interest and importance to determine. We enter upon the task with some hesitation, yet not without confidence. The strongest argument adduced by Professor Goodair,† is his observation that the external cells of the villi are continuous with the parietal decidua of the placenta. He thus states his observations and conclusion. He dissected the vessels of an unopened uterus at the full time, by opening one of the large veins over the spot to which the placenta was attached.

“At last, in introducing the probe into the falciform edge of the venous orifice, it was found to have arrived at the placental tufts, which could be seen by raising the edges of the falciform edges. Having passed over the falciform edges, the venous membrane suddenly passed to each side to line the great cavity of the placenta. The flat bands, which I described as the spaces enclosed by anastomosing venous sinuses, became smaller, and, on entering the cavity itself, the bands were seen to have assumed the appearance of threads, which passed in great numbers from the vascular edges of the venous openings, and from the walls of the cavity of the placenta, on to the extremities and sides of the villi and tufts of the placenta. The whole mass of spongy substance—i.e., the whole mass of tufts—were in this manner perceived to be attached by innumerable threads of venous membrane to that section of the parietal decidua of the placenta, which was covered by the venous membrane. On proceeding deeper into the substance of the placenta, I perceived that throughout the whole extent villus was connected to villus, and tuft to tuft, by similar threads of venous membrane. Sometimes the apex of one tuft was connected to the apex of another. On minute examination, these threads were found to be tubular, and the membrane of which they were formed was seen to be continuous in one direction with the lining membrane of the vascular system of the mother, and in the other with the external membrane of the tufts of the placenta, and passing from tuft to tuft, so as to form the central containing membrane of the bag of the placenta. These threads, as well as their cavities, are somewhat funnel-shaped at each end. The funnel-shaped portions of the cavities of threads, and in some instances the whole length of the tubes, were found full of cells continuous in one direction with the parietal decidua of the placenta, and in the other with the external cells of the placental villi.

“This led me at once to perceive the real signification of the external cells of the placental tufts. I saw that this great system of cells was a portion of the decidua all but cut off from the principal mass by the enormous development of the decidual vascular net-work, but still connected with it by minute files of cells, which fill the cavities of the placental threads.”

This is the basis upon which the conclusion that the cellular investing membrane of the umbilical vessels is decidua mainly rests. If the continuity which Professor Goodair thinks he observed were clearly demonstrated, both by the uninterrupted extension of the membrane from the undoubted decidua covering the maternal surface of the placenta to the umbilical capillaries, and also by a sufficient identity of structure of the membrane as observed in these two different situations, then would

† Anatomical and Pathological Observations. Edinburgh, 1845.
this conclusion rest upon a more satisfactory foundation. But it is
certainly deserving of remark, that structures "almost cut off" from each
other, and apparently only connected by "cells filling the cavities of minute
threads," may be of a different nature. It must also be borne in mind
that this questionable continuity has been observed in one instance only.
On the other hand, Mr. Dalrymple could not trace the decidua from the
uterine surface of the placenta "further than between the lobules, the
extent to which it thus penetrates varying with the extent of the fissure."
Nor have we ourselves yet been more successful.

Again, what is the fact as to identity or difference of structure of the
membrane investing the villi and the decidua? According to our own
observations, made in conjunction with Dr. Hassall, there is an essential
difference. The real cellular decidua consists of a fibrous membrane, in
which are embedded cells, for the most part having a caudate elongation
at either end, and of large size. The membrane investing the umbilical
capillaries contains cells of a slightly oval form, much more thickly
studded together than is the case in the decidua, and much smaller. It
can scarcely be admitted that differences so marked can be wholly ex-
plained by the modifications impressed upon the development of the
membrane covering the umbilical vessels, by its altered situation. Again,
this membrane, when in a healthy state, cannot be separated from the
underlying vessels, unless the placenta have been kept long enough to
admit of an incipient putrefactive change. When it has been removed,
either by disease, as it commonly is to a partial extent when affected with
fatty degeneration, or by tearing after maceration, no second membrane
can be demonstrated between it and the proper walls of the vessel. The
vessel itself is immediately observed; or, at any rate, a structure pre-
senting all the characters by which capillaries in other parts are usually
recognised. "The walls of the placental blood-vessels, like those of the
same diameter occurring elsewhere, are thickly studded with elongated
nuclei."* It must be observed further, that the membrane which we
have described as chorion, uniformly invests the umbilical blood-vessels,
from their capillary extremities along their walls, until they have attained
a large size. As it was impossible to trace the decidua onward from the
uterine surface of the placenta, so is it equally impossible to trace it back-
wards from the umbilical vessels to the decidua. Lastly, the membrane
which we have called chorion, may be observed possessing the cellular and
other characters described, in ova of as early as six weeks' development,
and even earlier; that is, at a period when the chorion, covered with
shaggy villi, and the decidua are perfectly distinct from each other, when
not uncommonly in the case of abortion it happens that the fetal portion
of the ovum, with its chorion, comes away one day, and the maternal
portion, the decidua, comes away on the next. With a view to the
determination of this question, we have submitted several specimens
of very early ova, kindly supplied to us by Professor Sharpey, to exami-
nation. In these specimens, the structure of the outer membrane of the
villi of the chorion was plainly identical with that of the outer layer of
the chorion itself. In short, this investing membrane of the villi was
traced back to the chorion.

* Dr. Barnes' first paper on Fatty Degeneration.
The objections to Professor Goodsir’s view may be summed up as follows:

1. The structure of the membrane investing the umbilical capillaries, which he describes as decidua, is essentially different from that of decidua observed elsewhere.

2. The continuity of this membrane with the decidua is not clearly demonstrated.

3. This membrane adheres in a very intimate manner to the underlying tissues of the vessels.

4. When it is stripped off, no intermediate membrane between it and the walls of the vessels is observed.

5. The structure which lies immediately beneath it bears all the characters of vessels of a similar size occurring elsewhere, and must therefore, for this reason, and (4), be admitted to be the proper wall of the umbilical capillaries, and not the chorion, which, according to Professor Goodsir’s view, it must necessarily be.

6. This membrane may be observed in very early ova to be continuous with the outer layer of the chorion.

We conceive that we are now fairly justified in drawing the following conclusions: 1st. That the decidua is a membrane of maternal origin; 2nd. That it is nothing more nor less than the mucous membrane of the uterus itself in an altered state of development. We may also observe that there is nothing in the descriptions of the decidua of Hunter and Baer which is inconsistent with this latter conclusion. Surely we may practically regard as one membrane, and that the mucous membrane, the thickened membrane, consisting of elongated villi, between and over which was spread an effused substance, into which the uterine vessels were continued; and which they both agree in stating comes away altogether, leaving bare the muscular coat after delivery. 3rd. That the cellular membrane investing the umbilical vessels belongs to the proper fetal system, that it is truly chorion.

The recognition of these conclusions will, as we have already stated, throw a new light upon the pathology of abortion, enabling us to assign to a maternal cause those cases in which the decidua is primarily diseased, and limiting the range of fetal causation to those cases in which the true fetal structures of the placenta, those pertaining to the chorion and umbilical vessels, are found affected. No attempt at all systematic or successful has hitherto been made to establish this first and essential division.

As it is one of the principal objects of this article to bring together such a summary or digest of what is known upon this subject, as will serve to expose the present imperfect state of our information, and lead the way to future advances, it will be useful to pass in rapid review the chief contributions that have been made to the pathology of the placenta. The general character of these contributions is the want of precision, of the requisite minuteness of dissection and examination, of any reference to systematic arrangement. There is a mass of isolated facts, many of them inaccurately observed and related. Indeed, the most efficient instrument of analysis, the microscope, had seldom or never been turned to account in unravelling the various and complicated morbid conditions
of the placenta, until the investigations of the reviewer were commenced. Hence very many of the reports describing particular lesions of the placenta, and many of the general deductions that have been made regarding the pathology of this organ, can have but little value. The naked eye can only take cognizance of the gross appearances, and can only lead to rough and uncertain conclusions, until it has been trained to the more critical and finer distinctions, by that constant education and correction of our unaided sensual impressions, which the microscope supplies. What reliance can be placed upon the numerous descriptions recorded of scirrhus, steatomatous tumours, tubercles, or fibrinous deposits in the placenta, when the characters of the several lesions thus denominated have been only subjected to the naked eye and the scalpel? To attempt to frame any general expressions out of such doubtful particulars, or to raise any systematic structure upon so insecure a foundation, would be a profitless task. It were far better at the very outset of our inquiry to disencumber ourselves of such untrustworthy materials.

We would not, however, be understood to include in this condemnation many valuable monographs, which are evidently the result of careful observation and of legitimate induction. The writings of Murat, Brachet, Dance, Cruveilhier, and others, are justly esteemed; and the elaborate article of Professor Simpson must undoubtedly be regarded as the most important contribution to the subject which had, up to the period of its publication, been made. From the time of Dr. Simpson’s paper down to the announcement of the discovery of fatty degeneration of the placenta, no further step had been made calculated to advance in any material degree our knowledge of the pathology of the organ. Not only did this discovery assimilate the pathological history of the placenta to the better cultivated and more scientific pathology of the permanent organs, but it furnished that touchstone which was so much needed, in order to give to the numerous and hitherto often misinterpreted abnormal appearances of the placenta their true solution, to unfold their real pathological meaning. Its importance is not to be measured by this fact, that a new lesion of the placenta, before unsuspected, was added to the admitted list of morbid changes, not alone because it was thus established that the placenta was obnoxious to all those changes which may affect the internal organs of the economy, but chiefly because the recognition of fatty degeneration in the anatomical elements of the placenta supplied the pathologist with the certain means of analysing, distinguishing, and rightly estimating the various other alterations to which the organ is liable. The grosser physical signs of the placentas described by the reviewer correspond closely with those described by numerous authors as examples of scirrhus, fibrinous deposits, induration, atrophy, tubercles, steatomatous tumours. Yet a rigid microscopical investigation has resolved appearances interpreted into all these varied conditions, into simple degeneration of the component tissues of the placenta. What can be the pathological value of conclusions based upon descriptions in which errors so gross may be presumed? Analogy may indeed point strongly to the conclusion that true scirrhus or true tubercle may be found in the placenta; but it is not too much to deny that either of these heterologous formations has ever yet been rigorously demonstrated.
It is manifest, then, that the work of demolition must precede that of construction. Much unsound material, which, if admitted into the new edifice, would impair its solidity, must be thrown aside altogether; and much more must be rigorously tested before it can be safely employed. We think, therefore, that it would serve no useful purpose, but rather tend to the complication and confusion of a subject already sufficiently obscure, to devote time and space to the consideration of the multitudinous reports of cases of abnormal placentas, with which medical literature abounds.

Appearances that have been interpreted under the double disadvantage of imperfect observation of the cardinal facts, and of erroneous physiological and pathological doctrines, cannot be trusted; and if, by the clearer light of recent physiology and pathology, we might hope to see our way through the mist of theories which encumber these descriptions, we cannot hope, by any process of reasoning or criticism, to arrive at the true physical characters of morbid alterations which were originally imperfectly observed.

(To be continued.)

Robert Barnes.

Review III.

3. Précis d'Anatomie Pathologique. Par G. Andral, M.D.
4. Pathological Anatomy. By Robert Carswell, M.D.
5. On Cancerous and Cancroid Growths. By J. H. Bennett, M.D.
7. On the Nervous Centres, &c. By Robert B. Todd, M.D., F.R.S. ('Cyclopaedia of Anatomy and Physiology.')

(The morbid change which constitutes the essence of cirrhosis of the liver is clearly of the same kind as those which we have been considering. We shall first quote Dr. Carswell's account of the production of the granular liver, and afterwards proceed to detail some of our own observations respecting certain analogous conditions which are not all attended with the same alteration of shape.

"The liver, when affected with atrophy from this cause, is sometimes reduced to a fourth of its normal dimensions; its consistence generally increases with the diminution of its bulk; it appears shrunk, and has an irregularly rounded form, particularly at its edges, and the whole of its external surface is raised into round flat projections, varying from the size of hemp-seed to that of a pea, or even a small cherry. Examined more narrowly, the round flat projections are found to be
composed of several smaller ones, and these, again, of the individual lobules of the liver; so that the larger projections are formed of aggregated groups of lobules, each separated the one from the other by cellulo-fibrous or fibrous tissue, the quantity of which varies considerably, and is always greatest between the largest groups of lobules. The situation of this tissue, its distribution, the manner in which it gives rise to the tuberiform arrangement of the lobules, and the diminution observed in the bulk of the liver, are important circumstances in the pathology of this affection, and which are most satisfactorily illustrated by a careful examination of the changes which have taken place in the structure of the organ. When that has been exposed by incision, the cut surface presents the same tuberiform arrangement seen on the external surface beneath the peritoneal covering, the lobules being grouped into smaller or larger masses, mostly of a round, ovoid, or pyriform shape. The cellulo-fibrous or fibrous tissue now forms a conspicuous feature in the disease, both on account of its greater quantity, compared with that of the lobular structure of the liver, and the contrast of its white or grey colour with the rusty yellowish, or greenish-brown colour of the lobules. It is seen occupying the sheath of the portal veins, following the whole course of these vessels, both in their passage to, and their distribution between, the lobules in which they terminate. It thus forms around the veins, in the former situation, a firm fibrous sheath; and in the latter, a capsule enclosing a variable number of lobules, in some parts only four or six, in others ten, twenty, or more. Hence the obvious reason why the lobules are grouped together in the form of tumours of different sizes, containing, or subdivided into, smaller ones. In separating one of these groups of lobules or tumours from the surrounding ones, which can often be done with great facility, especially at the commencement of the disease, we find that it is held, at a certain point of its circumference, by the bloodvessels which pass into the lobules contained within it. At this point the vessels are obviously constricted by the fibrous sheath which surrounds them, and the lobules themselves by the same tissue which forms their common capsular covering. The interior of each group of lobules, when exposed by section, presents a number of fibrous intersections, continuous with the common capsule, and obviously formed by this tissue where it surrounds the terminal divisions of the portal veins. The quantity of the fibrous tissue, compared with that of the lobular structure of the liver in this disease, varies greatly. At the commencement, it is small in quantity, and is best seen where it surrounds the veins before they give off their terminal branches, and consequently, where it forms the capsular covering described. In the progress of the disease it becomes more and more abundant, and, at the termination of some cases, forms the greater part of the bulk of the liver. In the same proportion, also, as it increases in quantity, does the lobular structure of the liver disappear, and its bulk diminish; and so much is this sometimes the case, that almost no trace of the natural structure of the organ is observable. The mechanical obstruction to which it gives rise (i.e., the fibrous tissue) is at first confined to the capillary circulations; but when the lobules, in the progress of the disease, are grouped together in the form of tumours, a new obstacle is created which acts on the venous circulation of the liver in general, but more especially on that of the portal veins. For these tumours either compress the portal veins, or, projecting in the direction of their interior, render them so unequal, and, at the same time, so narrow, that the circulation of the blood through them is always more or less impeded, and sometimes almost entirely interrupted. These effects of the tuberiform condition of the lobules are always much greater in the portal than in the hepatic veins, for this reason—that the attachment of the former to the lobular structure of the liver is very loose, on account of their being provided with a cellular sheath, which the latter have not. They also, however, undergo the same changes in a less degree, particularly the inequality of their internal surfaces from protrusion of the tumours. . . . The reason why the surface of the liver presents a tuberiform appearance is, that the fibrous tissue being attached to the peritoneal covering, pulls the membrane inward all round the groups of lobules, where it is most
abundant. The central portion of the groups of lobules must, therefore, from this cause alone, become prominent, and must also be subject to further increase, from the accumulation of blood and bile in their vascular structure. With regard to the state of the gall-duets and hepatic artery in this disease, it is certain that, as they pass to and from the lobules respectively, enclosed in the capsule of Glisson, they must also, particularly the former, like their accompanying veins, undergo compression. The secretion of the bile, however, is effected, although apparently reduced in quantity, without presenting any remarkable alteration of its physical properties."

Rokitansky remarks, respecting the alteration of form in cirrhosis, that—

"It is always accompanied by a considerable diminution of size; the granulations and the atrophy generally commence at the edges, and the latter attains its extreme development at this point; the edges consequently appear very much thinned, and at last form a mere seam, consisting of cellulo-fibrous tissue, which is contained between two condensed laminae of peritoneum, and reflected over the convexity, or inverted into the concavity of the liver. The left lobe of the liver is frequently shrunk into a very small flattened cellulo-fibrous appendix, and the thick hemispherical globular mass of the right lobe represents the entire organ. Occasional exceptions arise from the granular disease being developed in a liver that was previously affected by some other disease, as by the fatty degeneration; in this case, the reduction in size only takes place very slowly; and the edges, instead of being thinned down, are often thickened and rounded."

The rest of Rokitansky’s account of cirrhosis is too overloaded with detail, and, in part, too incorrect, to make it worth quoting in extenso. Some points of it we may allude to further on. Before we proceed to some of our own observations, we shall briefly recall to the reader’s mind one or two circumstances relating to the structure of the liver, which it seems worth keeping in view.

The lobules consist of nothing but cells and capillaries in the healthy state; there are no discernible gall-duets in them, nor any areolar tissue. The lobules are invested, at a certain level, by an almost homogeneous strip of the capsule of Glisson; above and below this, they are continuous with each other. The first discernible gall-duets are found just outside the lobules in the Glissonian sheaths. The intra-lobular venules, and the surrounding capillaries, are always the chief seat of blood-congestion; and the cells in relation with them are commonly the seat of the deposit of yellow pigment. The marginal cells, on the contrary, are extremely often more or less loaded with oil, or fatty degenerated. Nutmeg liver depends on sanguine congestion of the central capillaries, and implosion of the central cells with yellow pigment, the dark tracts or spots thus formed contrasting with the opaque white of the fatty degenerated margins. If anything were wanting to prove that the old naked-eye guesses at structure were more deserving the name of anatomy of the imagination than microscopic inquiry, on which some sceptics have tried to confer the appellation, it would be the history of the opinions held respecting cirrhosis. The microscope shows in a moment, quite conclusively, that the granulations are merely the remains of the hepatic parenchyma; and it shows this, too, which seems rather surprising, that their elements are often much less altered from their natural condition than one would have supposed could possibly have been the case.
In a liver of markedly granular character, which we recently examined, some of the cells were of quite natural aspect, some laden with oil, some with oil and pigment; none of them had any appearance of being atrophied. Dr. Budd, in a case recorded at length in his work on ‘Diseases of the Liver,’ gives an exactly similar account. This almost seems to imply that the supply of blood cannot be so completely cut off as it would appear to be; and the fact mentioned by the same high authority, that the capillary vessels in the above case were capable of receiving injection from the portal vein, seems demonstrative of the point that the vascular channels are not completely obstructed. We believe that, in the granular form of cirrhosis, the obstruction tells more upon the minute branches of the portal vein than upon the lobular capillaries. The lobules are, indeed, surrounded and compressed, but it is by a pressure from without; their own structure remains healthy, or nearly so. In other forms of cirrhosis, it is very far otherwise. The portal veins, in a case we recently examined, as far as they could be followed by the eye, appeared pervious; the membrane of the vein was healthy, but perhaps more adherent to the wall of the canal than it should be. The capsule of granular livers is not unfrequently almost or entirely free from morbid change. The grouping together of the lobules into the tumours of various size, which Dr. Carswell speaks of, does not appear to be determined by the direction of ramification of the portal or hepatic veins; it rather seems as if there was something capricious about it, and that it depends only on the formation of a larger quantity of fibroid tissue in one part than in another. A thin section, viewed under a low power of the microscope, is very instructive; it shows islets of parenchyma, separated more or less widely by fibrous tissue. The quantity of the latter may vary very greatly, even in cases which present the granulated character in an equally marked manner. Sometimes it forms tracts, equaling here and there almost the width of the lobules; at others, it seems but little more abundant than natural. In either case, we believe it does not penetrate, in the least degree, the structure of the lobules. It appears to be a corollary from the variability of the quantity of the fibrous tissue in equally granular specimens, that the quality of this new-formed structure must be different—that is, that in one case a small quantity of fibrous tissue will cause as much contraction as a larger quantity will in another. Indeed, we know that, in a liver of very large size, the quantity of new-formed fibrous tissue may be very great, the granular character being, at the same time, moderately though decidedly marked. We have met with one or two instances in which the liver, without being decidedly granular, or even nodulated on its surface, was yet manifestly altered from its natural condition in some similar way. It had an irregular aspect, portions of the surface being raised into prominences of varying size, with intervening furrows. The prominences were sometimes paler than natural. In one case, the cells were, in some degree, stunted and starved-looking, but there was no very apparent increase of fibrous tissue, so that it was doubtful, for some time, on what the contraction depended. On careful examination, it was afterwards found that, in the smaller portal canals, there was a manifest increase and thickening of the fibrous tissue, and that the minute ducts had been much atrophied by its pressure, a circumstance
which often does not take place to any great extent when the quantity of fibroid tissue is abundant; so that it seemed pretty certain that the case was one of incipient cirrhosis, peculiar in this respect—that a decided contracting effect had been produced by a slight alteration in the fibrous tissue of the Glissonian sheaths. The general aspect in these cases is, in some measure, more instructive than the microscopic.

The following cases seem of sufficient interest to quote, as illustrating the latent origin and course of these changes, as well as various points of peculiarity, which we shall notice in each individually.*

H. R., æt. 47, an omnibus-driver, admitted into St. Mary’s, April 24th. Stout, plethoric; has been a hard drinker; left work only two weeks ago. General health good; subject during the last six months to attacks of bilious vomiting, which he dates from an injury he received in the right hypochondriac region. Liver found to descend low; some ascites. Urine in good quantity till last three days; albuminous, and depositing lithates. Loud systolic murmur at apex. The dyspnea became more urgent, and he sank, with signs of failing circulation, in about a fortnight. At the post-mortem examination there was found serous effusion in both pleurse, and in the peritoneum to a considerable amount; the lungs were edematous and emphysematous; lower lobes of both partly solidified, partly compressed. The heart very large; the aortic valves hardened by calcareous deposit; not efficient; an elongated calcareous deposit on aortic flap of mitral. Liver large; very hard from fibrinous deposit; surface somewhat uneven; patches of fibrinous deposit on surface. Kidneys, right rather small; capsule thickened and adherent; surface rather granular, congested; left in same state. Spleen rather large, measuring eight by four and a half inches; a dozen or more white spots the size of a pin’s head on the outer surface of capsule. The capsule of the liver was chiefly thickened in the course of some of the superficial portal veins. The organ was injected with a fine fluid from the portal vein; but none could be made to penetrate into the capillaries, nor into the interlobular veins. The microscope showed that the cells in the mid-part of the lobules remained tolerably natural, only exhibiting here and there a huge single oil-drop; those, however, adjoining the margins for some depth were utterly atrophied, reduced to mere traces, small granular globules, and nuclei. The fibrous tissue was developed in a very marked manner in the smallest portal canals and fissures; there was no obstruction in the larger. The tubes of the kidney were very much broken up. One remarkable feature in this case, is the complete obstruction which existed, with so little appearance of contraction, in the liver; and another, is the atrophy which affected so exclusively the marginal cells. The case may be summed up (speaking judicially) as chronic latent change in the cardiac valves, the liver, and kidneys; the cause unknown, unless it be the habit of drinking.

E. G., æt. 52, admitted into St. Mary’s, Dec. 5th. Had palpitation for six years, dropsy for five weeks, before admission. The heart’s action was very feeble, and maintained the circulation very imperfectly. Died suddenly about twelve days after admission. The heart was found

* We cannot forbear to acknowledge the kindness of our colleagues at St. Mary’s, in allowing us to make free use of the records of their cases.
enlarged; left ventricle hypertrophied and dilated; the valves all healthy. The lower lobes of both lungs much condensed by pleural effusion. The kidneys were in an advanced state of granular disease. The liver was rather enlarged; it was firm and dense; its capsule was thickened in several white patches. Thin sections of the liver, under the microscope, showed great increase of the fibrous tissue of the small portal canals, and less certainly of the fissures, with more perfect fibre-formation than natural. The marginal cells for a varying but considerable depth were in a state of complete fatty degeneration; those in the interior of the lobules were tolerably healthy. In this case, the change in both liver and kidneys seems to have been completely latent; the enlargement of the heart was probably secondary to both. The cirrhosis of the liver was combined with marginal fatty degeneration.

C. D., set. 37, admitted into St. George's, May 17th, having been attacked by profuse hæmatemesis that morning. Was bilious during the preceding week, and vomited frequently; never had pain in stomach, but a sensation in his throat, from whence blood seemed to come. The hæmatemesis continued, and he died the next day. At the post-mortem examination the heart was found healthy, except some slight sanguine extravasation beneath endocardium of right ventricle. Stomach and intestines appeared healthy, and no abrasion could be detected. The kidneys were slightly indented on their surface, and the marks corresponded to cicatrix-like seams in their cortical parts, which in some places were diminished. Capsule of spleen slightly thickened, and slight amounts of fibrine were collected in the divisions and marks upon its surface, in some places becoming changed into firm opaque patches. The liver was very large, with a rough granular surface, and a very firm-knotted sectional surface, of a yellow or brown parti-colour. Gall-bladder contained much tarry bile. On the capsule, or in its thickness, there were a great number of minute sand-like grains, which did not cause any opacity, and were not associated with thickening. The new-formed tissue interposed between the masses of parenchyma was very apparent to the naked eye; it had a translucent reddish aspect. A section under the microscope showed that there was immense thickening of the Glissonian sheaths, the fibroid tissue being more abundant in some fissures than others, determined the grouping of the lobules into masses of various size. The addition of acetic acid showed that the fibroid tissue contained a multitude of nuclei, some elongated, the majority being round. The cells were not at all atrophied; many contained oil, or oil and pigment. Here there was fibroid change locating itself principally in the liver, but also affecting the capsule of the spleen, and probably the kidneys. The little grains on the surface of the liver appeared to us very suggestive as to the nature of the changes taking place. It is impossible to ascribe them to an inflammation of the capsule; they were evidently simple, minute exudations of fibrinous matter; and thus evidence a tendency in the system to the formation of such growths as might be developed from such blastema. We consider the hypertrophiic growth of the fibrous tissue in the interior of the liver to have resulted very much from similar exudation taking place in its texture. We may remark that the morbid process in the liver was evidently going on, not in a stage of quiescence or retrogression,
as evidenced by the multitude of round nuclei contained in the fibrous tissue; there was, however, no appearance of anything that could be regarded as inflammatory action. The case is an instance of chronic fibroid change, quite latent until the occurrence of a fatal secondary affection, and limiting itself particularly to one organ.

The following case is one of great interest; it occurred in St. Mary’s Hospital, under the care of Dr. Sibson. J. S., set. 30, servant, admitted Dec. 17th. A thin, sallow, freckled man, having lived abstemiously, and having had good health previously. Was well until one month ago, when he began to suffer from loss of appetite, and some sickness, with pain in region of heart. Cough for fourteen days. Legs edematous last five days. Abdomen rather distended; no pain anywhere. Urine free, acid, albuminous; specific gravity, =1016; pulse, 108. An enlarged gland on right side of neck. Considerable dulness over splenic region. Dulness over lower part of right back, with rhonchi; blowing respiration more on right side than on the other. The urine was not constantly albuminous; a loud systolic bruit was heard on Jan. 7th to the left of the sternum; the right brachial artery was observed to beat stronger than the left; and dulness was noticed over the upper part of the chest to the left of sternum. After this he got weaker; his legs became more swollen. On the 20th he was jaundiced; and died on 25th. The body was emaciated; the surface was everywhere yellow. The pericardium contained eight ounces of serum; the heart was healthy. There was slight deposit of recent lymph on the posterior part of left lung. Both lungs inferiorly engorged with bloody serum; their cut surfaces presenting appearances as of blood being effused in isolated spots; upper part of lungs emphysematous. Numerous enlarged glands in thorax, and many also about the vena cava, just before it passes through the diaphragm. A tumour of botryoidal aspect was attached to posterior surface of upper bone of sternum; it was hard and dense, and surrounded by a number of enlarged glands. The spleen weighed one pound ten ounces and a half; it contained numerous yellow fibrinous masses, some formed patches, hard and dense, of the size of half a-crown, others of smaller size were soft and semi-fluid. The left kidney weighed nine ounces and a half; the right, eight ounces; they were much enlarged and flabby. A section through the mass in the anterior mediastinum showed an uniform, yellow-stained surface, marked by some vertical furrows; it contained no apparent vessels, and had a firm texture. It consists of an homogeneous, semi-translucent basis substance, imbedding fibres and remains of nuclei, cells, and granulous matter, as well as fat vesicles. There is no evidence of active cell-growth in the mass; it rather appears like a slow fibrinous infiltration. One of the enlarged glands, cut across, presents a perfectly homogeneous, smooth, somewhat glossy surface; its structure consists of fibroid and homogeneous solid basis substance, imbedding numerous nuclear and celloid particles, and giving out a vast deal of amorphous granular stuff. In the spleen, there was a large yellow mass, a manifest block of fibrine, which presented, under the microscope, an homogeneous translucent substance, imbedding remains of splenic structure, some little masses of yellow pigment, and some triple phosphate prisms. The rest of the spleen was solid, firm, and heavy, and mottled over with whity-yellow stained patches, which appeared to be similar.
partial fibrinous infiltrations; it contained much yellow matter (altered hematin); many of its nuclei were developed into cells, and very many, also, were producing fibres. The liver was markedly jaundiced, as every other part; and it was especially observable how the colour was chiefly located in the central cells of the lobules. The cells were in general rather atrophied; the marginal contained scarce a trace of oil, and none of pigment. The Glissonian sheaths were greatly thickened, in some parts much encroaching on the lobules. The gall-bladder was empty. The kidneys were very large, pale, and of smooth surface; the cortical tubes contained a bulky granular epithelium, and were, at least many of them, much dilated; they often contained either dark-red remains of hemorrhagic extravasation, or more often homogeneous fibrinous moulds, tinted of a bright yellow. The granular epithelium was not at all coloured. The medullary tubes were obstructed like the cortical. The Malpighian tufts were, some obscured, others filled with homogeneous fibrine. It seems difficult to read this case in any other way than as one of chronic renal disease, with slow, simultaneous cirrhotic change in the liver. At a later period, fibrinous infiltration seems to have taken place more rapidly in the lymphatic glands, and in the spleen, where it formed at one part a separate mass, as if by an acute tumultuous action. The opinion that fibrine is an effete product, not a highly plastic one, receives much support from such a case as this. The rapid occurrence of hypertrophic enlargement of the lymphatic glands concurring with fibrinous deposit in the spleen, suggests the idea that the same exudation of fibrinous matter, which, in the one case, formed a mere deposit, in the other, gave rise, by undergoing a low grade of development, to hypertrophy.

W. B., et. 32, subject to winter cough, not emaciated, died in St. George's Hospital, with great prostration of strength, and much mental confusion; surface of body was of dusky colour. Pulse quiet. At the post-mortem examination the lungs were found studded throughout with grey granulations, and in the first stage of pneumonia. Heart healthy; testis tubercular; liver soft and flabby, rather pale, with patches of indeterminately localized congestion, weighed four pounds two ounces. Kidneys congested, contained some small scrofulous deposits; together they weighed one pound. There was much subarachnoid fluid, about two drachms in each lateral ventricle. The cells of the liver were everywhere loaded with oil, and with opaque granular contents; the oily accumulation was very great in the marginal cells. There was great increase of the fibrous tissue of the Glissonian sheaths, which had advanced so much, as to encroach considerably upon the parenchyma, enlarging the spaces and fissures. This encroachment, however, did not in all cases occupy the whole length of the fissure, it involved sometimes only a part; so that there were seen here and there circular patches of new fibroid tissue. The ducts were much atrophied by the pressure of the new-formed material. The special development of the fibroid tissue at different spots is a remarkable and unusual circumstance. The cirrhosis was combined with fatty degeneration, and perhaps one may say, the scrofulous with a low degree of the fibrinous diathesis.*

* We do not think the term is by any means free from objection, but it may be perhaps conveniently employed to designate that state in which there is a tendency to fibroid change throughout the system.
There are other instances of cirrhotic change frequently met with, in which very little of the granular character is apparent, and which are chiefly distinguished by great increase of density and toughness, various alterations of shape, and the wasting of the parenchyma revealed by the microscope. These may be called, generally, the non-granular instances of cirrhosis, although, as in some of the cases just related, where the fibroid development was confined to the Glissonian sheaths, the granular character does not constantly present itself when the parenchyma remains nearly or quite unaffected. The surface is often marked by whitish streaks, which belong to portal canals whose sheath of fibrous tissue is abnormally thickened. Often, also, there are white patches of thickening of the investing peritoneum, but these may exist in a very marked manner with or without adhesions; while there is little or no fibroid development in the interior of the organ.

We may refer here to a communication which we made to the Pathological Society, in 1848, and which was republished in the 'Transactions of the Medico-Chirurgical Society' for 1852, as containing a detailed account of the changes observed in the non-granular form of cirrhosis. This we shall not quote again, but mention briefly the chief points, and leave our readers to the perusal of the subjoined cases for further descriptive details.

These livers often present exquisite specimens of the nutmeg appearance; they are never so shrunken as the granular ones, and often exhibit no remarkable alteration of shape. Their density and toughness are greatly increased, and this is almost their best non-microscopic character. The Glissonian sheaths are thickened in a greater or less degree, and, what is most important, the parenchyma of the lobules is very greatly altered. This alteration consists in atrophy and destruction of the cells more or less complete, and their replacement by an amorpho-granular stromal substance, which contains débris of the cells and imperfect colloidal particles. It is a very remarkable and important circumstance, that so grave an alteration should have taken place in livers that exhibit, to common inspection, no very marked diseased condition. This circumstance, that the lobules are not merely compressed and atrophied, but involved in the morbid process, is the distinctive feature of the variety of cirrhosis we are now considering. The following cases will illustrate, in some measure, the nature and pathological relations of this state.

M. K., aged 39, admitted Nov. 1 into St. George's Hospital: has ascites, said to have commenced six weeks ago, without edema of ankles; has had cough and expectoration last three or four months. Many years ago had an attack of jaundice, with severe pain in right hypochondrium, for which he was very actively treated. Has enjoyed good health, with the exception of occasional slight attacks of rheumatism. Abdomen at present much distended, partly with flatus, partly with fluid; tongue furrowed; bowels confined; pulse 96, rather weak; urine scanty, high coloured, free from albumen. Nov. 9th, he began to complain of pain in the abdomen, with more distension; after some remission it returned, with a good deal of tenderness and parched, red tongue, and rather shrunken features; after blisters, pain became less severe, but countenance was more shrunk and emaciated; appetite now quite failed; dulness and want of breathing at
base of left lung appeared, and he died on Nov. 26th. The body was not much emaciated; there was a small quantity of fluid in the left pleura, and several old adhesions—the right was obliterated; lungs much congested posteriorly; heart healthy; blood rather fluid; a large quantity of yellowish serum in peritoneum, which was roughened and coated with recent lymph-in several parts. The liver was covered over with false membranes, both old and recent; its edges were very much rounded, and its cut surface nutmeggy; gall bladder full of healthy looking bile. Kidneys smooth on surface, not dwindled, but remarkably confused in structure. Spleen adherent to diaphragm. The liver had quite lost its natural structure; it was converted into a mass which seemed to consist of an homogeneo-fibrous basis substance, extending throughout the lobules, and imbedding débris of hepatic cells and numerous oil drops. The investing membrane of the portal canals seemed to be certainly thickened in many parts, but not generally; the chief alteration was certainly in the lobules. The cortical tubes of the kidney were much infarcted with granular and oily matter, but they were not broken up. The attack of hepatitis many years ago doubtless produced the false membrane on the surface of the liver, and the peritonitis shortly before death the recent effusion of lymph; but there is no evidence to lead one to believe that the extreme structural alteration of the parenchyma was owing to either. It is presumable that the change must have been a very gradual one, otherwise it would surely have produced some severe effects upon the system. The secretion of healthy looking bile, with such great alteration of the hepatic cells, can hardly be accounted for on the common view of the structure of the liver. The atrophy of the hepatic cells we regard as secondary to the deposition of the homogeneo-fibrous substance in the interior of the lobules. Disease of the heart had nothing to do with the change in this case.

A. C., set. 32, admitted Sept. 20, into St. George's Hospital. Had hæmoptysis first two years ago, when marching up-hill in South Africa. Previous to this, had two attacks of rheumatic fever, but was not conscious of shortness of breath or palpitation before this seizure, and has constantly suffered from them more or less ever since. Has anasarca of legs, ascites, and flatulent distension of abdomen. Face dusky, eyes heavy, conjunctive yellowish; pulse feeble, frequent, regular; breathing oppressed; heart's action increased; precordial dulness extended; loud systolic murmur, of equal intensity at base and apex; loud râles in chest; urine loaded, and at first slightly albuminous. Oct. 10th, passed much blood by stools; 21st, cough harassing, dyspnoea urgent, occasional severe pain in chest. The symptoms became worse: blood appeared in the sputa, and he died Nov. 26th. The post-mortem examination showed great anasarca of lower limbs, and some of upper; an icteric tint of skin; some recent adhesions in right, and some old in left, pleura—serum in both. Both lungs edematous, but crepitant in the greater part of their extent; both also contained masses of extravasated blood: those in the right were more recent and extensive, those in the left were some of them of older date, as shown by their less density and their decolorization. Much serum in pericardium, and several small patches of recently effused lymph, as well as a rather large white patch. Heart rather enlarged; walls of right ventricle in parts thickened, those of left not. Mitral orifice so contracted as not to
limit the tip of the little finger. Tricuspid and aortic valves slightly thickened, but quite efficient. Aorta healthy. The liver was highly nutmeggy. The kidneys were rather coarse; the capsule unnaturally adherent; surface not quite smooth. Spleen rather small and firm, and capsule somewhat thickened. Pancreas unusually firm. A large quantity of yellow serum in the peritoneum. Thin sections of the liver, under the microscope, showed extreme congestion of the capillary plexus in the central part of the lobules; while the peripheral was in great part converted into fibroid tissue, containing débris of cells. The cells in the central half of the lobules, as far as the congestion extended, were gorged with dark yellow pigment and oily matter. The fibroid tissue of the Glissonian sheaths was greatly hypertrophied; and, indeed, it seemed as if there was a solidified substance extending throughout the lobules. The kidney was in an early stage of granular degeneration: the cortical tubes near the surface were very much broken up. The vesicular cavities of the pancreas were densely stuffed with epithelium. It is possible that the valvular disease may have originated in the acute rheumatic attacks, but it is equally possible that it came on as a slow change, together with those of the liver and of the kidney. Nothing seems to have marked the invasion of the latter changes, nor to have directed attention to them at a later period; they were quite latent, and that of the liver was only made out by microscopic examination. How many livers have been recorded "nutmeg" without any idea of the actual changes which disease had produced! We recommend this fact to the consideration of those who love to talk of the illusions of the microscope. The effect of the central congestion of the lobules, occasioned by the disease of the heart, was seen in the excessive formation of yellow pigment in that situation, and in that alone. The firm condition of the pancreas evidently depended on the stuffing of its cavities with epithelium. This state seems to us analogous to the infarction of the renal tubes which is so common in Bright's disease. We shall remark further upon it when we come to speak of the kidney, and shall only state at present that we regard it as an indication of the occurrence of similar chronic change. This state of the pancreas, the cirrhosis of the liver, the granular degeneration of the kidney, and, possibly, the valvular disease, we are inclined to regard as affections of a like kind, originating in a like cause—viz., a morbid state of the blood, causing unhealthy nutrition.

G. St., set. 32, attorney's clerk, admitted Sept. 19th, into St. Mary's Hospital. Health good till within the last eight months; a great porter drinker; never had syphilis. Had hæmoptysis three months ago; cough, with expectoration; urine high coloured, not albuminous; bowels relaxed; oedema of legs considerable. Hæmoptysis recurred, and he died Oct. 13th in a state of exhaustion. The post-mortem examination showed oedema of legs and feet, and of scrotum; abdomen distended by a gallon and a half of yellow serum, with floating flakes of lymph; vomice and tubercles in lungs; heart small, but healthy; mitral valve thickened, but efficient; the liver was very dense and hard, its substance dark, with several little specks on the surface resembling tubercles; spleen soft, capsule somewhat thickened; kidney rather large, apparently healthy. The microscope showed that the fibroid tissue in the liver was increased, and had
encroached more or less on the lobules; it was rather irregularly developed, more in some parts than in others. The minute ducts were very well seen in it by the aid of acetic acid; they appeared somewhat atrophied. There was a great deal of newly-formed fibre throughout the parenchyma; it formed long lines, traversing the lobules from the circumference to the centre: the fibres were developed from nuclei. The central cells were of a bright yellow colour; those on the margins contained either oil or dark pigmented matter. The little specks on the surface were commencing granulations; they consisted of pale, atrophied hepatic cells. The cortical tubes of the kidney were extremely infarcted; there appeared to be some fibre-formation in the matrix. The development of new fibroid tissue in the lobules was well marked in this case, and contributed no doubt to the density of the liver, and to the obstruction of the circulation through the portal vein. The process by which this new tissue was formed does not appear to have been at all inflammatory, nor can any reason be assigned for the unusual circumstance of fibre being developed within the lobules. One can only speak of it as a peculiar perversion of nutrition. The association of tubercular disease with cirrhosis we have before noticed; it was present also in this case, but is not, we think, a common occurrence.

E. L., art. 61, laundress, admitted Oct. 31st, into St. Mary's Hospital. Her breath had been short six or seven years; dropsy appeared in the feet three weeks ago; urine albuminuous; loud systolic bruit; dulness and muco-crepitant râles in right apex; the circulation failed, and she died Nov. 22nd. At the post-mortem examination the heart was found little if at all enlarged; there was some thickening on one curtain of the mitral valve; there was a large cavity in the right, and a smaller one with tubercle in the left, apex of the lungs. Some serous effusion into the peritoneum. Liver much deformed, the various lobules being connected together only by narrow slips of hepatic tissue; the capsule was much thickened, presenting a whitish appearance over the whole surface. There were ten gall-stones in the bladder: its tissue was indurated. Kidneys of lobulated form; structure confused, cysted; capsules somewhat adherent. Three ulcers in the stomach. The liver was exquisitely nutmeg; the central parts of the lobules quite of a deep red; the marginal third of a whitish buff colour; the limit between the two was exceedingly defined. Throughout the congested part there were cells, or the remains of cells, thoroughly filled with pigment granules. These were also scattered through the marginal portion, in which there seemed to be a quantity of oily matter diffused among the cells with simultaneous formation of fibrous tissue; there seemed, indeed, to be a network of the latter in each lobule. The cortical tubes of the kidneys were excessively infarcted, containing, here and there, large oil-laden cells; some of the Malpighian tufts were shrunk and dwindled. The change in both liver and kidneys, in this case, was evidently chronic and latent, and independent of cardiac disease. The remarkable thinning of the liver at the parts where the lobes join each other, is a circumstance which we have observed in other instances of cirrhosis; but we do not know that any satisfactory explanation can be given of it. It probably depends on the greater degree of cirrhotic change at those points than elsewhere.
C. K., æt. 57, admitted April 14th into St. George's Hospital, enjoyed good health till seven months ago, when she had jaundice followed by swelling of abdomen, commencing on left side; last month some anaesara of ankles; tongue coated; bowels relaxed; abdomen enlarged, tense, fluctuating; urine not albuminous, loaded with lithates; tumour felt in region of spleen, and also in that of liver; she gradually sank, and died on the 26th. At the post-mortem examination there was observed great anaesara of the legs; the peritoneum contained a very large quantity of amber serum, and some recent lymph; it was rather vascular generally. The great omentum presented several tuberous or granular patches from deposit of fibrine, and was thickened and indurated, and of a greyish ash colour. Edges of liver somewhat rounded; it was much enlarged, weighed six pounds five ounces, and reached even to the spleen as it lay in the abdomen; it was flatter than usual, and placenta-like and very indurated, slightly granular on the surface, and variegated in colour with occasional thickening of its capsule, and was adherent on the under-surface by old bands to the stomach; it contained but little blood, and was exceedingly firm; bile very dark; spleen was adherent to walls of abdomen by false bands, and was of enormous size and weight, ten and a half inches in height, and fifteen in transverse circumference; its capsule was thickened in places and opaque, and on removing it the vessels and connexions yielded with scarce any resistance; it weighed three pounds six ounces: on section it was found to contain scarce any blood, and to be very firm and solid: at its lower part there was a large mass of fibrine cropping up to the surface. The kidneys weighed together seven ounces, and were small, firm, and solid, their capsules rather adherent, and their cortical parts of a somewhat yellow waxen tint, contrasting markedly with the cones. There were also one or two yellow miliary deposits in the cortical parts, in which the microscope showed only the ordinary fibrinous element. There was extensive atheromatous deposit in the descending aorta, here and there ossified. The lungs were congested and edematous. The heart weighed seven ounces; appeared healthy; there was a little thickening in the margin of the mitral, and some atheroma in one or two parts. The cut surface of the spleen was of a peculiar grey uniform aspect, dotted over with pin-point blood specks, and a few of larger size. It consisted of an homogeneo-granular basis substance, having slight tendency to fibrefy, and with numerous nuclear corpuscles and much oily matter dispersed through it. The nuclear corpuscles resembled exactly the natural ones of the spleen. The change appeared to consist in infiltration of the parenchyma with solidifying fibrine, and the large fibrinous mass to be only a more tumultuous form of the same process. In the liver scarce any of the natural cells were to be seen, a few only here and there: they were replaced by a material consisting of numerous nuclei and imperfect cellloid particles, lying in a fibro-homogeneous basis substance; this occupied five-sixths or more of the lobules, and was quite pale and bloodless: only in the centres of the lobules were there streaks of red injection; and here only was there yellow pigment in the form of granules agglomerated into globular masses. The Glissonian sheaths were not notably thickened. The toughness and firmness of both liver and spleen were greatly increased.

Our friend, Dr. Ogle, to whom we were indebted for the specimens of the
liver and spleen which we examined, has made a communication respecting this case to the Pathological Society, from whose report for 1851–2, p. 335, we quote the following highly important and truth-like observations. Dr. Ogle maintains the following position:

"That a certain condition may exist, either of the blood itself, or of its distributing, the capillary system generally, in which a tendency to the exudation of fibrine, with or without some of the colouring matter of the blood, specially results; the exudation taking place into the various tissues and organs, and not infrequently into several at the same time: as the lungs, liver, kidneys, spleen, &c. It is probable that this tendency will be found to be the interpretation of many instances of secondary inflammation, so-called, arising in the course of other affections, and of those following injuries and operations, though these are generally attributed to purulent infection: also of many instances of extravasations of blood into the substance of the brain or lungs, which often coincide with, but are not possibly, as supposed, dependent upon certain affections of the valves of the heart, which affections are obviously the result of an alteration in the blood’s composition. It is probable also that the various atheromac, steatomatous, and calcareous depositions, producing such dire effects in the walls of arteries, are the results of excessive fibrine in the blood, which has become precipitated; and many diseased conditions of the kidney also appear connected with some such tendency; at any rate the visible fibrinous exudations demonstrated in so many cases, and known as fibrinous casts of the urinary tubes, lend some weight to such a supposition."

A somewhat similar view had been propounded by ourselves in a paper read before the Medico-Chirurgical Society about the same date; to this we shall subsequently refer in our concluding general remarks, and will only observe here that it seems almost certain that a chronic deposition of fibrine must have been going on for a length of time in the liver and spleen, and perhaps also in the omentum; that this coincided with degenerative disease of the kidneys, and consequent dyscrasia of the blood, and cannot be supposed to be connected with the peritonitis, which was probably itself a secondary result of the renal disease. The exudation remained chiefly in the form of a deposit, and did not advance to the development of a growth; it did not cause a true hypertrophy of fibrous tissue near which it was effused.

In a liver which we had an opportunity of examining, through the kindness of our friend, Dr. Sieveking, there existed the following condition. It contained numerous nodules and masses of a hard whitish substance, in some measure resembling the aspect of cancer. These varied in size from the area of a shilling down to much smaller dimensions, and were most definitely limited. In other parts there were irregular diffused patches. The unaffected part of the liver was extremely fatty; the arrangement of the cells exceedingly plexiform; there was a moderate amount of thickening of the Glissonian sheaths. In the defined patches there was no appearance at all of cancer cells, only an abundance of fibre-forming solid blastema, imbedding remains of hepatic cells and masses of orange-coloured pigment. Some portal canals were well nigh blocked up by the solid fibrinous masses. In the diffused patches the condition resembled more that of the above-described form of cirrhosis; the fibroid tissue spread itself out between the lobules, and caused great widening of the interlobular fissures. One of these measured one forty-eighth of an inch in width. A mesenteric gland from the same case was
hypertrophied and indurated; it consisted of a dense fibroid tissue im-
bedding a tolerable number of nuclear and cellular corpuscles having
nothing of a cancerous character, and probably being only the remains of
the normal structure.

If the morbid formations in this case should have been at bottom
cancerous, which on the whole is, we think, most probable, it affords an
interesting instance of an almost transitional stage between actual cancer
and innocent fibrinous formations or fibrous growths. The blastema,
in consequence of a low degree of vegetative power, did not develop cells
or nuclei, but remained in a condition little altered from that of simple
solidification. The shape and aspect of the masses betrayed the latent
cancerous tendency, which it is quite conceivable might have been roused
into malignant activity by some cause affecting the system generally. It
is particularly interesting to remark that the morbid change in certain
parts (the diffused patches) imitated exactly that occurring in cirrhosis.
We shall meet with some instances analogous to this one when we come
to speak of the stomach.

It seems to us pretty clearly proved by the above cases, that in certain
states of system there exists a strong tendency to the deposition of a
fibrinous or fibrino-albuminous material in the tissue of various parts;
that this solidifies, and produces a stroma or basis substance, which may
be more or less granular, or homogeneo-granular, or fibrillating; con-
taining, besides débris of the involved natural structure, a varying pro-
portion of nuclear corpuscles. Evidence to show that this deposition is
the result of inflammation, seems almost or altogether wanting; in some
instances it seems pretty certainly attributable to a deteriorated state of
blood; invariably the process is latent, and only betrayed by its secondary
effects. There seems to be an evident relation between the deposition of
fibrine in quantity, with but feeble indications of organization, and the
hypertrophied growth of normal fibrous tissue. Both are frequently
associated together, as in some of the above cases. The large quantity
of blood which the liver receives, and the comparative tardiness of its
course, account in some measure for the frequency of deposits, and of
chronic changes of the kind reviewed in this part.

Rokitansky gives no account that we can find of any change analogous
to that we are considering taking place in the lymphatic glands; neither
does Hasse: but in Andral's 'Précis d'Anat. Patholog.'* (a book which,
although belonging to an earlier period of science, we love to turn to for
its fidelity to facts, its ample collection of instructive instances, and its
sound judicious principles) we find the following description:

"Instead of owing their increase in size to a simple congestion of blood, the
lymphatic glands may hypertrophy, and then they present an increase of size and
hardness, which coincides at times with a reddish grey or brown colour of their
tissue, and sometimes with a complete decoloration of this same tissue. White
induration of the lymphatic glands constitutes what is called their scirrhous state;
one finds then in them nothing except an homogeneous tissue; hard, crying under
the scalp, of a dull white, or glistening like mother of pearl. In the midst of
this tissue appear sometimes injected vessels, which are remains of the natural
structure, and not of new formation."

* Tom. ii. p. 450.
We subjoin some of our examinations of glands in this state. The tracheal, bronchial, and lumbar glands were considerably enlarged in a man who died with quasi-tuberculous infiltration of the upper parts of both lungs with small commencing cavities. We say quasi-tuberculous, because the material of the infiltration really seemed to be intermediate between tubercle and fibrinous matter. The bronchi were inflamed, those of the left lung uniformly dilated (a further proof of the contractile fibrinous character of the infiltration), and contained cylinders of mucopuriform matter. There were numerous sub-pleural cartilaginous nodules in both lungs, and a few similar ones in the liver. The kidneys were tolerably healthy, but their capsules were morbidly adherent. The enlarged glands had very much the aspect of scirrhous, and were very firm. They consisted of multitudes of nuclei set close together in an homogeneo-granular basis-substance, with some celloid particles. Acetic acid rendered the basis-substance translucent, and brought into view many elongated nuclei. There was little or no development of fibre. A tumour of about the size of a walnut, removed from beneath the lower jaw of a young female by our colleague, Mr. James Lane, was of a grey, semi-transparent, glossy aspect; it showed under the microscope multitudes of nuclei, which disappeared on the addition of liquor potassae, and allowed a fibroid stromal substance, in which they had been imbedded, to come into view. The nuclei in this and in the preceding case were doubtless the natural elements of the gland; the cause of the hypertrophy was the fibrino-albuminous plasma which had solidified among them. We have seen several other instances of a like kind, one of which (that of J. S.) we have already recorded. It does not seem to us difficult to distinguish this condition from that produced by inflammation, tuberculous deposit, or cancer; the firmness, the non-vascularity, the absence of sue cancreaux, and the microscopic characters, furnish sufficient grounds of distinction, at least in the great majority of cases. The one instance where the diagnosis is doubtful is that of cancer with very little cell formation, such as we have noticed above; here it may be often extremely difficult to pronounce whether the hypertrophic enlargement of an absorbent gland is of a simple kind, or whether it contains a cancerous principle. The question is one, in fact, which cannot be settled by inspection of the dead structures, but only by the behaviour of living ones. The presence of unquestionable cancer in any one part would make it morally certain that the per se doubtful formations in other parts were cancerous too.

In the kidney we find certainly no decided tendency to the production of fibroid changes, but rather the reverse. Almost all the best observers have expressed themselves against the view that such constitutes any essential part of morbus Brightii. Henle is the only authority who ascribes much importance to the production of new fibrous tissue, and he is charged by Dr. G. Johnson with having mistaken the normally existing matrix for a morbid product. Even Frerichs, whom we quote, and with whom we completely agree, has given a figure to illustrate the fibroid change, which seems liable to cause misapprehension; it may be that he intends it to represent a thickened matrix, but it is certainly, as Dr. G. Johnson remarks, "very like a correct representation of the
fibrous matrix as it exists in the medullary cones." We would observe (en passant) that it is rather the fibrous character of the matrix that Frerichs doubts, than the existence of one. Mr. Simon and Virchow agree in discrediting the essentiality of any fibroid development to the production of granular kidney, and explain the appearances which have been observed as being occasioned by the remains of the basement membrane of the collapsed tubes, and the more manifest appearance of the matrix in consequence of the atrophy of the glandular structure. Frerichs remarks that, with respect to most cases, this view remains correct, but that there are, however, exceptions, in which no doubt can be felt respecting the new formation of connecting (areolar) tissue. In describing the condition of the large mottled kidney (his second stage), he speaks thus: "The exudation in the interstitial tissue is subordinate, and is often completely wanting." In sections of hardened kidney rendered translucent by some reagent, "the interstices between the tabules are seen, for the most part, just as they are in normal organs, but sometimes they are wider in consequence of infiltration of the interstitial tissue with amorphous exudation." We have ourselves observed this intertubular infiltration. With regard to the contracted granular condition of kidney, Frerichs believes that in some cases the formation of fibroid tissue takes place in a more marked manner, and in this also our observation coincides with his. He says, "the results of our examination present themselves in a somewhat different manner when a part of the exudation in the interstitial tissue of the kidneys changes itself into connecting tissue, which, by its shrinking together like a cicatrix, exerts a compressing influence on the neighbouring parts, and thereby accelerates the atrophy."

We find in this case, besides the described alterations of the tubuli and of the Malpighian bodies, which in every instance of morbus Brightii are the essential anatomical substratum, new-formed connecting tissue between the urinary canals, and around the capsules. As a general rule, this consists principally of elongated fibre-cells, among which are found completely developed fibrils, which can be isolated, and distinguished most certainly from the remains of the basement membrane of the urinary canals. The Malpighian capsules are surrounded by the new-formed connecting tissue in concentric layers, which are usually \(\frac{1}{10} \) to \(\frac{1}{100} \) line thick. Very commonly there is also a portion of the exudation organised into fibre-cells within the capsules; these cells advance up to the vascular loops of the glomeruli, and deposit themselves between these. The urinary canals are firmly enclosed by the new-formed connecting tissue; there are produced between them greater and smaller interstices, which can be followed on longitudinal sections, but best on transverse ones, of the renal substance. The interstices appear especially widened in those parts where the urinary canals have perished in larger numbers, where thus the remains of the basement membrane, the capillaries of the interstitial tissue, and the new-formed fibre-tissue are fused together into one mass. Very often great oil drops lie imbedded in the fibre-mass, arranged separately or in rows.

We have observed distinctly the formation of fibres originating from nuclei as they are figured by Frerichs, as well as numerous elongated
nuclei, and we think we have also seen something like the envelopes surrounding the Malpighian capsules which he speaks of. We feel, however, quite assured that this occurrence is only accidental, and in no wise of the essence of the disease, though we conceive it may afford a hint as to its real nature. Frerichs' remarks on the view that would class morbus Brightii and cirrhosis of the liver together as identical processes are perfectly just; he allows that there exist between them many analogies, that they concur not seldom in the same individual, and appear to have a common exciting cause in diseases of the heart, but shows clearly that they cannot be considered homologous on the preceding grounds. What kind of relation may subsist between them we shall presently inquire. It is certainly a remarkable circumstance that the kidney should be so inapt to the development of fibroid tissue, while the liver is so prone to it. To search for the cause of this difference seems useless; we can but regard it as a fact. As, however, we have seen that a process does occasionally take place in the kidney, apparently as a part, though not at all an essential one, of the degeneration constituting morbus Brightii, which is quite identical with that form of cirrhosis which gives rise to the granular liver, we may find ourselves justified in inquiring whether the essential degenerative process in the kidney has any correspondent in any of the changes allied to cirrhosis which occur in the liver. This inquiry seems the more reasonable, as it is but just to believe that between the two most important glandular organs there can hardly exist any great and absolute differences, such that the pathological history of the one should be altogether unlike that of the other.

In several of the cases of cirrhosis above recorded, we saw that the principal change consisted in the effusion of an unhealthy plasma in the substance of the lobules, which, solidifying there, caused, or coincided with, the atrophy of the normal cells. No change exactly like this occurs in the kidney, but we think the essential degenerative action of morbus Brightii manifests some very real affinity to it. We believe this consists, like the corresponding change in the liver, essentially in the exudation of unhealthy plasma, which, in the large hypertrophied kidney, is organised into the form of epithelium, distending and choking up the tubes with its abundant growth; and in the small early granulated kidney does not thus become organised, but gives rise at an early period to atrophy of the epithelium and general wasting. This is a simple expression of what is actually observed, apart from theories as to the cause of exudation. In Frerichs' view, everything proceeds from a stage of hyperaemia, plugging up the tubes with fibrinous moulds by the resulting exudation.

Dr. G. Johnson, believing with us the blood to be in an abnormal state, lays it down as a central truth, "that all the changes of structure commence in the secreting cells of the gland, and are the result of an effort made by the cells to eliminate from the blood some abnormal products—some materials which do not naturally enter into the composition of the renal secretion." He thinks that the secreting cells, striving to separate certain noxious matters, certain strange materials from the blood, "become modified in their action and nutrition, and being rapidly thrown off into the tubes, are thence removed by the current of liquid, and appear in an entire form in the urine."
Mr. Simon names the degenerative disease a sub-acute nephritis, and believes that inflammatory action, such as affects a mucous surface, causes the shedding of epithelium in quantity, and consequent obstruction of the tubes with enlargement. When they have in this way been incapacitated from fulfilling their function, atrophy subsequently occurs.

With regard to Frerichs' view we have only to say, that it seems to us repeatedly contradicted by clinical experience and post-mortem examination. From Mr. Simon's we do not much differ, except that we think the exudation is not essentially, nor in most cases at all of inflammatory origin. On Dr. G. Johnson's we make the following remarks. It seems to us sound and correct in this respect, that it regards and accounts for the commonly latent character of the disease, and does not rank it as a mere inflammation or hyperemia. But it assumes that the blood contains noxious matters which are separable, substances dissolved in the blood foreign to its natural composition, and capable, at least theoretically, of being eliminated from it. It also seems to assume, or take for granted, that the renal epithelium secretes, according to the popular idea, by filling its cells with secretion, and when they are mature allowing them to burst and the secretion to escape. The cells, as Dr. Johnson states, in striving to separate material which is unnatural to them, get altered, and are rapidly thrown off. Now, our view of the abnormal state of the blood is not that it contains certain superadded matters, which make it unhealthy by their presence, but that its own material, its albumen and fibrine, the very things which make it a nutrient fluid, are altered from their normal composition, and are diseased. This diseased blood cannot minister to healthy nutrition.

Again, we see no evidence whatever that the renal cells are in the state of health thrown off after they have filled themselves with secretion; they are, at every period of their existence, merely so much albuminous matter, and there is nothing to show that they even contain urea, uric acid, or any of the other constituents of the urine. The way in which the epithelium performs its functions is quite a mystery; but it seems at least certain that it does not do so in the way which Dr. Johnson supposes. Only thus far we think we may see that, as it must be supposed to be in process of change, and as it does not appear to pass off in the form of the secretion, it must liquefy and be resorbed into the circulating blood. If this did not occur, the channel of the tube would be quickly choked up by the accumulating growth. Something of this kind, we conceive, had occurred in the pancreas before-mentioned, whose ultimate vesicles were stuffed with epithelium. On the theory which we have just hinted at, a correspondence would exist between the change and resorption of the epithelium, and the elimination of the secretion; the two processes would take place in direct ratio to each other, and thus the imperfect performance of the secretory act might be attended with hypertrophy of the epithelium. In other cases, the non-formation, the atrophy, and degeneration of the epithelium would also concur with defective secretion; the albuminous growth not taking place, the materials of the secretion would not be eliminated. Now, these are the two instances of renal degeneration ordinarily met with, and we cannot but think they are better explained on the view we have stated above, that
the fibrine and albumen of the blood are themselves in an unhealthy state, and, therefore, cause unhealthy nutrition, than on the eliminative principle maintained by Dr. Johnson. According to his view, the kidneys are striving to do what they ought, and the business of the physician should be to assist and enable them, and it would be reasonable to hope that in due time all the materies morbi might be got rid of. On our view, the liquor sanguinis remaining in itself unhealthy, might all be eliminated without any advantage; the object clearly would be to make it better. Now there does seem to us to be some resemblance between the condition of the enlarged kidney with its infarcted tubes and that of the lobules of the liver, when they are infiltrated by solidifying exudation. The resemblance is more marked in the process itself than in its ultimate result. In both the essential fault is exudation of unhealthy plasma, but the forms into which it passes in the two cases are not the same. This probably depends on the different endowments of the tissues in the two cases.

The points in which there appears to be an affinity between the diseased states of the liver and kidney referred to, may be enumerated as follow: 1. Both changes are of the nature of degenerations, evidently not the results, as Dr. Prout recognised long ago, of any morbid action that can justly be called inflammatory; 2. Both are commonly latent, and do not attract attention until secondary phenomena begin to appear; 3. Both frequently exist together, and so far from being one the cause of the other, they both seem to be the consequence of some general state of system which is often further manifested by changes of similar kind in other parts; 4. The thickening and adhesion of the capsule of the kidney to the surface, which is a good naked-eye test of the existence of degenerative disease in doubtful cases, is very analogous to the diffused white patchy thickening which is often observed on the surface of the liver in cases of cirrhosis. We conclude, on the whole, that cirrhosis, affecting only the Glissonian sheaths, and not the lobular parenchyma, has no exact analogue in any of the forms of morbus Brightii; but that cirrhosis manifesting itself in both the above situations is very comparable to that condition of the kidney in which there is a production of inter-tubular fibrous tissue, and abnormal increase of epithelium obstructing the tubes.

The glandular structure of the stomach, consisting, as is known, of parallel tubes set vertically to the surface, has not been known to undergo any change depending on the formation of fibroid tissue among its elements. We have, however, recently observed numerous instances in which a morbid process of this kind had been going on. On making a vertical section of the mucous membrane, it was found that the tubes were indiscernible, or that only traces of them were to be seen in the form of mere opaque streaks, while all the intervening and surrounding space was loaded with nuclear particles, and granulous or indistinctly fibroid matter. By acting on the specimen with acetic acid, altered tubes may sometimes be brought into view; at others, nothing can be seen but nucleated substance, very much like that which thickens the Glissonian sheaths in cirrhosis. Drinking does not seem to be the most efficient cause of this condition, though it may probably promote it; out of 3 cases in which the patients were reported to have drank, this change had taken
place only in 1. This change appears to us to be of kindred origin and
ture to those we are now considering, and to depend, like them, on the
exudation of unhealthy plasma, and disturbance of the normal nutritive
actions of the part.

The sub-mucous areolar tissue of the stomach seems to be not unfre-
quently (according to Andral’s trustworthy testimony) the seat of chronic
thickening; and though we have no experience of this condition ourselves,
we think it will be acceptable to our readers if we quote the excellent
description given in the ‘Précis d’Anat. Path.,’ vol. ii. p. 58:

“Under the name of scirrhous of the stomach or of the intestines, a state has long
been described in which nothing else is discoverable than an increase of thickness
and density of the cellular membrane which, in the normal state, separates the
mucous membrane from the fleshy tunic. One may convince oneself of this by
following the hypertrophy of this kind of tissue through all its degrees. First, in
many cases of chronic diarrhoeas, where the mucous membrane of the great intesti-
ne has undergone different kinds of alteration, the cellular tissue which lines it is
often found much more apparent than usual; it is sometimes in a case of this kind
several lines thick; by itself alone it exceeds the thickness of all the other tunics
put together; it is hard, of a pearly white, and destitute of bloodvessels; some-
times there are seen in it fibres or laminae which have a more or less regular
arrangement; sometimes one finds in it nothing but an homogeneous texture, very
similar to that of an imperfect cartilage.”

He then argues against applying the term scirrhous to what he declares
is only a greater degree of the same structural change, but confined to a
circumscribed part; he says, in the one case, the cellular tunic has
thickened itself as 10 in a circumscribed extent; in the other, has
thickened itself as 2 more widely. We can see that this reasoning is not
conclusive, both because fibrous tumours are not quite identical with
chronic thickenings, and because mere inspection might be insufficient to
determine the non-cancerousness of a tumour. He proceeds:

“When one examines the parietes of a stomach or intestine, whose sub-mucous
acellular tissue is affected with hypertrophy, one often observes that the hyper-
trophy is not limited to this cellular tissue: in the thickness of the fleshy tissue
there appear white lines, true septa of cellulo-fibrous aspect, which, interposed at
intervals between the muscular fibres, isolate them from one another, and cause
the fleshy membrane to appear as if lobulated. These septa are continuous, on the
one hand, with the sub-mucous cellular tissue, and on the other, with the sub-
serous; they are manifestly nothing else than hypertrophied portions of the inter-
muscular cellular tissue. But this hypertrophy may become more considerable;
instead of simple lines or thin plates, it may happen that one finds scattered, in
the midst of the fleshy tunic, hard and white masses, of more or less considerable
size, which are nothing else than this same cellular tissue in a state of hyper-
trophy; these masses increase in their turn, and at length occupy more space than
the fleshy tunic, which becomes less and less evident: there comes a time when
the mass that one perceives, in the midst of enormous masses of indurated cellular
tissue, is some muscular fibres scattered widely apart, which are, in some measure,
surrounded on all sides by this cellular tissue. At last, all appearance of muscle
vanishes, and between the peritoneum and the mucous membrane nothing can any
longer be found but a collected mass of cellular tissue, either simply hypertrophied
and indurated, or having become consecutively the seat of varied alterations. In
the greater number of cases, the hypertrophy of the sub-mucous areolar tissue
developes itself as the result of a state of chronic irritation of the mucous mem-
brane, though none of the numerous varieties of this irritation induces necessarily its formation. It may happen that one finds no appreciable lesion in the mucous membrane, either because in reality this lesion has not existed for a long time, or even in other cases, because it has never existed. At other times, the mucous membrane is found either simply hyperaemic, or indurated, or softened, or even ulcerated. The sub-mucous tissue, in some cases, is thickened throughout the whole extent of the stomach. Then, on touching the walls of the stomach, one is struck by their hardness; they do not sink down, as in the physiological state; they offer so much resistance to an incision, as to 'cry under the scalpel.' Outside the hypertrophied cellular tunic, sometimes one finds the muscular tunic either in its natural state, or divided into lobules by fibro-cellular intersections, or hypertrophied; or, on the contrary, atrophied to such a degree, that no traces of it can be found. In these cases, the cavity of the stomach is usually of but small size. There are, on the contrary, other cases in which the hypertrophy of the sub-mucous circular tissue occupies only a circumscribed point of the stomach; sometimes it is one or other of its faces, sometimes it is one of its orifices. Of the different points of the stomach, the one in which the cellular tissue hypertrophies most often is, without doubt, its pyloric extremity, as well as the pylorus itself, properly so called. Sometimes the hypertrophy is exactly limited to the pyloric ring, sometimes it gradually diminishes towards the splenic region. The hypertrophy may form a tumour at the pylorus, which can be recognised through the abdominal parietes; in other cases, it is only evident internally, on opening the stomach. Before the age of thirty-five, this change in the stomach is rare; it is most frequent in the ensuing thirty years of life."

Of course, the question arises immediately, with regard to these instances of fibroid development—especially those which are of circumscribed extent—whether they are of a simple non-specific kind, analogous to such as we have before reviewed, or whether they are of cancerous nature. We think no doubt can exist that both kind of changes may take place; that most instances of general hypertrophy and thickening of the sub-mucous tissue are of a simple kind, such as are commonly ascribed to inflammatory action; that, again, some of the local thickenings, forming more or less distinct tumours, would be of the nature of fibrous growths, while others would differ from both in containing elements more or less manifestly cancerous, and in being associated with unquestionable cancerous growths in other parts. In many of these cases, the distinction would be by no means easy, as in one of the instances we have related above of fibroid masses and diffused patches occurring in the liver.

As bearing, in a very interesting manner, on this question, we quote the following cases from Dr. Bennett's work, with the remarks appended to them:

"Obs. XXI.—Mrs. S., æt. 37, dying with vomiting and exhaustion, a tumour in the left hypochondrium. On dissection, the stomach felt hard, and on opening, it was found greatly thickened throughout its whole extent, but more especially towards the pylorus, where it was nearly an inch thick. On section, the muscular coat was seen hypertrophied, two lines thick. Within the muscular coat, there was a fibrous structure of semi-cartilaginous hardness, generally half an inch in thickness, but at the pylorus, an inch thick. The mucous membrane presented a brownish colour, but was otherwise healthy."

The pyloric, dorsal, and lumbar glands were enlarged, and, to the eye and to the microscope, presented unequivocal evidence of cancer.

"A thin section of the indurated and thickened portion of the stomach was found on examination to be composed of bands of fibrous and elastic tissue, run-
ning sometimes in a straight, at others in a varied direction. Here and there among these might be perceived a very few oval and round corpuscles, varying in diameter from the 1-80th to the 1-75th of a millimetre. They contained a single round nucleus, the largest about 1-50th of a millimetre in diameter. On the addition of acetic acid, the fibrous structure generally became more transparent, presenting only faint lines or striae, whilst the filaments of elastic tissue underwent no change. The nuclei of the fibrous tissue were rendered very apparent, in the form of elongated spindle-shaped bodies. In this case, the alteration which had taken place in the walls of the stomach was wholly of a fibrous character. No cancer-cells could be detected, and such corpuscles as could be observed resembled, in all their characters, those frequently associated with filamentous tissue. At the same time, the physical characters of the thickened walls of the stomach were such as have hitherto been considered to constitute scirrhus or hard cancer. On this account, I have ventured to call the alteration cancril. It must not be overlooked, however, that whilst no cancer-cells could be found in the stomach, they existed in great numbers in the mesenteric and lumbar glands. Hence a difficult question arises as to whether the lesion in the stomach bears any relation to the cancerous formation in other structures. Are the oval corpuscles described, free nuclei?

"Obs. XXII.—A man, st. 44, dies with the same symptoms as in the above case. There was great emaciation; the stomach was much contracted; the coats were firm and resisting, and, on section, were found to be thickened universally, with the exception of a small portion towards the fundus. The cut surface of the coats of the stomach was of dirty-white colour, felt tough and elastic, and thickened to the extent of half an inch in the body of the organ; but towards the pylorus, the thickening amounted to fully three-fourths of an inch. The pyloric orifice, however, freely admitted the passage of the forefinger. The thickening involved the muscular and mucous coats [sub-mucous?] in equal proportions. The internal mucous surface of the stomach was smooth and healthy. The peritoneal covering of the diaphragm presented a milk-white appearance, glistening and indented to the feel, and uniformly thickened to the extent of half an inch. The omentum was shrivelled up, felt firm, had a mammillated appearance, and resembled a round cord, about half an inch in diameter, fringing the larger curvature of the stomach. The peritoneal covering of the intestines and of the mesentery appeared to be sprinkled over with a white granular or pulverulent substance, consisting apparently of chronic lymph, and so firmly attached, that it could not be separated without removing the peritoneum with it. In some places, the white, indurated matter was aggregated together, presenting an uniform white surface, and giving to the serous membrane an unusually firm consistence. It was evidently the same lesion that affected the diaphragm. Many of the mesenteric glands were of white colour, slightly enlarged, and very indurated, presenting on section an uniform white fibrous structure. On making a section of the thickened portion of stomach with Valentin's knife, it was seen to consist of a dense fibrous structure. On the addition of acetic acid, this became more transparent, and exhibited elongated nuclei very distinctly, at different depths. No isolated cells were to be seen. The sub-mucous tissue presented a similar structure, mingled with a few filaments of curled elastic fibres. The white substance on the diaphragm and mesentery was also composed of bundles of fibrous tissue, presenting the same appearance on the addition of acetic acid. These, however, were mixed with numerous fusiform corpuscles, and what appeared to be free nuclei, consisting of delicate oval bodies, varying in size from the 1-100th to the 1-80th of a millimetre in their long diameter, containing one granule. These bodies underwent no change on adding acetic acid. The mesenteric glands were composed of a similar fibrous stroma, containing also free oval bodies. In this observation we observe the same chronic lesion of the stomach as in the last case, associated with induration of the mesenteric glands, and partial thickening of the peritoneal coat. There are no cancer-cells anywhere to be detected; but, in the last-named situations, there are a number of transparent
Fibroid and Allied Degeneration.

oval bodies, containing one granule, unaffected on the addition of acetic acid. They are evidently the same as those seen in the fibrous structure of the stomach in the last observation. Are these oval bodies naked cancer nuclei, or are they, as previously stated, bodies connected with the fibrous tissue? This point can only be elucidated by further observations. In the meantime, I may observe, that having seen them in many deposits, undoubtedly not cancerous, as well as associated with perfect cancer-cells, I am inclined to think they cannot be regarded as necessarily connected with either.

"Obs. XXIII. contains an almost exactly similar history, with the exception of a chronic ulcer of the mucous membrane."

In Cruveilhier’s great work, livraiss. xxvii., pl. 1, there is a drawing of a stomach taken from a case very similar in many respects to the foregoing Obs. XXII. The following is an abstract of the case. M. F. L., set. 66, ill 14 months. Her illness commenced with violent pain in the stomach, especially after meals, and followed by vomiting; there was excessive emaciation, no defined tumour in the epigastrium, no special tint of the labia; vomiting occurred at intervals. At the post-mortem examination there were found sub-peritoneal miliary tubercle, and slightly prominent opaline patches; in the great omentum, which was shrunken up, there were white tubercle-like granulations, and the same in the lesser omentum; the stomach was considerably shrunken, its walls were thickened, to the greatest degree near the pylorus, the cardiac orifice was contracted; the mucous membrane had almost entirely disappeared; the sub-mucous areolar tissue, and the muscular coats, were much hypertrophied: both of these coats gradually diminished in thickness from the pyloric extremity to the cardiac. Cruveilhier thinks that the muscular and fibrous coats hypertrophied in consequence of areolar gelatiniform cancerous degeneration of the mucous membrane, and finds in the granulations scattered over the peritoneum and in the two omenta, a decisive argument of the cancerous nature of the disease. With this we cannot agree, the characters of the post-mortem phenomena are very unlike those of colloid cancer: and though only microscopic inquiry could decide, we think the probability is very strong that the affection consisted in fibroid deposit in the serous membrane, and fibroid hypertrophy in the walls of the stomach. There is then the further question, how far these changes were induced by a chronic gastritis destroying ultimately the mucous membrane? From the history of the disease, and from a comparison of this case with Dr. Bennett’s XXII., we are more inclined to regard the destruction of the mucous membrane as a secondary than as a primary phenomenon.

In Obs. XXIV. there was a tumour in the right hypochondrium, of recent appearance; the symptoms referrible to the stomach came on only about two months before death. There was much emaciation, and some old tuberculous deposits in the lungs.

"The stomach presented a perfectly white lardaceous appearance, but was exceedingly dense and firm to the feel; its form and size resembled the organ when in a state of contraction. On opening the stomach, its walls were seen to be thickened to the extent of an inch, and this throughout its whole extent, with the exception of a space the size of a five-shilling piece surrounding the pylorus, which was quite healthy. The interior surface of the organ was traversed by several grooves or channels, dividing the hypertrophied structure into clefts, at the base of which the walls of the organ were of normal thickness. The hypertrophied structure occupied the space between the peritoneal and mucous coats;
it was of a glistening white colour, of semi-cartilaginous or tendinous consistence and density, grating under the knife. No trace of the muscular coat could be observed. The mucous membrane was of a light-brown colour in some portions, and of an ash-grey, approaching to black, in others; in a few places its surface was raised so as to form papilla or granulations the size of peas, in other places it was ragged, depressed, and irregular. No ulcerations existed anywhere. Other organs healthy. On examining a thin section of the thickened coats of the stomach, it was seen to consist of a dense fibrous structure, which, on being slightly teased out with needles, was found to consist of an immense number of fusiform corpuscles aggregated together. On scraping the tissue with a knife, there was removed a pulpy substance, which in some places was found to contain, in addition to the fusiform corpuscles, a number of round or oval cells, varying in size from the one-hundredth to the one-fiftieth of a millimetre in their longest diameter. Every degree of gradation might be observed between the oval form of these cells and the fusiform corpuscles; they all possessed a small nucleus, generally about the one-three-hundredth of a millimetre in diameter; no nucleoli could be observed. On the addition of acetic acid, the whole corpuscle was rendered somewhat paler, whilst the nucleus was unchanged. The mucous surface of the stomach was covered with irregularly formed and partly broken down epithelial cells. In this observation the thickening of the stomach had proceeded to an extent which I have never seen equalled, and presented characters quite peculiar. The absence of pyloric strictures and ulceration, the obliteration of the muscular coat, and formation of fibrous tissue in the walls of the organ an inch thick, and the want of cancer cells, are sufficient to raise doubts as to this alteration being strictly cancerous. Two views may be taken of the nature of this lesion: first, that it is a chronic cancer; second, that it is a fibrous growth, resembling a simple structure of hollow viscera. (1) It may be argued in favour of the first view, that in Observation XXI. it was evidently associated with undoubted cancerous disease of the mesenteric glands, and that in all cases of scirrhus the growth is essentially fibrous. The round and oval bodies mingled with the fibres, it may be contended, are nuclei, identical in appearance and structure with the nuclei of cancer cells: and that there are many growths generally considered malignant which only possess these bodies. (2) On the other hand, and in favour of the second view, it may be urged that in structure this alteration resembled in every respect a simple fibrous growth; that if in some cases it be associated with undoubted cancer in other organs, cases also occur where it constitutes the only lesion; that the round and oval bodies are found in many structures which cannot be considered cancerous: for instance, certain exudations round corpora lutea in the ovary, and in soft polyph from the nose; that these latter are more characteristic of fibrous than of other forms of growth; and finally, it may fairly be questioned whether those tumours which only contain these bodies are really cancerous. At the same time, it cannot be denied that the lesion of which we are now speaking has always been considered as scirrhus, and as in its nature malignant. But the idea of simple stricture of the stomach, and hypertrophy of its walls, has not been thought of. When, however, we consider the numerous cases on record of so-called cancer, which have been known to arise from swallowing irritating substances, more especially acrid poisons, we can easily imagine that the effect of such may be to produce simple inflammation and thickening; the same as occurs in the intestines, urethra, and other hollow viscera. This is certainly the view I am inclined to take of this disease,—a view which becomes strengthened on inquiry into the appearance and progress of undoubted cancer of the stomach.”

While we agree completely with Dr. Bennett, that the fibroid formation in the last three cases certainly was not of a cancerous nature, we think that his comparison of this alteration to that produced by acrid poisons is scarcely just. We do not think, nor find described in Rokitansky, that
there occur any such considerable thickenings of the submucous tissue after the contact of caustic substances as were found in the above instances. Cicatrices and puckerings are often produced, but not thickening to any great extent. We subjoin Rokitansky's description of gastric fibrous cancer, and the diagnosis of it from hypertrophy of the coats, although we cannot say that we think it throws much light upon the matter.

"Fibrous cancer appears as thickening of the sub-mucous cellular stratum, which congeals into a resisting, whitish, fibro-lardaceous mass, and unites intimately with the mucous and the muscular coats. The latter becomes pale, and gradually undergoes a change, which is characteristic of all kinds of cancer. It increases in thickness, and at the same time degenerates into a pale, yellowish-red areolar tissue, the interstices of which are filled up by a slightly translucent and apparently crystalline substance. The increase of the muscular coat is uniform, whereas that of the sub-mucous cellular tissue is commonly irregular, and we thus see lobulated protuberances formed on the inner surface of the stomach. Fibrous cancer is the one most easily and most frequently confounded with hypertrophy of the gastric coats. The distinguishing signs are, the preponderating increase of substance in the sub-mucous cellular tissue, and its want of uniformity, the accompanying cartilaginous hardness and closeness of texture, the fusion with the mucous and muscular coats, and particularly the alteration in the muscular tissue just described."

If Rokitansky had given an account of the microscopic appearance of the altered muscular coat, so that the nature of the change might be more apparent, and its existence more easily recognised, we think the sign he dwells on would have had much more value. As it is, we do not see that it can aid us much in a case of doubtful cancerousness. In one instance which we have examined, where doubt might have existed as to the nature of the disease, the pylorus being surrounded by a ring of thickened and altered tissue half an inch wide, and the muscular coat being considerably thickened throughout, we were determined as to the actual existence of cancer; (1) by finding cell substance enclosed in loculi bounded by fibroid structure in the ring surrounding the pylorus; (2) by the absence of the muscular coat at the pylorus, it being apparently converted into the new tissue; (3) by the mucous membrane being in a state of sloughy ulceration over the pyloric ring, or rather the surface of the latter structure being itself exposed and disintegrating. The fact can never be too much borne in mind, at least in pathological studies, that natural groups or families are never exactly defined, so that one is completely separated from the others, but that they are marked by typical instances which hold a central position, while all the intervening space is filled up with gradations of infinite variety. Believing this, it seems quite reasonable to us that from simple chronic thickening of the fibrous tissues, we should advance to fibrous tumours, and from these again to scirrhus by an almost infinite series of intermediate instances. The characters of the types of the different classes are well marked and distinct, but in the transitional forms they are softened down and blended with one another, so that it may be almost or quite impossible to say to which class a given specimen most nearly approximates. Thus, in Dr. Bennett's 22nd Observation, there are some circumstances which seem to indicate a general tendency to the deposition of fibre-forming blastema in various parts, a condition such as one would suppose to be
connected with an unhealthy state of the blood; but again, the extreme thickening of the coats of the stomach, especially at the pylorus, is much more like the condition of growth and independent development which is characteristic of new formations, as tumours. In our case of pyloric cancer just mentioned, there was granular disease of the kidney, very considerable fibroid thickening of the capsule of the spleen, and thickening of the capsule of the liver, especially marked along the superficial portal canals, while no cancer existed anywhere else. These circumstances made us at first suppose that it was simple fibroid formation, not cancerous.

With respect to the question, how far the thickening of the sub-mucous tissue is necessarily the result of inflammation, we think Andral’s statements and Dr. Bennett’s Observations, particularly the 22nd, afford very weighty evidence in favour of the view that inflammation is not to be regarded as the sole and essential cause. Chronic gastritis, or gastric catarrh, may occur without inducing such thickening, and in some cases where this has been extreme, there has been no history or sign of inflammation. It may be remarked also, that in the numerous cases where thickening has been found coincident with inflammation or irritation of the mucous coat, there is no reason for believing that the sub-mucous tissue itself was in a state of inflammation; blood flowed, no doubt, more abundantly into its nutrient capillaries, in consequence of the active determination to the mucous membrane, and in consequence of this unusual supply the tissue became hypertrophied.* This seems the only explanation of the recurrence of thickening of the wall of the intestine in those cases where there has been no inflammation, or only of brief duration, but a chronic diarrhoea. We do not know exactly how to account for it, but it does certainly appear to us that chronic thickening of the coats of the stomach or intestines must be of much rarer occurrence among us than among our continental brethren. While we meet commonly with similar affections of other parts, while cirrhotic change in the liver is an ordinary event, we scarcely ever have seen an instance of considerable thickening of the fibrous tissue subjacent to the gastrointestinal mucous membrane. There can, however, be no lack of chronic inflammatory affections of the stomach and intestines, which certainly must be regarded as conditions powerfully predisposing to this change.

Handfield Jones.

(To be concluded in the next number.)

Review IV.

The present volume of the ‘Medico-Chirurgical Transactions’ contains some very valuable papers. One or two of these, on Phlegmasia Dolens, we have made the subject of a separate review; the others we proceed now to notice.

* Cruveilhier says, speaking of a somewhat similar case, "the thickening of the fibrous tunie of the stomach is a consequence of the long-continued fluxion on the mucous membrane."
I. A Comparative View of some of the more Important Points of the Pathology of Rheumatic and Non-Rheumatic Pericarditis. By E. L. Ormerod, M.D.

The literature of cardiac disease has been remarkably enriched by various papers in the 'Medico-Chirurgical Transactions.' Dr. John Taylor, Dr. Burrows, Dr. Barclay, and the present author, have especially contributed to advance our knowledge of this subject. In the paper before us, Dr. Ormerod goes over somewhat the same ground as Dr. Taylor, and comes to very much the same conclusions. The following table gives the chief results of the paper:

Out of 1410 cases of all kinds of disease—

1249 were non-rheumatic.
161 were rheumatic.

85 cases were pericarditic \(\{ \)
24 in the 1249 non-rheumatic cases.
61 in the 161 rheumatic cases.

In the 61 cases of rheumatic pericarditis, 24 had also pulmonary complication: viz., pleurisy in 4 cases; pneumonia in 17; pleuro-pneumonia in 3. The pulmonary complication usually followed the pericarditis, and was the result of their common cause. The mortality was 18 per cent., and this was chiefly owing to the pulmonary complication. The average age of the patients was 21 years.

In the 24 non-rheumatic cases, in no less than 13 the disease was not diagnosed; the mortality was 91·6 per cent. The causes were especially pulmonary inflammation (which, of course, preceded the pericarditis, instead of following, as in the rheumatic cases) and renal disease.

7 ensued on inflammation of the lungs, or pleura.
2 " malignant disease of the pericardium.
1 " old cardiac disease.
6 coincided with granular disease of the kidney.
4 " haemorrhage, or exhaustion.
2 " scarlatina and erysipelas, respectively.
2 inexplicable.

24

The average age was 42 years.

These facts are confirmatory, in great measure, of Dr. Taylor's researches, except that the proportion of renal cases is smaller, and that of antecedent pulmonary inflammation is larger.

II. On the Development of Torula in the Urine, &c. By Arthur Hassall, M.D. Lond., M.R.C.P.

This paper is remarkable for the extremely careful manner in which the inquiry has been worked out, and for the definite results arrived at. Dr. Hassall, after alluding to the discordant opinions held by writers as to the nature and import of torule in the urine, details a host of observations which show that two fungi occur in the urine.

1. The penicillum glaucum, which forms in acid urine, without sugar, and with or without albumen. It is destroyed by alkalinity, and its
rapidity and amount of development appeared to be in direct proportion to the acidity. It was found in 24 out of 32 urines submitted to examination. Beautiful plates of the plant in its stages of sporules, thallus, and aerial fructification, are given. We may observe that the rapid formation of this fungus in acid non-saccharine urine was described by Dr. Spencer Thomson some years ago.*

2. The sugar fungus forms only in diabetic urine, and even in cases in which the quantity of sugar is extremely small, it is distinct from the penicilium glaucum, and can be easily distinguished by the microscope. It requires acidity and free exposure to air, and will not appear, even in saccharine urine, if these conditions are excluded.

The practical importance of this paper lies in the fact, that the error of concluding the presence of sugar from the existence of the penicilium is pointed out, and that the actual existence of sugar may be proved from the appearance of the sugar fungus, even when the copper test gives no evidence.

Most beautiful plates are given of the sugar fungus, and by their means any confusion between the sporules, thallus, and fructification of the one and other plant, can be avoided. It must be remembered, however, that the two fungi can coexist.

III. *Sequel to a Case of Albuminous and Fatty Urine, published in the 'Medico-Chirurgical Transactions' for 1850, with some account of Two other Cases of so-called Chylous Urine.* By H. Bence Jones, M.D., F.R.S.

In the interesting case of chylous urine recorded in the paper referred to, a most remarkable cure seemed to be effected by the use of gallic acid. This cure, however, was not permanent; on the re-appearance of the symptoms, gallic acid was again resorted to, but with less benefit. The following table gives the particulars at a glance:

"After the original attack had existed more than 10 months, the

<table>
<thead>
<tr>
<th>Days</th>
<th>Urine was found to be chylous for</th>
<th>It then became healthy, after gallic acid, for</th>
<th>Then, in the 1st relapse, the urine was chylous for</th>
<th>It then became healthy, after gallic acid, for</th>
<th>Then, in the 2nd relapse, the urine was 6 days clear, chylous for</th>
<th>It then became healthy, after gallic acid, for</th>
<th>Then, in the 3rd relapse, the urine was chylous for</th>
<th>It then became healthy, after no gallic acid, for</th>
<th>Then, in the 4th relapse, the urine was 1 day clear, chylous for</th>
<th>It then became healthy, after gallic acid, for</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td></td>
<td>232</td>
<td>2</td>
<td>80</td>
<td>15</td>
<td>237</td>
<td>2</td>
<td>16</td>
<td>125</td>
<td>534</td>
</tr>
</tbody>
</table>

"During and after the original attack the quantity of gallic acid taken was about 5 ounces

<table>
<thead>
<tr>
<th>1st relapse</th>
<th>2nd relapse</th>
<th>3rd relapse</th>
<th>4th relapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 drachms.</td>
<td>3</td>
<td>none</td>
<td>3</td>
</tr>
<tr>
<td>5½"</td>
<td>30</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Total amount of gallic acid taken, nearly 40 ounces." (p. 90.)

The gallic acid is, therefore, Dr. Jones remarks, no specific, though its beneficial action as an astringent is obvious. Tannic acid was used, but caused more nausea and headache than the gallic acid.

In the second case, the gallic acid evidently was of little use, but tannic acid and alum were of greater benefit. The disease, as usual, was greatly augmented by fatigue.

The third case, in which only one dose of gallic acid was taken, is recorded to show the length of time the disease can last. The first appearance of the chylous urine was in 1827; with various remissions, it was still chylous in 1853, when the last record of the case was made. Out of these 26 years, the urine had been chylous for 13 years. From 1846 it has been constantly chylous. In 1851 the patient (a lady) was aged 57, and weighed 14 stone. There was pain over the kidneys, but otherwise the health was good.

IV. On Degeneration of the Placenta at the End of Pregnancy. By Robert Druitt, M.R.C.P.

We have elsewhere referred to this important paper.

Mr. Humphry relates a very interesting case of hypertrophy of the tongue cured by operation, notices others which have occurred, and sums up the literature of the subject. The following extract embodies the principal points of interest:

"From the cases above mentioned, and those described by other writers, all of which present great similarity in their general features, we learn that the disease is one of sufficiently definite character to merit special notice. Though it sometimes originates in an inflammatory affection, it often appears to be independent of any such cause. It commences usually in childhood or early infancy, or is congenital. If it be early attended to, it admits of an easy cure by compression. If it be allowed to take its course, the prolapsing organ increases; at first, in greater proportion than the growth of the child. After a time it would appear to become stationary, or to grow only with the growth of the body, for in none of the cases, even those in which the deformity had existed for many years, had the tongue attained to greater size than one's fist. . . . Spontaneous cure rarely, if ever, takes place after the prolapse has been established. The operation of removal is not attended with much danger, and the remaining portion of the tongue shows no disposition to enlarge again." (p. 126.)

Mr. Humphry has collected altogether 25 cases; 6 of which were treated by pressure, 7 by ligature, and 12 by amputation. In one case of ligature and one of amputation, the results were fatal; in all, the disease was cured.

To these cases, Mr. Hodgson supplies another, successfully treated by ligature; and Mr. Teale another, successfully treated by pressure.

VIII. Case of Popliteal Aneurism treated by Compression. By J. Monro, M.D., Battalion Surgeon, Coldstream Guards.

In this case, moderate pressure was made on the femoral artery below Poupart's ligament, by means of an apparatus. As this gave rise to great
uneasiness, it was removed, and the artery, below the origin of the profunda, was compressed by the hand, a succession of assistants being provided, for eight hours in each day. Three days afterwards, the pressure was reapplied, the point of pressure being changed from time to time. In seventeen days the sac ceased to pulsate; in about an hour, however, pulsation began to return, and the instrument was reapplied for two days. The patient was kept in hospital for some time, but was at length discharged. He was re-admitted in seventeen days, with evident signs of aneurism of the abdominal aorta, of which he soon after died. On dissection, the femoral and popliteal arteries were of the natural size until opposite the centre of the popliteal space; the sac was obliterated, and so was the artery below it as far as the subdivision into the anterior and posterior tibial arteries. The profunda and all its branches were enlarged; the anterior tibial was as large as the posterior, which latter was of its natural size. The peroneal, the muscular branches of the semi-membranosus, vastus externus, and biceps, were all large, and so were various other vessels, for a full account of which we refer to the paper. The femoral vein was perversive; the popliteal was obliterated for the space of three inches by the pressure of the sac.

The chief point of interest in this case was the very moderate pressure sufficient to cause obliteration of the sac.

IX. A further Account of Fatty Degeneration of the Placenta. By Robert Barnes, M.D.

The review by Dr. Barnes, in our present number, on placental diseases, renders it unnecessary for us to analyze this paper.

We have reviewed this paper elsewhere.

XI. On some Points in the Pathology of Yellow Fever. By Croker Pennell, M.B. Loud., Physician to the Livramento Hospital, Rio de Janeiro.

It is well known that many patients in yellow fever die very suddenly, and at a time when the severity of the general symptoms had caused no apprehensions of so rapidly fatal a termination. Dr. Pennell, being informed by a French physician, Dr. Lacaille, that in every case in which this occurred, large fibrinous clots were found in the heart and large vessels, has paid especial attention to the formation of ante-mortem clots, and affirms that, in 50 autopsies, clots were found in every case except those in which depletion had been largely employed. He assigns the following reasons for supposing that these clots had formed before death:—
1. They were found quite "bloodless and perfect," within an hour after death; 2. A peculiar rumbling or churning sound replaces, for some hours before death, the natural cardiac sounds; 3. Fibrinous clots are found in other organs; 4. Without the supposition that these clots form during life, the phenomena are inexplicable.
With respect to these arguments, we may at once dismiss the fourth, as begging the question; the first argument is not so convincing as Dr. Pennell supposes, since these decolorized clots do certainly form, in some cases, very rapidly after death. The alterations in the cardiac sounds are not detailed with much precision, and we should hesitate to admit the ante-mortem production of clots on this evidence alone. With respect to the third argument, the "other organs" turn out to be merely the ureters, which in two cases were found blocked up with fibrinous coagula. This is an interesting observation, but we do not see how the formation of coagula in the pelvis and ureters, during the hemorrhage from the kidneys (which, we presume, occurred in these two cases), can be held to justify any argument as to the cardiac clots.

XII. On the Treatment of Obstructed Strictures of the Urethra by External Incision upon a Grooved Director. By James Syme, Esq., F.R.S.E., Professor of Clinical Surgery in the University of Edinburgh.

We reserve this valuable paper for future consideration.

XIII. Further Researches on the Pathology of Phleymasia Dolens. By Robert Lee, M.D., F.R.S.

This paper has been elsewhere reviewed.

XIV. On the Use of Two Needles at once in certain Operations on the Eye, especially in those for Capsular Cataract and Artificial Pupil. By William Bowman, Esq., F.R.S.

The use of two needles at once in certain operations on tough capsular and membranous cataracts, will probably turn out to be one of the most important improvements lately introduced into the operative part of ophthalmology. For a description of the instruments and of the operation, we must refer to the paper itself.

XV. Analysis of the Cases of Injuries of the Head, examined after Death in St. George's Hospital, from January, 1841, to January, 1851. By Prescott Hewett, Esq., Assistant-Surgeon to St. George's Hospital.

In the present paper, only scalp wounds without fracture, and cases of fracture, are considered. Other injuries to the head are left for a future communication.

1. Scalp Wounds without Fracture.

Thirty-three fatal cases occurred in ten years. The total number of scalp wounds admitted during that time is not mentioned. Of the 33 cases, 10 died from causes unconnected with the wound, and 23 from sequences of the wound. These sequences were, diffuse cellular inflammation, erysipelas,
inflammation of the membranes or of the brain, suppuration between the bone and the dura mater, abscess in the brain. The relation of these various lesions is not very clearly given. We quote Mr. Hewett's own words:

"Diffuse cellular inflammation occurred in 17 cases, and in 19 this was accompanied by erysipelas. This inflammation presented itself under the occipito-frontalis muscle, in the shape of simple oedema, of lymph and pus, or of suppuration and sloughing, undermining and, in one instance, completely separating the scalp from the parts below. In 4 cases, there was also diffuse inflammation of the neck, which spread down to the mediastina in 2 cases, and it was accompanied by oedema of the larynx in 2. The diffuse inflammation, running on to sloughing, was in 2 cases followed by hæmorrhage, which in 1 was of a very severe character.

"In 12 cases, no traces whatsoever of inflammation were found, either in the membranes or in the brain; of these, the diffuse inflammation proved fatal in 3; and in the other 9, death was caused by purulent infection: in addition to the injury of the head, there was in 1 of these simple fracture of the internal malleolus, and in 1 there was fracture of several ribs.

"In 10 of the remaining 11 cases, inflammation existed about the membranes or the brain, in 8 of which suppuration, more or less extensive, was found between the bone and the dura-mater; 5 of these were complicated with purulent infection. In addition to the injury of the head, there was also in 1, compound fracture of the leg; and in 1, fracture of the spine, but this was not accompanied by any symptoms.

"In 1 case, sloughing of the dura-mater, without any injury to the internal part of the bone, had taken place opposite to a large abscess, which originally had begun in the structure of the brain.

"In all these cases, the bone was exposed; in 4, the exposed bone was discoloured, being of a dark, or of a yellow tinge; in 5, matter was detected in the diploe. The trephine had been applied in 3 of the cases of suppuration between the bone and the dura-mater, as well as in that of the abscess of the brain.

"These 23 patients were, for the most part, persons of dissolute habits, and many were addicted to hard drinking." (pp. 322, 23.)

The suppuration between the bone and the dura-mater was generally circumscribed; in the parietal region, however, it followed the branches of the middle meningeal artery, and reached even the foramen spinósum in 3 out of 8 cases. Contrary to the experience of Mr. Pott, the suppuration was never found to be confined to the outer surface of the dura-mater. The trephine was applied in 3 cases. Mr. Hewett mentions that, under such circumstances, he has never known the application of the trephine to be successful.

2. Fractures and Separation of the Sutures.

In the ten years, 78 cases of fracture of the skull were examined; 56 were simple, and 22 were compound; extreme separation of the sutures co-existed in 14 cases. In the 56 cases of simple fracture, there was only one instance in which the injury was confined to the spot struck. In the 22 cases of compound fracture, in no less than 9 the injury to the bones was strictly limited to the original seat of the injury.

With respect to the direction of fractures, the following remarks are interesting:

"Practically, the skull may be divided into three different zones or segments; an anterior zone, formed by the frontal, the upper part of the ethmoid, and the
fronto-sphenoid; a middle zone, formed by the parietals, the squamous, and the anterior surface of the petrous portions of the temporals, with the greater portion of the basi-sphenoid; and a posterior zone, which is formed by the occipital, the mastoid, and the posterior surface of the petrous portions of the temporals, with a small part of the body of the sphenoid.

"Fractures of the skull, beginning at the seat of the blow, and thence spreading into the base, are oftentimes, it will be found, limited exactly to the bones belonging to each of these three different zones." (p. 338.)

Bleeding from the ear, in severe injuries of the head, is a valuable diagnostic sign of fracture of the base, implicating the petrous portion of the temporal bone. The discharge of watery fluid from the ear occurred in 3 cases out of the whole number. Two additional cases are referred to as having lately been seen by Mr. Hewett. The age of these five persons was respectively 42, 46, 43, 63, and 52; so that this discharge of watery fluid would not, then, appear to be more common in young persons than in adults, as is often asserted.

Mr. Hewett has no doubt that in most cases, but not in all, this fluid is the cerebro-spinal fluid.

We strongly recommend the perusal of this very practical paper, which our limits prevent us from considering more at length.

XVI. A Case of Perforating Ulcer of the Oesophagus, which caused Death by Penetrating the Aorta. By W. H. Flower, Esq., Curator to the Middlesex Hospital Museum.

An extremely good description of a most uncommon case, the nature of which is indicated by the title of the paper. The ulcer was seated about 3 inches above the cardiac orifice; the oesophagus and aorta were only loosely connected; the distance between the lining membranes of each tube was 7 lines. The patient died from profuse haemorrhage; the blood was partly vomited, partly filled the stomach and the duodenum.

XVII. On Small-Pox and Vaccination. Analytical examination of all the cases admitted during 16 years at the Small-Pox and Vaccination Hospital, London. By J. F. Marson, Esq.

It is extremely difficult to give an accurate account of this elaborate paper without inserting the tables. We must content ourselves, then, with a few extracts. The average annual mortality in the Small-Pox Hospital has been 21 per cent.; the range being from 15 to 29 per cent. Out of the whole number (5797) of small-pox patients in the 16 years, 47 cases were after a previous attack of small-pox, or inoculation (1 per cent.); 3094 cases (53 per cent.) were after vaccination. The mortality among the various classes was as follows:

In 2654 unprotected cases, 35\frac{1}{4} per cent. died.
In 14 cases protected by previous small-pox, none died.
In 27 cases protected by inoculation, 23 per cent. died.
In 2787 cases protected by vaccination, 5\frac{1}{4} per cent. died.
In 290 cases said to have been vaccinated, but who were without cicatrices, 21\frac{3}{4} per cent. died.

It is worthy of notice, that among those who had been vaccinated,
but bore no cicatrices, the mortality was much greater than among those whose arms showed good cicatrices.

Natural small-pox is most fatal in infancy and in advanced life: under 5 years it is 50 per cent.; from 5 to 20 years it is considerably less; it increases after 20 years, and after 30 exceeds the mortality of infancy; after 60 years scarcely any escape.

Dr. Marson believes that vaccination in infancy is protective to puberty against the fatality of small-pox; how far it is protective after this time is not very easy to say, but it appears that among those who have been vaccinated with great care, the mortality from subsequent small-pox never exceeds 1 per cent.

We reserve this interesting paper for separate consideration.

XIX. On Intermittent Diabetes, and on the Diabetes of Old Age. By H. Bence Jones, M.D., F.R.S.

Seven cases of diabetes are related, in which the attacks of diabetes were transitory and recurrent. Immediately before and after the sugar disappeared, there was an excess of urea; free uric acid and oxalate of lime appeared in the urine. This seems to indicate, the author thinks, "the passage of diabetic indigestion into acid indigestion."

Several cases of diabetes in persons aged over 70 are related, though there is nothing that calls for special remark. At the end of the paper Dr. Jones observes that, from some experiments not yet published, he finds that porter contains from 20 to 40 grains of sugar in every ounce; ale from 12 to 130 grains; port wine contains a good deal of sugar; sherry a less quantity, and claret none at all.

XX. An Account of a Dissection of an Ovarian Cyst, which contained Brain. By Henry Gray, F.R.S.

In this singular case an ovarian cyst contained a brain-like substance, which, on microscopic examination, was found to present all the charac-
ters of true brain; there were nerve tubules, nuclei, and nucleated vesicles.

XXI. An Account of an Instance of Remarkable Deformity of the Lower Limbs. By George Viner Ellis, Esq.

This is a careful dissection of the body of a man who was exhibited in London some years ago, and who, in spite of unusual deformity, was possessed of extraordinary strength. The chief peculiarity was the almost entire absence of one femur, and the consequent changes in the muscles and in the course of the femoral artery.
XXII. Observations on Cystic Disease of the Testicle. By T. B. Curling, F.R.S.

Mr. Curling thus sums up the facts of his paper:

"1. Cystic disease of the testicle occurs in two forms—an innocent and a malignant.

"2. Both forms are the result of morbid changes in the ducts of the rete testis, this part of the gland being the sole seat of the disease.

"3. The innocent form of the cystic disease is characterised by the presence of tessellated epithelium in the cysts.

"4. The malignant form is characterised by the presence of nucleated cancer cells in the cysts.

"5. Enchondroma occurs in both forms of the cystic disease, and almost constantly in old cases of the innocent, the cartilage being developed within dilated tubes." (p. 457.)

We should doubt whether the diagnosis between the two forms can be made thus easily by the microscopic characters alone.

XXIII. Additional Experiments on the Excitability of Paralyzed and Healthy Limbs by the Galvanic Current. By R. B. Todd, M.D., F.R.S.

Fourteen cases of hemiplegia are related, in which very careful experiments were made on the excitability of the paralyzed, as compared with the non-paralyzed, muscles. The result was, that the excitability of the paralyzed muscles was impaired in all but three cases: in two of these the greater excitability of the paralyzed muscles was manifested only by the inverse current. In each of these 3 cases the paralyzing lesion was "more or less of an irritative kind."

The results were the same, whether the trough or the coil machine was used.

Dr. Todd believes, and with apparent justice, that these experiments, added to those of Duchenne and Brown-Séquard, confirm the inferences drawn in his former paper on this subject, and are opposed to the statements of Dr. Marshall Hall, that the excitability of paralyzed muscles varies according to the seat of the lesion, being increased when the influence of the brain is cut off, and the spinal cord is uninjured, and being diminished when the cord itself is diseased.

Review V.

There is no merit in what are called simple views of disease, its causes and remedies—for the plain reason, that they are not true. Neither in health nor disease is "the paragon of animals" a simple machine, in the
ordinary sense of the word. It is true, that the means employed are admirably and economically adapted to the end to be attained; that there is no superfluous complexity, no needless combinations; but still, as a whole, the functions of the human body are complex, interwoven, and interdependent. So it is in disease: causes act and react, are combined and multiplied; apparently simple effects may result from complex causes, compound effects from simple causes; the interdependence of organs involves their mutual suffering, and even the organ primarily affected may have its distress increased by reflex action from other organs it has secondarily disturbed. Thus it is that any attempt at a simple solution of these varied phenomena must necessarily fail: such theories carry within them the cause of their own destruction. The non-recognition of the complex phenomena of disease, gave their erroneous character to the successive systems of solidists, humoralists, to the mechanical and chemical schools, the school of Broussais, &c.; each contained a portion of truth, but became an error because of the portion it omitted. Modern eclecticism, it is to be hoped, will avoid this one-sided blunder, yet it is very necessary that we should be reminded of it occasionally, so as to be continually on our guard.

We have been led into this train of thought by the perusal of the two valuable papers placed at the head of this article, written upon a disease which has given rise to very different, if not opposite views, and which is not altogether explicable by any single theory hitherto broached.

It is unnecessary to enter upon a description of the disease which has been called Phlegmasia Dolens, as it is, doubtless, sufficiently well known to our readers; we shall confine ourselves, for the brief space allotted to us, to a consideration of its pathology, which is of comparatively modern origin. We may dismiss at once the older belief, that it arises from a metastasis of the milk or lochia, as being a mere fancy; and even the more feasible proposition of its being inflammation of the cellular tissue, the lymphatics, or the entire structures of the limb, as being guesses rather than the result of pathological inquiry. The credit of the first step towards a discovery of its true nature is due to the late Dr. Davis, professor of midwifery in University College, London, who, in 1817, examined the condition of the veins of the limb in a patient who had died of this disease. He found—

"The femoral vein from the ham upwards, the external iliac and common iliac veins as far as the junction of the latter with the corresponding trunk of the right side, were distended, and firmly plugged with what appeared, externally, a coagulum of blood. The femoral portion of the vein, slightly thickened in its coats, and of a deep red colour, was filled with a firm, bloody coagulum, adhering to the sides of the tube, so that it could not be drawn out. As the red colour of the veins might have been caused by the red clot everywhere in close contact with it, it cannot be deemed a proof of inflammation. The trunk of the profunda was distended in the same way as that of the femoral vein, but the saphena and its branches were empty and healthy. The substance filling the external iliac and common iliac portions of the vein was like the laminated coagulum of an aneurismal sac, at least with a very slight mixture of red particles: the tube was completely obstructed by this matter, more intimately connected to its surface than in the femoral vein—adhering, indeed, as firmly as the coagulum does to any part of an old aneurismal sac, but in its centre there was a cavity containing about a tea-
spoonful of a thick fluid, of the consistence of pus, of a lightish-brown tint, and a poulaceous appearance. The uterus, which had contracted to the usual degree at such a distance of time from delivery, its appendages and bloodvessels, and the vagina, were in a perfectly natural state. There was not the slightest appearance of vascular congestion about the organ, nor the slightest distension of any of its vessels. Its whole substance was, on the contrary, pale, and the vessels everywhere contracted and empty.”

From this period, Dr. Davis taught that phlegmasia dolens was owing to inflammation of the crural veins, although his paper was not published until some time afterwards. In France, MM. Bouillaud and Velpueu entered upon the investigation; and, in 1823, the former published cases with dissections, to show that the crural veins were obliterated in women who suffered from this disease after delivery. In 1824, the latter in his paper, included the symphyses, the veins, and the lymphatics, as forming the seat of the disease. In 1826, Mr. Guthrie threw out a suggestion, that perhaps the crural phlebitis might be merely an extension of inflammation from the veins of the uterus; and in 1829, the co-existence of uterine and crural phlebitis in puerperal phlegmasia dolens was demonstrated by the careful and minute observation of Dr. Robert Lee. He traced the diseased crural veins upwards to the uterus, and found the veins of that organ equally diseased, and this not in one case only, but in several; from which he inferred—

“That inflammation of the iliac and femoral veins gives rise to all the phenomena of that disease; and that, in phlegmasia dolens, the inflammation commences in the uterine branches of the hypogastric veins, and subsequently extends from them into the iliac and femoral trunks of the affected side;”

And further, that this propagation by extension is an essential characteristic of the disease; for in commenting upon two cases of Mr. Wilson’s, in which the veins of the uterus contained pus, he observes:

“As none of the symptoms of phlegmasia dolens were present in either of these cases, and as neither pain nor swelling occurred in the left inferior extremity of the patient whose case I first detailed, though the common and internal iliac veins were both completely impervious, it would seem to follow, that it is essentially requisite that the inflammation should extend from the iliac into the principal veins of the extremity.”

The paper by Dr. R. Lee, under our notice at present, is, in fact, a continuation of his former one, and contains “the results of the last twenty-four years’ experience.” It is in all respects a most valuable contribution to our knowledge of the disease, and such as few but Dr. Lee could have supplied. In addition to the 13 cases in his former papers, the author has given 43 cases of phlegmasia dolens: in 9, the post-mortem examination is described; in 20, the history of the case is given, but as the patient recovered, further investigation was impossible; 9 other cases are detailed in which phlegmasia dolens was unconnected with pregnancy or parturition, but in which inflammation of the uterine veins co-existed; and in 5 other cases, the inflammation of the veins of the lower extremities resulted from injury or disease. Nothing can be more definite than the establishment of the fact of the co-existence of crural and uterine

* Letter from W. Lawrence, Esq., in Davis' Obstetric Medicine, vol. ii. p. 1024.
† Medico-Chirurgical Transactions, vol. xv. part 2, p. 393.
phlebitis in those puerperal cases where a post-mortem examination was permitted; and Dr. R. Lee concludes, that

"The cases and dissections of the distinguished pathologists previously referred to, and those contained in this and my previous communications to the Society on phlegmasia dolens, prove, in the most conclusive manner, that inflammation of the iliac and femoral veins is the proximate cause of the disease; and that, in puerperal women, the inflammation commences in the uterine branches of the hypogastric veins. It has likewise been demonstrated by morbid anatomy, that phlegmasia dolens is a disease which may take place in women who have never been pregnant, and in the male sex, and that, under all circumstances, the proximate cause is the same."*

In the present day, when the pathology of the fluids, and especially of the blood, is exciting so much attention, it could not be expected that this view of the disease would pass unquestioned, particularly when it is considered that this explanation, applied to a certain class of cases, is at least incomplete, and of another, it is no explanation at all; accordingly, Dr. Mackenzie has entered the field with great zeal and ability, and, by an elaborate series of experiments, has endeavoured to prove that phleghmasia dolens is a blood-disease, and that the affection of the veins is "of secondary importance, or an effect rather than a cause of disease."

We shall lay before our readers a very brief account of these experiments, or, rather, of the conclusions deduced from them by the author. The first question Dr. Mackenzie attempted to decide was, whether phlegmasia dolens could be produced by artificial irritation or injury of the veins, by ligature, by chemical or mechanical irritation of the lining membrane, or by compression. 1. A ligature was applied to the iliac vein of dogs which were killed at intervals of twenty-four, seventy-two, and ninety-six hours, or nine days afterwards. Evidences of inflammation of the veins were found at the seat of the ligature, but limited to its immediate neighbourhood, and more marked in those dogs which had been spared the longest after the operation; whereas the general symptoms, which were slight and transient, were best developed immediately after the ligature had been applied. The swelling of the limb was soft and inelastic, without tenderness on pressure. 2. The iliac veins were irritated by a strong solution of nitrate of silver, applied upon lint, or by a bougie introduced and maintained there for several days: with the former, there was little constitutional disturbance, the leg was swollen and inelastic, but could be moved; these symptoms soon began to subside, and the dogs appeared quite well. On dissection, ten days afterwards, the external and common iliacs were filled with a fine coagulum, but which was confined to the irritated portion of the vein. 3. A metallic compress, applied to the right femoral vein of a dog for six hours, gave rise to neither swelling nor loss of power; and at the compressed part only, the coats of the vein were thickened, indurated, and opaque.

"Then, as the result of obstruction, inflammation, ulceration, and total division of the common iliac vein, produced by the application of the ligature, we fail to observe more than the necessary effects of mechanical and temporary obstruction of the vessel and of inflammation of it, limited to the immediate seat of ligature. There is an absence of any constitutional fever or disturbance; the swelling of the

limb is neither elastic nor abiding, but simply edematous, and there is no impairment of either its sensory or motor functions.” (p. 181.)

The author next proceeds to determine how far irritation or injury of the external coats of veins is connected with the causation of obstructive phlebitis. Ligatures, chemical irritants, and mechanical contusion, were the tests employed, and the following are Dr. Mackenzie’s conclusions:

“1. That obstruction of veins is not a necessary consequence of all forms of venous inflammation, and, in particular, of that which follows upon irritation or injury of their external coat.

“2. That inflammation of veins thus excited is not disposed in a healthy animal to extend itself indefinitely, but, on the other hand, is strictly limited to the immediate seat of such irritation or injury.

“3. That the external coat of veins very readily reacts under the influence of irritating causes; this being, in these cases, morbidly vascular, covered with inflammatory lymph, and adherent to the surrounding tissues.

“4. That such reaction, followed by considerable inflammation of the external coat, may occur without giving rise to any corresponding inflammation of the lining membrane: for, in these cases, the latter was healthy, and the vein consequently pervious, or at least free from any inflammatory exudation.” (pp. 186, 187.)

We now arrive at a very important question: suppose an irritant be introduced into a vein, are the stagnation and coagulation which result, to be attributed to the effusion of coagulable lymph by the inflamed vein; to the action of the inflamed vein upon the blood; or to the action of the irritant primarily, upon the blood, and secondarily upon the vein, inducing phlebitis? To determine this point, a portion of the vein, emptied of blood, was isolated by two ligatures, and an irritant applied to it, and then removed, and the current of blood allowed to flow through the irritated vessel. The results of the experiment were very decisive: coagulable lymph was not poured out, but the blood was speedily coagulated to an extent commensurate with the irritation, and that not from any injury of the vessel. The coagulation must have been the result of some impression produced upon the blood by the lining membrane thus irritated, and not from any independent action on that fluid, insomuch as it was excluded during the application of the irritant. All the phenomena of obstructive phlebitis appear to have been produced in the coats of the veins, and in the coagula contained within them, but restricted to the space occupied by the irritation, the blood and veins beyond having been found healthy.

As it has been stated that coagulation might take place spontaneously in the vessels from extreme exhaustion, physical or vital, or be caused by the direct action of pus or other morbid matters upon the blood, Dr. MacKenzie made a series of experiments to decide each point. Dogs were repeatedly bled and kept low, but without any coagulation taking place; and even when a ligature or compression was added, the coagulation was limited to the seat of injury, so that we may dismiss this from the category of causes.

Dr. MacKenzie has arrived at a different conclusion from that of Mr. Henry Lee as to the effect of pus in promoting coagulation of the blood, or rather, he adopts a different explanation of the coagulation so produced; but into this question we shall not enter at present.
So far, then, as we have gone into these experiments,

"It would thus appear that whilst phlebitis may occur in a variety of forms without giving rise to extensive obstruction of veins—whilst such obstruction is not producible by mechanical injury of these vessels, by irritation of their external coat, by actions primarily taking place in the blood, and does not arise from the effusion of lymph into their interior—it is yet readily produced by irritation of their lining membrane; that the obstructing material is not lymph, but blood; and that this is immediately coagulated in the vein by some impression made upon it by its lining membrane when thus morbidly irritated or excited." (p. 203.)

Further experiments seemed to prove, also, that extensive obstruction of veins may be excited by the passage of irrigating fluids over their lining membrane, without actual inflammation being excited, from which Dr. Mackenzie concludes that phlebitis is not a primary condition of venous obstruction, but rather a consecutive phenomenon.

Having thus settled what we may call the preliminary questions, the author, in the last place, proceeds to inquire how far the irritation of the lining membrane of the veins, which gives rise to the obstruction, and which may occur without actual injury of these vessels, may be produced by a general vitiation of the blood alone. An experiment of great interest is detailed: the right femoral vein was ligatured on June 16th; at first there was some little edema, which quite disappeared in seventy-two hours, and the limb appeared perfectly natural. The left femoral vein was then ligatured, and above the ligature one drachm and a half of lactic acid, diluted with ten drachms and a half of tepid water, was injected towards the heart. In twenty-four hours the corresponding extremity (the left) was greatly swollen throughout, its temperature was raised, it was painful on pressure, and the dog moved it with difficulty. It continued in much the same state, until it was killed.

"The iliac veins of the left side were obstructed with a firm coagulum, which extended somewhat into the cava, whilst the femoral and all the principal veins of this extremity were found similarly obstructed. On opening these vessels it was found that the external and common iliac veins were filled with a firm coagulum, which was throughout adherent to their lining membrane, and, on removing it, some red gelatinous-looking matter was left upon the interior of the veins, which, for the most part, could be readily brushed away, but here and there portions of it were firmly adherent. The colour of the lining membrane of these veins was somewhat redder than natural, but the membrane itself was, for the most part, smooth and polished. At its junction with the femoral, the coats of the external iliac vein were thickened and opaque, and it did not collapse on being cut through. The left femoral vein was filled with a dark coagulum, which was somewhat soft and granous immediately below the ligature, but which elsewhere was of firm consistence. It was slightly adherent, and, on removing it, a little gelatinous-looking matter was left upon the lining membrane, which could be easily brushed away. This vessel was neither thickened nor opaque, nor was any increased vascularity of its coats observable. The principal branches of the femoral vein were all filled with firm coagula, but these were very slightly, if at all, adherent to the interior of the veins. On making transverse sections of the different coagula found in the veins, it was observed that their exterior was much firmer than their interior. The former consisted of firmly coagulated blood, the latter of little more than a granous semi-fluid material. Hence it seems reasonable to conclude, that coagulation had commenced at the circumference of the coagula, where the blood was in contact with the lining membrane of the veins." (pp. 207, 208.)
In this case it is worthy of notice, and we shall revert to it by and by, that the morbid appearances in the iliac and femoral veins may be said to have been continuous, although they could not have been propagated by extension, inasmuch as a ligature interposed. Nor did the morbid condition of the veins depend upon the operative proceedings, for a similar operation, but with the injection of tepid water only, produced no effect whatever. This experiment was repeated in a variety of ways, in different animals, with very similar results:

"In all, considerable obstruction of veins followed the track of the irritant in its progress onwards towards the heart, whilst in the majority there was also obstruction of the distal veins of the extremity, which, consistently with the results of preceding experiments, could only have arisen from the action of the irritant after it had gone the round of the circulation." (p. 209.)

The final conclusions at which Dr. Mackenzie has arrived we shall give at length:

"1. That inflammation of the iliac or femoral veins will not alone give rise to all the phenomena of phlegrmasia dolens.

"2. That the extensive obstruction of the veins met with in this disease, is not producible in a state of health by merely local causes, such as injury or inflammation of these vessels.

"3. That irritation of the lining membrane of veins independently of such local injury or inflammation, may, under certain circumstances, give rise to obstruction of these vessels, and this to an extent commensurate with that of the irritation which may have been excited within them.

"4. That such irritation of the lining membrane of veins, giving rise to obstruction, and consecutively to all the phenomena of obstructive phlebitis, is therefore to be sought for rather in a vitiated condition of the blood, than in any local injury, inflammation, or disease of the veins." (pp. 212, 213.)

We have thus briefly, but we trust correctly, sketched the outline of Dr. Mackenzie's experiments, and have given the inferences he draws from them; we have rather confined ourselves to enumerating the broad principles involved than to investigating their details; and with regard to their analogical value in explaining the phenomena of disease, we must beg our readers to bear in mind that they are subject to two unavoidable but very serious drawbacks. In the first place, the subjects of these experiments were healthy, but the patients in whom phlegmasia dolens occurs are either the subjects of actual disease at the time, or in that condition of body which strongly predisposes to disease; causes, therefore, which might be innocuous, or nearly so, to one class, might be expected to act most injuriously upon the other;—so far, we think, the analogy fails. Secondly, the mechanical irritant, in Dr. Mackenzie's latter experiments, differed unavoidably from the impure constituent of the blood in diseases depending upon deterioration of this fluid: it is not easy to determine how much this circumstance detracts from their analogical value, but certainly a large deduction must be made. It has also been suggested, that such experiments on animals might differ in results from similar experiments on human beings; but of this we do not feel quite sure. But allowing for these drawbacks, we may certainly admit, as proved by these experiments, that in healthy subjects irritation of the veins, so as to excite phlebitis, will not give rise to phlegmasia
Reviews.

dolens, unless, at the same time, the blood be vitiated, primarily or secondarily. At the conclusion of his paper, Dr. Mackenzie has endeavoured to support his views, and in many respects successfully, by a minute and careful analysis of a hundred cases, collected from various sources.

Having entered thus far into the subjects of these two excellent essays, let us now see how the question stands, and whether it is possible to arrive at any definite conclusion.

Dr. R. Lee conceives the disease—phlegmasia dolens—to be, primarily and essentially, phlebitis, which, in puerperal cases, is propagated by extension from the inflamed uterine veins; and he appeals for proof to the uniform results of his dissections, and to the characteristic symptoms of the disease. Dr. Mackenzie, on the other hand, thinks that the disease depends primarily upon a vitiated condition of the blood, which gives rise to venous obstruction, and afterwards to phlebitis, but that the phlebitis is rather consequent upon the obstruction than the cause of it; and he appeals to his experiments for proof, and to his analysis of cases for confirmation. Dr. Lee regards the disease as a local affection; Dr. Mackenzie maintains that it is a constitutional disease.

The fact, however, which we believe dissection has revealed in all the examples of phlegmasia dolens where an autopsy has been obtained, is, the presence both of venous obstruction and evidences of inflammation; and although certain of Dr. Mackenzie’s experiments seem to show that coagulation and obstruction may exist without inflammation, yet inasmuch as they were subject to the drawbacks already mentioned, we confess that in our judgment their analogical value completely fails, when placed in contrast with the results of post-mortem examination. We have no hesitation, therefore, in concluding that phlebitis is an essential feature of the disease, but whether primary or secondary is another question, which we may now examine a little more closely; for which purpose we shall distinguish crural phlebitis in puerperal women from other cases of the disease.

Dr. R. Lee maintains, not only that crural phlebitis is primary and essential, but that it is produced by an extension of inflammation from the veins of the uterus in puerperal phlegmasia dolens. Of the coexistence of uterine and crural phlebitis in Dr. R. Lee’s cases there can be no question, for it was proved by dissection: nor do we doubt the coexistence of these two affections in most cases; but this does not decide the question of the local or constitutional origin of the disease, for Dr. Mackenzie’s theory will apply to them quite as satisfactorily as that of Dr. Lee’s. At first sight, indeed, the continuity of the disease would seem a conclusive argument for its propagation by extension, but upon consideration we shall find many obstacles to this view, many cases to which it will not apply, and some reasons which seem to point to a more general affection as an influential cause.

1. As a general rule, not without exceptions it is true, we may observe that the course in which venous inflammation is propagated, is towards the heart; but according to Dr. R. Lee, the extension in phlegmasia dolens is always retrograde.

2. Cases of puerperal phlegmasia dolens are recorded in which we have
positive assertions that no uterine phlebitis existed. In Dr. Davis’s case we have the testimony of that distinguished surgeon, Mr. Lawrence, that the uterus was healthy, of the natural size, without vascular congestion, and the vessels everywhere contracted and empty; and we think it very unlikely that so unequivocal a disease as uterine phlebitis, would have been overlooked by him. Again, Dr. Simpson, of Edinburgh, has published the case of a lady who died five weeks after her confinement, of phlegmasia dolens of the left arm and left side of the face. “On opening the body, the vena innominata of the left side, and its affluent trunks, were found entirely obstructed by coagulable lymph.” “The uterus was nearly of its natural dimensions, and did not present any traces of disease.”* Without quoting more cases, which it would be easy to do, there are sufficient to prove the occurrence of the disease without the possibility of extension from the uterus, inasmuch as it was in a healthy state; and it is probably within the experience of most to have met with cases in which phlegmasia dolens existed only below the knee, the vessels of the thigh being apparently quite free from disease: so that, even if uterine phlebitis existed, we must find some other explanation of its mode of propagation.

3. The continuity of the disease, as we have already said, seems at first sight a proof of extension; but on reflection this is by no means certain. If the reader will turn back to the last of Dr. Mackenzie’s experiments, he will find that a continuous disease was produced in the left iliac and femoral veins, although a ligature was interposed, and although the disease in the iliac veins was obviously excited by the entrance of the foreign fluid: and that in the femoral, after that fluid had gone the round of the circulation.

4. The influence of uterine phlebitis upon other organs is at variance with this theory of retrograde extension in puerperal phlegmasia dolens. No one has more ably illustrated the peculiarity of this disease in exciting secondary inflammation of distant organs or tissues, with purulent deposits, &c., than Dr. R. Lee. He also attributes the uterine phlebitis to the absorption of morbid matter, and the secondary disorders are generally supposed to result from this vitiation of the blood, and not from extension. Is it logical, then, to make crural phlebitis consequent on uterine phlebitis an exception to this rule, without more proof than their continuity?

5. Several circumstances seem to point to a morbid influence in this disease, more general than mere local phlebitis. In our experience we have found that the severity of the general symptoms was not necessarily in proportion to the extent of the local affection; nay, in many cases the danger seemed inversely as to the amount of obstruction, and the only satisfactory explanation pointed to the relative impurity of the circulating fluid. Again, phlegmasia dolens occurs sometimes after the lapse of a considerable period after delivery, at a time when acute uterine phlebitis is not common, or when, if it existed, it may be supposed to be in process of cure: but this is scarcely consistent with its active extension, but might more reasonably be attributed to some more general influence exerted by the previous inflammation. Lastly, phlegmasia dolens has

occurred in connexion with epidemic diseases whose notable effect is the deterioration of the circulating fluid.

6. Thus we seem driven to the conclusion, that although it is possible that in some cases puerperal phlegmasia dolens may be an extension of uterine phlebitis; yet that in most, if not all cases, there is ground for attributing much influence to the vitiation of the blood, and of some cases it affords the only scientific explanation. It is true that this view is not without its difficulties; it does not explain every peculiarity of the disease: we cannot tell why crural phlebitis is more frequent than the other secondary affections of uterine phlebitis, nor why the lower extremities are more liable to the disease than the upper, nor why a woman who has been the subject of phlegmasia dolens after one labour is more liable to a return after the next, nor why phlebitis from wounds, &c., does not give rise to all the symptoms of phlegmasia dolens, &c.; but neither will Dr. R. Lee's theory explain these cases more satisfactorily.

7. But now let us dismiss the cases of phlegmasia dolens occurring in connexion with delivery, or disease of the uterus, or injury, which are apparently susceptible of explanation either way, and take an example or two where extension was impossible, or in the highest degree improbable. Now, if in such cases there could be no direct influence, it is clear that the disease must either have arisen spontaneously, or indirectly, through the vitiation of the blood; and if from the latter, the conclusion applies with very great force to the explanation of the production of puerperal phlegmasia dolens. Case 54, related by Dr. R. Lee, is entitled "inflammation and obstruction of the lower portion of the vena cava, and the right iliac and femoral veins, produced by an encephaloid tumour at the upper portion of the chest." The tumour occupied the upper portion of the chest, and a little to the right side of the upper bone of the sternum. The lungs and contents of the abdominal cavity were healthy, except the vena cava (inferior, we suppose), the right iliac and femoral veins. In this case, surely, the influence of the tumour in producing the disease must have been indirect, as it was too distant from the affected veins to act mechanically, or by extension, upon them. The inference that it must have acted through the circulation is unavoidable. Again, Dr. Mayne, of Dublin, has recorded some very interesting cases, in which phlegmasia dolens occurred in the course of dysentery, and he has kindly afforded us the opportunity of examining one such case at present under his care. The symptoms were well-marked and characteristic, and after death the condition of the crural veins was precisely the same as we find it in dissections of cases of puerperal phlegmasia dolens; but the most minute and careful examination failed in tracing the inflammation to the veins of the intestines, or to those of the uterus. Here again, although a local disease existed, we are obliged to conclude that it produced its effects indirectly. Lastly, well-marked phlegmasia dolens has occurred in the course of fever, of which Dr. Mackenzie has collected ten cases. Our friend, Surgeon Hughes, of Dublin, mentioned to us that this happened with a patient of his: the symptoms were quite characteristic, and the consequences just as we see them in patients recovering from the disease after delivery. In this case, and we infer also in most of the others, there was no local disease from which the phlegmasia dolens could extend.
We might multiply examples of this kind, but we think these are sufficient for our purpose, which was, to discover what element they had in common with each other, and with the cases of puerperal phlegmasia dolens.

8. Now, in these three latter classes, it is not assuming too much, to suppose that this common element is some vitiation of the blood; there is good reason for believing that this occurs in carcinoma, in certain forms of dysentery, and in fever. Nor can we doubt that a similar effect is produced in certain cases, at least, of puerperal uterine phlebitis: and if we infer this to be so in cases of secondary deposits, there does not appear to be any sound reason for supposing that it may not also be the case in phlebitis complicated with phlegmasia dolens. And, moreover, the supposition of a diseased condition of the blood will meet the difficulties we have mentioned as involved in the theory of propagation by extension; whether the co-existing inflammation of the uterine and crural veins be continuous or not, and it will explain why the general affection may be inversely as the local disease. So that our conclusion would be, that inflammation and obstruction of the veins is an essential morbid condition of phlegmasia dolens; that in puerperal phlegmasia dolens, the uterine and crural veins are both frequently, though not always, affected; but that it is not probable that the disease is generally propagated by extension; and lastly, that in the majority of cases, if not in all, it is highly probable that the primary morbid element is a vitiated condition of the blood.

Fleetwood Churchill.

Review VI.

It may not be superfluous to recall to the recollection of our readers that the term asthma, as applied by many to certain disturbances of the respiratory function in children, bears somewhat a different import to when used in reference to adults. It is true, that some of the "asthmatic affections" of children are considered by many to be purely functional neuroses, or dependent upon changes in the nervous system of a mere dynamic character, and in this way, it may be said, that a coalition
is formed with the true or spasmodic asthma of after years. But even with this admission, it must be granted that, bad as the term is with respect to children, when least vaguely employed, it indicates a disorder whose symptoms, progress, and result are very different from those of spasmodic asthma. We say, when least vaguely employed, for we must allow that by some the term is applied so generally and unadvisedly as to embrace any form of dyspnea, and upon whatsoever it may be dependent. We are not even satisfied with how far Dr. Mauch is to be exempted from having rather a lax view on the point in question. He nowhere gives a general definition of infantile asthma or asthmatic diseases, though we are willing, from the incompleteness of his treatise, to give him the benefit of our doubt, and assume he will fairly demarcate his "asthmatic affections" from the more frequent hindrances to normal respiration, and which are of a secondary, and often subsidiary, character. A common and more definite interpretation of the title of our author's work is, to include under it those forms of dyspnea and abnormal respiration, which are attended with, or even caused by, more or less closure (from spasm) of the glottis, stridulous breathing, or "crowning noise," and sometimes accompanied or followed by partial, or even general, convulsions. Their leading features are phrenic-glottis, or laryngismus cum stridore, carpopodal contractions, and eclampsia. It is not absolutely necessary, however, that the closure of the glottis be accompanied by the "crowning noise," or breathing *cum stridore*, for in both slight and fatal cases these may be wanting; nor, although carpopodal contractions exist in a majority of cases, and general convulsions follow in some, is it essential that such automatic movements coincide with the laryngismus. Hence it will be seen, that under the "asthmatic diseases" of children are embraced "Millar's," "Kopp's," and "Hirsch's asthma," "thymic asthma," "laryngismus stridulus," "false croup," "spasm of the glottis," "angina stridula," "inward fits" of some, "cerebral croup" of others, and even the "suffocative catarrh" of a few writers. While some of the above appellations, and others we might have named, must be regarded as synonymous, or as applied to the same affection, others by no means hold the same relation, as very different diseases are implied, or at least ought to be. Upon this point, however, much confusion has existed, as Dr. Copland has well shown,* some writers having considered one and the same affection to be really involved in the various accounts given by different writers under the above names. Although, as Porter and Marshall Hall have remarked, laryngismus occurs in the adult, yet in general its causes and complications are such as to give us no trouble in separating it from the phrenic-glottis *cum stridore* of children. The nearest approach, and, indeed, a very near one, recorded as occurring in the adult, to one of the "asthmatic affections" of children included in the before-mentioned terms, is shown in Dr. Budd's three cases, and in another alluded to by Dr. John Reid, in his able little work on Infantile Laryngismus. We may also mention that Dr. Joy, in his article on Spasm of the Glottis,† indicates a simulation in the adult of another of these infantile diseases. On the other hand, the question may be asked, does a disease analo-

† Cyclopædia of Practical Medicine, vol. ii. p. 351.
gous to the true spasmodic asthma of grown persons ever occur in children? We are not aware of any trustworthy observations upon this point in particular, and we conceive it would be quite a mistake to consider any of the different writers de asthmate infantium as capable of assisting us to a solution of the question. Dr. Forbes,† it is true, remarks, that asthma "occurs in every stage of life, but most commonly in middle life, being rare in infancy and childhood," and which would imply that it does occur in children. Heberden‡ has not neglected to inform us also that "the first fit of the asthma has been experienced at all times from the earliest infancy."

Could we be sure here that all fallacy was out of the question (from some of the "asthmatic affections" we are considering), we should feel the more inclined to urge upon attention the fact, that we have met with three cases, the patients' ages ranging from 5 to 10 years, for which we could find no other name than spasmodic asthma, the general symptoms were those of the affection in adults, we could discover no sufficient proofs of pressure from enlarged thoracic glands, of bronchitis, tracheitis, pertussis, &c., and they were alleviated by the use of valerian, aether, hyoscyamus, and ipecacuanna.

It is the intention of Dr. Mauch to enter first into a minute investigation of the morbid anatomic appearances which have been found in children who have suffered from "asthmatic diseases," and then, upon such a pathologic basis, to discuss the various forms of infantile asthma, and finally to consider their treatment. We certainly cannot say that our author has (to use a common expression) "rushed into print." He tells us he was originally led to pay especial attention to the maladies in question in consequence of "an epidemic of Kopf's asthma" occurring at Schleswig in 1837-38, and where he then resided. That a few years after he intended to have written an essay in competition for a prize at Hamburg, but circumstances interfering, he has now re-arranged his previously collected materials, extended his views, and offers the present and first part of his treatise to the profession. Dr. Mauch also informs us, that, unless circumstances over which he has no control, should interfere, another part shall appear every successive year for five years, when the work will be completed. Had the author to undertake another 'Copland's Dictionary,' we might have much sympathy with this dignified and cautious style of production; as it is, we can only hope that Dr. Mauch may be left to finish his labours, and we to review them. Whatever we may think of his research, learning, and professional acuteness—and of them all we think highly—if we may be allowed to be judges of German style and composition, we most assuredly cannot say much for him as regards the latter. The analysis of his "first part" has been to us one of the driest and most tiresome literary duties we have for some time performed; his tautology is most wearisome and perplexing, and he must excuse us if we take occasionally some liberty with his text when putting it into an English dress for our readers.

The inaugural dissertation of Dr. James Simpson has been allowed

* We would not be too positive, for although we cannot definitely refer to any writer, yet we have an indistinct notion of having met with some remarks in reference to this matter.
† Cyclopedia of Practical Medicine, vol. i. p. 185.
‡ Commentaries, chap. 11.
§ De Asthmate Infantum Spasmodico. Edinburgh, 1761.
the priority of having first directed attention to our present class of diseases; and to the treatise of Dr. Millar* has been awarded the praise of much increasing that attention, and of exciting active controversy here, on the Continent, and in America.† We learn from Dr. Mauch, however (p. 108), that Felix Plater,‡ in 1614, related, under the title, ‘Suffocatione a Struma Interna Abscondita circa Jugulum,’ the case of a little boy, who died from hindrance to the respiration, which was cum striiore, and who evinced no other symptom of disease. The father of the patient having previously lost two other children under similar circumstances, allowed the body of this one to be examined. The thymus gland was found enlarged, spongy, and full of blood, and was assumed, from the pressure it must have exerted, to have been the cause of death. Plater therefore appears not only to have been acquainted with laryngismus stri dulus, but to have forestalled Hood and Kopp in assigning the thymic enlargement as its cause. Further, it can be shown that in 1726, an infantile “asthmatic disease” was well known to Verdries, Waldschnitt, and Hert, and was described by the former.§ Great hindrance to the respiration existed, the breathing being sometimes stridulous or whistling, at other times noisy or rushing, and with a difficult gasp or whoop. These and other laryngeal symptoms were superadded to decided inflammatory action going on in the lower air-passages, and the affection which was prevalent near Giessen, seems most nearly to have approached to “Millar’s asthma.” The thymus, however, is stated to have been found strikingly enlarged, “so that it invaded the whole anterior region of the chest, and was filled either with a tough mucus or thick blood.” From the time of Millar to 1827, several writers described different forms of “asthmatic disease,” accompanied by croupal, stridulous, or laryngeal breathing or crowing, often associated with partial or general convulsions, and sometimes causing sudden and unexpected death. In the year just mentioned, Mr. Hood, of Kilmarnock, drew specific attention to enlargement of the thymus as productive of one form of disorder; and in 1829, Kopp, of Hanau, read a paper before an association at Heidelberg, on what he denominated thymic asthma. In later years, very various opinions have been held as to the part which the thymus gland plays in the production of any of the so-called asthmas, laryngismus, and sudden death from closure of the glottis. Some are strong believers in the existence of a thymic asthma; others deny the occurrence of such an affection; whilst a third party admit of its occasional occurrence, but maintain “still all cases of laryngeal suffocation appearing spontaneously in children do not proceed from enlargement either of this gland or of any other.|| One or two high authorities have even asserted that the enlargement of the thymus, when found, is rather an effect, than the cause, of the disease it has been brought forward to explain. Notwithstanding what has been said by some late writers, we are of opinion that an enlarged thymus may give rise to an affection fairly coming under our present class of diseases.

† See Reid, op. cit.
‡ Observat. in hom. affect. &c. Basillae.
|| Copland, op. cit.
nay, has been known to do so. But to seek in this organ a general cause for phreno-glottism, laryngismus, &c. &c. is, to our mind, quite as wrong as to deny the former proposition; and we think that Dr. Reid* has scarcely done justice by the case he quotes from Dr. West, in not adding to his quotations from the latter, Dr. West's further remark, "notwithstanding some points of difference between this case and those in which spasm of the glottis had been induced by a different cause, yet we recognise in it the grand symptoms of the affection."† The present and first part of Dr. Mauch's work is devoted to the consideration "of the thymus gland in relation to asthma." He has made its intention so elastic, however, that the work before us might, with equal justice, be called one upon the general pathology of the organ both in the adult and child. Whilst we find an excess of labour on the one hand, we meet with a deficiency of explicitness on the other; for we have been puzzled to make out what amount of weight Dr. Mauch really does allow to morbid conditions of the thymus in the production of "asthma." We have cases by wholesale, sometimes brought forward apparently to prove an affirmative; at others, to show, as it appears to us, a negative. We have even imagined that the author regarded the enlargement of the thymus as an effect rather than a cause of the "asthma." We give Dr. Mauch full credit for his research and his collection of instances, commented upon as they are often very acutely, but we really do wish he had given us such a résumé as is the admirable practice with so many of the French writers. It may be that such will be found in the last part, which we have already stated is—if nothing prevents—to make its appearance five years hence.

As the author does not enter upon the minute or comparative anatomy of the thymus, we need not either, the more particularly as Mr. Simon's admirable essay, or the critical review of it in one of our predecessors,‡ is most probably in the hands of our readers. We shall commence with the second chapter, which treats "of the function of the thymus."

"When the position and structure of the thymus, and particularly the anatomic disposition of its bloodvessels, are fully considered, it will appear that its most probable destination is to serve in the fetus as a dicoventriculum sanguinis for the lungs during their minority. . . .

"This view of the matter receives further support from the circumstance that, with the performance of the above duty, another is seen going hand-in-hand with it, and which the thymus performs, not only in the fetus, but even after birth. This is seen to consist in its filling up in the fetus the otherwise empty space which would be left in the cavity of the chest, from the lungs not being as yet expanded by air and blood. Such a space, however, the lungs will require, and all at once, as soon after the beginning of respiration, they become so suddenly and greatly expanded and increased, that a much larger space is requisite for their augmented volume, than was the case before birth. Even after the latter, the thymus performs a like office, though in a somewhat modified way, and continues to do so until a proper relation is gradually established between the capacity of the thorax and the extension of the organs the latter contains. . . . It is in the highest degree probable, that in cases where a determinate want of relation between the cavity of the thorax and its contained organs exists, the thymus, not only partially, but even sometimes in the totality of its extension, may continue to endure. Not only may it persist to the years of puberty, but, if

† Lectures, p. 269.
the existing mis-relation continues, even to adult or most advanced age; and though it may have attained a considerable size, may not give rise to the slightest inconvenience.” (pp. 16, 19.)

Those acquainted with the essay of Mr. Simon, will not fail to remark how very differently are the uses and function of the thymus therein represented. We pass to the third chapter, on “The Diseases of the Thymus.” Before the time of Lieutaud (1767), observations and cases in illustration of the diseases of the organ were scattered singly through numerous volumes. This writer collected about twenty cases, the histories of which, however, were so unsatisfactorily detailed, that, as Dr. Mauch (p. 29) remarks, the labour of Lieutaud was soon quite forgotten, even by pathologists of good repute. To Dr. Baille, and to his translator into German, Th. Sömmering, is the credit due of having revived attention to the diseases of the thymus.

“No organ of our body has excited so much attention in late years as the thymus, which has found in Haugsted, Astley Cooper, and John Simon, three monographists, whose concurrent observations have contributed very much to a more perfect acquaintance with its protean nature, particularly in an anatomic and pathologic view.” (p. 40.)

“Purulent destruction of the gland” is first alluded to by the author (p. 30). This has been described by Pauli, Lieutaud, and Sauvages. By the former two, a syphilitic origin was ascribed to it.

“Such destruction of the thymus is by no means, however, produced alone by the venereal dyscrasia, but may arise as a consequence of other diseases connected with a dissolved condition of the fluids of the body.” (p. 32.)

Dr. Mauch observes, in a note, that—

“The very different characters under which syphilis has appeared amongst us at different periods, render it very probable that the ‘forms of destruction’ also which it gives rise to, or tends towards, must and can alter very much in the course of time.” (p. 32.)

To the observations of Dr. Mauch we would add mention of those of M. Paul Dubois, who has found in several children, born of syphilitic parents, and themselves presenting evidences of constitutional contamination, a particular condition of the thymus—viz., the presence of small disseminated nodules of inflammation and suppuration. M. Dubois, along with M. Bouchut, is inclined to regard it as due to the operation of the syphilitic poison. M. Depaul has followed in the steps of M. Dubois, coinciding with the opinion of the latter in regard to the small collections of pus in the thymus, and affirms, also, that the “lobular nodosities,” observed by Billard, Olivier, Husson, and Cruveilhier, in the lung of new-born children often of syphilitic parents, and assumed to be the result of inflammatory action taking place before birth, are, in reality, the “plastic nodules” of a special lesion never observed unconnected with signs of syphilis in the parents or the children. They are, therefore, to be regarded as a specific alteration belonging to constitutional syphilis. A distinguished obstetrician, M. Cazeau, has in particular opposed these views; but as we should be swerving from our main object to enter into more detail, we must content ourselves with referring the reader to the seventeenth volume of the ‘Journal für Kinderkrankheiten,’ where they will find
a report of the discussion, &c. of the Académie Médicale in Paris on the subject, as also some observations of Dr. Behrend on the matter.

"Scrofulous degeneration in adults" is next alluded to. This morbid condition has been frequently mentioned by writers, but, in the opinion of the author, has been regarded more as a pathologic curiosity than as anything else. Several cases are noticed by Dr. Mauch, which prove the detrimental influence upon the respiratory and circulatory apparatuses produced by the pressure of the serofulously-enlarged gland. The function of respiration is first hindered; then, as the enlargement increases, the heart and large vessels feel its influence, and oedema or dropsy follow. Sometimes the nerves become pressed upon, or involved by adhesions with the growth of the gland; in the latter case, according to the observations of Ferrers, if the position of the body is suddenly changed, so as to strain the nerve, as it were, "spasms or cramp" follow. Loss of voice, and ulceration of the contiguous parts—as of the oesophagus—from the pressure, may likewise ensue. From the analysis of Dr. Mauch's cases, it appears that a strong tendency to somnolency has been a marked attendant, upon several instances, of the affection in adults. Allan Burns, more than thirty years ago, hazarded the opinion, that the enlarged and indurated thymus, in addition to the evils it may exert upon the functions already noticed, might produce direct and severe disturbance of the assimilative and nutritive ones. He assumed that it might so press upon the left subclavian vein, as to hinder the entrance of the chyle into it from the thoracic duct. The particular state of the mesenteric glands, and other circumstances often found in connexion with the disease of the thymus, and which were supposed by Burns to bear out his opinion, are explained, and we think satisfactorily, by Dr. Mauch in a different way. The northern surgeon also suggested that, in certain cases, the enlarged gland might be removed by operation; whilst Putegnat thinks he has seen it, when projecting above the sternum, diminish and disappear from the local application of iodine. The following and tenth section is concerned with the serofulous affection, as it occurs from the second to the twentieth year of life:

"I have already, in § 8, pointed out how easily serofulous deposits may be formed in the thymus, especially during the first years of life; and I shall now place together a considerable number of cases in which, not only in children but in young persons of both sexes, up to the twentieth year of age, the gland has been observed serofulously hardened. In almost all these cases, disturbed respiration, most variable in form, has been present." (p. 52.)

After the detail of numerous cases, the author observes how they prove that—

"The older practitioners, especially since Richa's time, adopted the opinion of there existing a close connexion between the asthmatic attacks of young children (pueris in opposition infantibus) and the coincidently enlarged thymus. The enlargement of the organ must then, however, have coincided with a morbid alteration of its tissue, and the so-altered thymus, by its pressure upon neighbouring parts, disturbed the respiration, &c. The observations of late years have proved this theory to be perfectly correct generally; but they have also shown, that it is not alone the pressure upon the air-passages which operates detrimentally on the economy, whether of children or of adults, and that the thymus must attain a certain size, hardness, and extension, in order to produce, by its mechanical operation upon contiguous parts, lethal, or even detrimental influences." (p. 78.)
"Since the time, however, that Kopp broached the doctrine that *asthma thymicum* has for its immediate cause too great extension of the thymus, numerous disciples have come forward in favour of the new doctrine, but with too much enthusiasm, and maintaining, without the least reservation, that every hypertrophy of the organ must always, and under every circumstance, have as its consequence visible hinderance to the respiration. They have denied, without further ado, the rectitude of observations made by several practitioners, in which it is affirmed that, though the thymus was found hardened and enlarged, the children had suffered no disturbance of respiration." (p. 77.)

In connexion with "pyogenesis in the thymus of children under two years of age," Dr. Mauch rejects the cases of Sauvages, Naumann, Vogel, Billard, and Veron, as illustrative of the results of acute inflammation of the organ. He affirms that he knows of no satisfactorily recorded case of *inflammatio suppurativa* of the gland, or *thymelterosis*. Hangsted, we may remark, quotes a case of inflammatory softening from Portal, and another from Mason, where the thymic abscess is stated to have opened into the trachea; whilst Hasse observes, that "inflammation of this gland is, in point of fact, very problematical."* Alluding to Veron's cases, in which pus was found in the serous cavities, as also in the thymus, Dr. Mauch observes, that these purulent collections cannot be regarded in the light of abscesses, the consequences of suppurative inflammation, "seeing that they were neither enclosed nor secreted by a special (secerning) membrane." (p. 79.)

"It is, therefore, difficult to conceive that they were originally formed in the thymus, where Veron found them; it is with much greater probability to be considered, that the pus originated in another part of the system, became absorbed, and was again deposited at or carried by the circulation to those localities where it was afterwards met with. But it is not even necessary to assume that the actual inflammation and secretion of pus took place in the system of the child or fetus, since they might just as well have ensued in that of the mother, and the purulent matter have passed from the latter into the former by means of the circulation, as is not so very rarely the case as respects the aciform or gaseous collections in new-born children."† (p. 80.)

This explanation of the matter may be satisfactory to Dr. Mauch, but we confess that it is not so to us; and we think that, without going so far as to maintain the occurrence of simple acute inflammation in the thymus of the maturer fetus, the views advocated by M.M. Dubois, Depaul, and Bouchut (and to which we have before alluded), in all probability, indicate the solution of the difficulty.

A single case (quoted from Portal) is recorded, of a collection of serum in the thymus of a boy two years old. The next subject coming before us is, "induration" of the gland before the second year after birth.

"Before the time of the Soot, Alexander Wood, not a single observation exists (so far as I am aware) relative to the thymus having been found enlarged and indurated in the bodies of children dying whilst at the breast. To Hood, without question, belongs the credit of having directed attention to the fact, that such enlargement and induration, when sufficient to exert marked pressure upon the veins conveying the blood from the head, may, under such circumstances, sometimes give rise to a hydrocephalic condition, and, at the same time, not rarely

be accompanied by asthmatic trouble. In England, serofulous induration of all forms, and so of the thymus, must be far more frequent in children than in other European countries, since scrophulosis is there a far wider spread evil.” (p. 51.)

In connexion with the existence of an enlarged &c. thymus, and effusion into the ventricles, Dr. Mauch has collected quite a museum of examples. But the mere fact of the two co-existing, does not establish a chain of cause and effect. To our minds, the cases are very rare and exceptional in which either chronic or acute (as it is called) hydrocephalus owe their origin to the pressure of a tumour on the vessels of the head or neck. The one we believe due generally to a chronic inflammation of the lining membrane of the ventricles,* or, before birth, to an abnormal activity of the meningeal vessels, causing a superabundant quantity of the cerebro-rachidian fluid to be effused:† the other to the influence of the scrophulous diathesis, and which sufficiently explains why it should not be unlikely that the particular condition of the thymus alluded to may now and then be found in connexion with one of the lesions of granular meningitis.

Though the occurrence of simple, acute, and suppurative inflammation of the thymus is doubted by our author, he believes in that of such a "dispositio inflammatoria," accompanied by an effusion of lymph, as to entitle him to treat of "adhesive inflammation" of the gland. This gives rise to pure hypertrophy of it, a form of thymic disease neither in its origin, nor in itself, hitherto properly described by pathologists. According to Dr. Mauch (p. 107), it was confounded by Kopp himself with simple distension of the thymus from sanguineous stasis.

"When the deposited lymph is freely traversed by blood-vessels, the texture of the thymus has a carnified character, and is far less compressible than in its natural condition.” (p. 121.)

"The carnified, firm, scarcely now compressible substance of the gland, not only contributes in maintaining and increasing the asthmatic troubles already existing, but in many cases may even originate new forms of the latter.” (p. 123.)

Dr. Mauch is of opinion, we may fairly conclude from analogy, that by means of absorption an hypertrophied thymus may return to its normal condition again.

"Distension of the Thymus by Blood" in young children, was first noticed by Verdiess, of Giessen, in the beginning of the last century.

"Since the time that Kopp and many other pathologists have regarded enlargement of the thymus as the special cause of asthma thymicum, marked attention has undoubtedly been paid to the condition of the gland in children dying, or supposed to have died, from the disease in question. But in the majority of cases, observers have contented themselves with merely weighing the organ, or taking its measurements. Rarely, and indeed only when very evident degeneration of it was present, was its internal pathologic condition particularly noticed. Of its frequent distension by blood, scarcely any account was taken, so that the entire theory of Verdiess, in connexion with this point, fell tantamoutly into entire oblivion. Since the time of Kopp, also, very many pathologists regarded this condition of the thymus as identical with asthma thymicum. But since that, in late times, several large hospitals for children have been erected, and medical men

* See the review of Weber, &c., in vol. x. p. 15, et seq.
† Also of Churchill, &c., vol. vi. p. 140, et seq.
have bestowed far greater attention to the study of pediatrics: it has resulted that unprejudiced and attentive investigation has proved, without gainsay, that not only in children dying from asthma Koppii has the thymus been found very greatly distended, and sometimes also morbidly altered, but that a like condition of the thoracic gland is not rarely seen in the bodies of other children, suffering quite other forms of asthma, at the same age; and that the stasis of the blood in the system of the vena cava superior, necessarily present in all asthmatic affections, must be regarded as the peculiar and immediate cause of this enlargement and distension of the thymus.” (p. 131.)

We shall pass over the sections treating of Valentin’s, Meckel’s, &c., observations, and of the enlargement of the thymus in connexion with atelectasis. The nineteenth section is entitled “Pathologic Alterations of the Thymus, as the result of different Asthmatic Affections of Young Children.” The effects of the paroxysms of pertussis, bronchi-pneumonia, and simple acute pneumonia, illustrate the section, concluded by the author in the following words:

“...In the meantime, there is the less necessity for my adducing observations of this kind, as I intend in one of the following parts of this treatise (when the proximate relations and treatment of asthma will be considered), to bring forward a host of facts, which will sufficiently support this view [viz., so far as we can make out, that the enlargement or distension, &c., of the thymus, is caused by the sanguineous congestion or stasis induced by asthmatic paroxysms of the above diseases]. Utterly erroneous, therefore, is the view taken by those who regard the enlargement of the thymus as the cause of pure asthma Koppii; and I shall endeavour in the next chapter to point out how it has been that medical men, and particularly those of Germany, have gradually come to erect such a theory, opposed, as it is, to the principles of sound physiology and pathology, and in part to maintain it firmly even at the present day.” (p. 146.)

It is from the occurrence of such passages as the above, in connexion with others, such as our quotation from p. 73 of Dr. Mauch’s treatise, that we have felt puzzled in arriving at the author’s real opinion as to the influence and frequency of diseased conditions of the thymus in giving rise to disturbances of the respiration. The next chapter commences with the consideration of Meckel’s views on the thymus acting as a vicarious organ for the lungs in certain diseases; and in particular, the connexion of an enlarged gland with malformations of the heart. The effect of persistency of the opening of Botal, and its result, cyanosis, in producing stasis in, and consequent distension of, the thymus, followed by “thymic asthma,” are regarded by the author as of rather exceptional occurrence. The opinions of Schallgruber, a former medical jurist of Grätz, next pass under Dr. Mauch’s criticism. According to the former, it is very probable that in many cases of sudden death in infants, where the child has been supposed to have been suffocated accidentally during the night by the nurse or mother, or where violence has been thought to have been had recourse to, and yet, on inspection of the body, no sufficient evidence of such violence can be found, but the thymus is enlarged, the morbid condition of the latter, and its effects, have been the cause of death. In many of the cases recorded, the size of the gland was such that Dr. Mauch thinks it very difficult to conceive how it could have exerted such lethal pressure: and since, in others more carefully investigated, it has been shown particularly by Berg, that an atelectatic condition of the
lungs is in general present, the fatal event should rather be associated with such a condition than with the state of the thymus. We may remark that Schallgruber himself was perfectly well aware of the complication of atelectasis with the above cases, since he says that "the lungs, without exception, in such children remain undeveloped," but he regarded the "excessive growth" of the thymus as the hindrance to the expansion of the pulmonary organs, as well as the immediate cause of death. The doctrine taught by Schallgruber has been supported by Krombholz, but it is evident that the latter was led to false conclusions, from reasoning as follows: Having examined ten new-born children, some of whom were prematurely born, and found the weight of the thymus to be respectively 23, 31, 78, 97, 106, 135, 159, 185, 208, and 255 grains; he formed a low standard of the normal or medium weight from this, for in a case of death in which the gland weighed 208 grains, he thought an abnormal size and weight were indicated, and ascribed the fatal event to the influence of the supposed enlarged thymus. And so in cases of "suffocation," where he found the weight of the gland going beyond his standard, he regarded the growth of it to have been excessive, and ascribed the death to it accordingly; whereas, in reality, no abnormality existed as regards this organ in any of his cases.

"The thymus in the human fetus during the first months of pregnancy occupies a very small amount of space, but in the ninth month its growth is so excessively rapid, that a very great difference in the weight and size of it will be found in children who have completed the full period of gestation and those born prematurely. But at the birth of the former the weight of the thymus will be found to vary considerably; the more trustworthy observers of our time, however, allot to it 240 grains as a normal weight, though there exists ample proof of the organ in such children having been found on the one hand much heavier, and on the other very much lighter than this." (p. 1.)

The twenty-third and concluding section of the present part of Dr. Mauch's treatise is occupied with "The Views of Kopp and his School."

"Kopp, following Haller, took the normal weight of the thymus to be from 160 to 180 grains in a ripe newly-born child, and maintained that when this limit was to any extent surpassed, the gland might operate so detrimentally upon the heart and lungs of young children, as to hinder the free circulation of the blood. Such would more readily occur also in the fetal state, since the heart is then placed more towards the right side and where the thymus is situated than afterwards. After birth the gland is liable (according to Kopp), from various circumstances, such as crying, swallowing, &c., to become from time to time strongly compressed, and appressed upon the heart and large vessels; by this the minor circulation is disturbed, and the normal rhythm of the respiration interrupted. During such interruption and presence of less amount of air in the morbidly affected larynx, a shrill cry with an acute tone is formed, and which is to be regarded as the characteristic symptom during life of *asthma thyricum*. A paroxysm such as this only continues until the continuous power of the heart and the lungs, and of the vessels, again overcomes the present hindrance, and the thymus is consequently compressed into a smaller amount of room. But if it should happen that the influence of the thymus is not thus early and sufficiently overcome, and as a result, the arrestation of the minor circulation be too far prolonged, suffocation or apoplexy will necessarily ensue." (p. 170.)

After discussing various modifications of Kopp's theory, advanced by
several writers, and the opposing statements of other pathologists, Dr. Mauch closes his treatise in the following words:

"Under such circumstances, we really cannot find fault with the Frenchman Brunache for regarding the theory of the German physicians, upon the mode broached by Kopp of explaining the origin of thymic asthma, as a species of mystification. Nevertheless, although in Germany at the present time many thoughtful practitioners have become satisfied that ‘Kopp’s asthma’ is a disease dependent upon too great nervous irritability, yet the *practicum current* still seeks its origin, for the most part, in a hypertrophied condition of the thymus gland." (p. 181.)

As we have yet but only one part out of six, of which the work is to be composed when finished, we can form no accurate judgment as to what will be the real value of Dr. Mauch’s labours; but we can recommend the present portion of them to those desirous of knowing what has been recorded by different pathologists concerning the pathology of the thymus both in children and in adults.

The first paper in the present number of the ‘Journal für Kinderkrankheiten’ is one by Dr. Lederer, on “Spasmus Glottidis,” and which he calls the “Gordian-knot of pediatrics.” As the author is assistant-physician at the Hospital for Children at Vienna, and 4400 patients have passed under his notice during a single year, his views are entitled, of course, to a hearing. Two forms of the “spasm” may be distinguished, viz., a tonic and a clonic form, and these may pass into each other. A comparison of the cases of “asthma” occurring during January, 1850, to the end of June, 1852, affords the following results: Out of the 96 cases, cranio-tabes existed in 92, in part associated with hypertrophy of the brain, with acute hydrocephalus in one instance, and with chronic edema of the brain in another. In 3 cases, rachitis of the trunk and of the extremities, without cranio-tabes, existed; and in one case was present congenital malformation of the heart. In 8 children who died from “asthma” in the hospital, and were examined after death, the thymus was found to be very small in 2, of a normal size in 4, and apparently enlarged in 2; whilst in a patient exhibiting marked hypertrophy of the gland not a symptom of “asthma” was evinced during life. Considering then, that neither the thymus, bronchial glands, condition of the larynx, trachea, epiglottis, and brain were, in the author’s opinion, able to be assigned as the cause of the affection, and since, in 92 out of 96 cases, cranio-tabes coincided with the “asthma,” the former must be regarded as the most frequent predisposing cause of the latter.

Dr. Borchman, of Landshut, contributes a long article on “croup,” the chief points inculcated in which are, 1st. That there is only one affection rightly so called. 2nd. That this is a diphtheritic inflammation. 3rd. That it is quite immaterial whether the latter be of a “primary” or “secondary,” “ascending” or “descending,” character, and that its peculiar danger lies in the production of spasm of the muscles of the glottis. 4th. That the local application of ice to the neck is one of the most intense antiphlogistic measures we can employ in the disorder. An interesting case is recorded as having occurred to Dr. Riecke, and in which a little girl of 4 years of age suddenly died on the night-stool after having complained of abdominal pain, colic, diarrhoea, &c. On examination of the body, 7 balls, formed of intertwined lumbrici, were found in the jejunum,
each ball containing from 8 to 13 worms, the total number being
88. Two worms were also found in the stomach. The mucous mem-
brane appeared reddened at the spots where the "worm balls" were
situated.

Some interesting remarks on "Sausage poisoning" will likewise be
found in the present journal, as also the able paper of M. Rillett on
"Invagination," and some clinical observations of Professor Guillot on
"Nurses and Sucklings."

W. Hughes Willshire.

REVIEW VII.

1. _Lehrbuch der Nervenkrankheiten des Menschen_. Von Moritz Hei-
 nrich Romberg, M.D.—Berlin, 1851.

A Manual of the Nervous Diseases of Man. By Moritz Heinrich
Romberg, M.D. Translated and Edited by Edward H. Sieveking,
M.D., for the Sydenham Society.

2. _Clinical Lectures on Paralysis, Disease of the Brain, and other Affec-
tions of the Nervous System_. By Robert Bentley Todd, M.D.,

*Romberg's treatise is but a part of an intended whole, and includes
only the derangements of sensibility and motility. It is his purpose, at
a future time, to complete the subject by adding the logo-neuroses
(λογός, mens. ratio), diseases of the mental activity, and the tropho-neuroses
(τροφή, nutritio), diseases of nutrition; inflammation, degeneration, morbid
growth, &c.; or, as the translator in his preface terms them, the diseases
of the formative foci. Although the work is incomplete, its reputation in
Germany is such, that it is now passing through a third edition. The
members of the Sydenham Society in its perusal will find, like travellers
in a distant country, that although the geography is new, the principal
features in the landscape are the same as they have at home so long
admired, Romberg having transplanted largely from our literature into
his pages.

As Romberg adopts a physiological order in the classification of his sub-
jects, he first treats of the derangements of those nerves which convey
inwards impressions to the centres in which they are implanted, whether
sympathetic ganglia, spinal cord, or encephalon. These constitute the
hyperesthesio and the _anesthesio_ Abnormal sensibility is not, however,
a character common to the whole class, but we may infer that morbid con-
ditions similar to those which, in sensitive nerves, are appreciated by
alteration of sensibility, occur in other incident nerves, although dif-
ferently manifested, as, for instance, by reflex action on the muscular tissue.

In his recapitulation of the laws which govern sensation, Romberg
dilates principally upon that of eccentric phenomena; or, as we would
rather call it, of peripherad interpretation. This law of our constitu-
tion is now so well known as to require no particular illustration. Both
physiologists and metaphysicians have discoursed largely upon it,

* The writer must apologize for the delay in this notice of the translation of Romberg's
work. Circumstances over which he had no control prevented its appearance at the time
intended, now nearly a year ago.
seeing it forms the foundation of our knowledge of external things, and is, as Reid called it in his treatise, "the principle of common sense." Well known, however, as the law is, it will probably ever remain an inexplicable problem why our consciousness should refer outwards to the external world, as in the instance of the nerves of special sense, the olfactory, optic, and acoustic; or to their extremities, as in the instance of the nerves of common sensation,—changes occurring in them at any part of their course, or in the centres into which they are inserted.

There is, however, another law to consider with this; for although it explains a large proportion of the instances of apparent centrifugal excitation of sensitive nerves, yet we recognise this latter condition as actually occurring, and from recent advances in nervous physiology have reason to conclude, that both in sensitive and motor nerves irritation at any part of their course induces a polar state, which is transmitted in both directions along the trunk;—the terms centripetal and centrifugal not being exclusively applicable to the one or the other set of fibres, so far as the changes in the nervous tissue are concerned. Romberg has not, in this part of his work, recognised, with sufficient distinctness, such a law, although nervous pathology affords many apparent illustrations of it. Hunter, even, in his day, distinguished these reflected impressions from the phenomena of peripheral interpretation, fancifully referring the latter to a "delusive principle in the animal economy," leading us astray from the real subject or seat of the disease, whilst the former are by him correctly referred to true sympathy:—"I am confident," says he, "that I can fix my attention on any part until I have a sensation in it."

Clinical experience, almost daily, affords instances of not only increased sensibility from a centrifugal excitation of sensitive nerves, but of alterations in the circulation and nutrition of the part following upon it. Such phenomena are the very ignes fatuorum of diagnosis, and occasionally mislead the most careful practitioners.

Since Romberg includes, in his 'Neuroses of Sensibility,' the abnormal conditions of every class of incident nerves, his hyperæsthesia are much more comprehensive than writers generally make them, as is shown by the following classification:

"First Order.—Hyperæsthesia from irritation of the Nerves.—
3. Hyperæsthesia of the vagus: gastroduodenal neuralgia, bulimia, polydipsia.
4. Hyperæsthesia of the special senses: hyperæsthesia optica, acoustica, olfactoria, gustatoria.

"Second Order.—Hyperæsthesia from irritation of the Central Organs.—
1. Hyperæsthesia of the sympathetic ganglia:
 a. Hyperæsthesia of the cardiac plexus.
 β. " " solar plexus.
 γ. " " mesenteric plexus.
 δ. " " hypogastric plexus.
 ε. " " spermatic plexus.
 Psychological hyperæsthesia.
"The character which these affections have in common is exalted irritability and increased irritation of the sensitive or centripetal nerves. The expression of this irritation is either psychical, one of consciousness, a sensation,—or motor, a reflex movement,—or both at the same time. The sensation varies according to the peculiar sphere of the affected nerve. Hyperesthesia of the cutaneous nerves is manifested by pain in its various modifications; that of the nerves of special sense by phantasms. The part taken by the brain, as the psychical organ in sensation, is not only receptive but also reactive. If the imagination dwells upon the sensation, the latter becomes more intense and more defined; the power of imagination may create sensations, as proved by the feeling of nausea or prurigo, and a morbid condition termed hypochondriasis."

The whole of the preliminary remarks on this part of the subject, though containing nothing particularly new, are yet of great value as pointing out, that a neuralgic condition, or that which is equivalent to it, may express itself in other ways than by pain—many forms of muscular spasm, or other kinds of abnormal muscular irritability being due to hyperesthesia of some one or more incident nerves, which may yet in themselves manifest nothing abnormal, and thus our attention being drawn to the more prominent symptoms, the actual cause is overlooked. To use the language of Marshall Hall, we must investigate every part of the diastaltic arc, from the nervous expansions in the skin and mucous membranes, through the whole course of their tracts up to the centre, and thence outwards to the muscles, before we can arrive at a correct diagnosis. In the range of the sympathetic, Romberg finds similar phenomena, and attributes many derangements of the cardiac rhythm, intestinal spasm, and ischuria, to hyperesthesia of the sympathetic tracts, and the ganglia in connexion with them.

Respecting the etiology of such affections, no addition is here made to our ordinary knowledge, but we would remark, that with so comprehensive a definition as this writer adopts, he is hardly justified in stating that childhood is entirely exempt from these affections, since early age is prone not only to that form which results in spasm or convulsion, but irritable retina and colic are met with in their most marked forms at this period of life.

Cutaneous Hyperesthesia.—The effects which sometimes follow injuries of the sensitive nerves are adduced by Romberg as typical illustrations of the neuralgic condition. We think, however, that most observers will not quite agree with him in this. Such cases are characterized by many peculiarities. The anatomical changes at the seat of injury keep up a special form of excitement in the affected nerve-trunk, which is apt to induce more extensive sympathies than occur in other forms of neuralgia. A trifling wound of a cutaneous nerve which heals readily, may be followed, after a short interval, not only by severe pain in the adjacent branches, but the local excitation may slowly propagate itself until the whole sensitive system becomes involved, and severe constitutional irritation and convulsions and death ensue. The cases quoted by Romberg, and which are most of them taken from English writers, bear out these remarks. Simplicity of cause does not warrant our inferring simplicity in the effects, at least in living tissues; and though a mechanical injury may be more accurately appreciated than one from other causes, yet it is doubtful if its results are always the most simple, and whether we may not
rather regard the cases occurring from anaemia and miasm as more
typical, being, to use the words of Romberg, "the prayer of the nerve for
healthy blood."

Neuralgia of the Fifth Pair.—Although Romberg objects to an aetiological
classification of his subjects, upon the ground that we know so little
of causation in neuralgic affections, yet we feel that in no division is an
effort towards such classification more necessary than in the affections of
the fifth pair. Per causas seire is, indeed, here vere seire, for so various
are the conditions out of which painful affections of the fifth nerve arise,
that if we can go no further than the prominent symptom of pain, and
its anatomical distribution, our practice must be a chaos of empirical
formulas. It is the want of this classification, so far as it could be made,
which gives to this chapter an unsatisfactory character, the writer appearing
sometimes to limit his remarks to the chronic atypical forms occurring
after the middle period of life, and constituting, as we generally under-
stand it at the bedside, the true tic douloureux; and at others, including
such as arise from miasmatic, rheumatic, gouty, or sympathetic condi-
tions.

The particulars of a case of facial neuralgia on the left side, of twenty-
six years' duration, will be read with interest. As in similar cases, the
cranial bones were thickened, the dura mater adherent, and the cerebral
convolutions atrophied; there was also sub-arachnoid and ventricular
effusion; general arterial disease, with aneurism of the left carotid in the
cavernous sinus, compressing the Casserian ganglion and pitutary body;
with atrophy of the left fifth nerve. The following are the criteria given
for the diagnosis of facial neuralgia of the atypical form:

"1. The relation of pain to time and space; being limited to certain distribu-
tions of the nerve, and occurring in paroxysms with few intervals. 2. The pecu-
liarity of the exciting causes of the pain. 3. The sensitiveness of the affected
surface to unexpected and slight contact, especially if the disease be of long stand-
ing, whilst strong pressure not only does not increase, but often diminishes, the
pain. 4. The preference shown by it for mature age—rarely occurring before
thirty years. 5. The rarity of the disease, which must make us hesitate in the
diagnosis; for whilst painful sympathetic sensations in the face belong to the daily
routine of practice, such cases, except those of the acute and typical kind, are rare
even in great cities."

Pruritis, formicatio.—Although, as Romberg remarks, hyperesthesia
of the cutaneous nerves is not characterized by pain only, but also occasion-
ally by other manifestations of sensation, as itching, creeping, and
the like; yet it is rare for these affections in an idiopathic form to be
so intense, or to last for so long a time, as to give them, by themselves,
a pathological status. It is notorious that, for the most part, they
are but symptomatic of morbid conditions of the blood, or of obvious
disorders of the nutrition of the skin, which, from its structure and
physiological relations, is predisposed to such irritation. Notwith-
standing the authority of Romberg, we think it will be admitted that
most of the forms of prurigo, however admissible into a scientific category
of nervous derangements, yet practically, are better treated of with the
diseases of which they are symptomatic. Therapeutics contradict the
opinion of their being in themselves substantial conditions, at least when
they are so formidable as to call for treatment; the principal excep-
tions being certain cases of reflected irritation upon the pudendal nerves from sexual excitement. We can well understand, why Romberg should say, that the treatment of pruritus is very unsatisfactory, and so it must continue to be if we are content to place so high a pathological value upon a symptom, to the exclusion of a closer appreciation of the causes which give rise to it.

Hyperesthesia of the Nerves of Muscular Sense.—As the muscles receive sensitive nerves, we are not only in health made aware of the changes they undergo, but in disease their pathological conditions are represented by the same means, and hence the feeling of stiffness, or of lassitude and the pains of cramps and lumbago. Romberg, however, attributes more than such symptoms to disorder of the muscular sense. After recapitulating the advances in modern physiology in respect to the kind of knowledge obtained through the action of muscles, as of space, direction, force, and weight, the pathology of vertigo is introduced, which, according to this author, is a hyperesthesia of the sensitive nerves supplying the muscles. We cannot see the evidence of the truth of the position thus assumed, and are still disposed to attribute such a symptom to derangement of the sensorium commune, and in particular to that part of it connected with the optic centres. The propriety of the term, "nerves of muscular sense," is doubtful, as favouring the assumption of a special energy in them, whereby they give us a sensation, which, like sight or hearing, is simple and unconfined, though it is more than probable that the so-called muscular sense is a complex subjective state, requiring no considerable analysis for its elucidation. As the subject has no great practical application, we may spare our readers a further discussion of it, nor need we bring before them the different forms of vertigo—titubans, vacillans, caduca, tenebrosa, or gyrosa—or treat of the difference between vertigo and mutation; for though Romberg abrogates transcendentalism, we think he has scarcely avoided it in this part of his subject.

Hyperesthesia of the Vagus.—The incident nerves of the vagus are subject to hyperesthetic states, characterized by various phenomena, according to the branches affected, and the character of the exciting cause. Hyperesthesia of the respiratory branches may give rise to cough, or a sense of oppression about the chest, and incubus or nightmare is probably a subjective condition referrible to the same branches. The gastric branches are more prone to hyperesthesia than the pulmonary. Romberg enumerates three varieties; the first, a sense of constriction in the pharynx constituting the globus hystericus, in which the sensitive rather than the motor fibres are affected, the assumption of spasm in the oesophagus not being supported by observation; the second, pyrosis, is "a sense of heat and soreness passing from the stomach up through the oesophagus, accompanied or not with a flow of gastric juice; and the third form, gastrodynia neuralgica, of which we have the best examples in gouty, hysterical, and hypochondriacal subjects. It is often difficult, if not sometimes impossible, to distinguish neuralgic affections of the stomach from chronic ulceration, especially when this is situated at the lesser curvature; nor can we agree with Romberg, that the diagnosis is easy, even when the ulceration is
extensive. Within the last six months, two cases, in men at the middle period of life, have fallen under our notice, where, as proved by post-mortem examination, very extensive chronic ulceration, extending from the lesser curvature, destroying the whole of the coats of the stomach, and dividing the trunk of the left pneumogastric, had during life been regarded as forms of gastric neuralgia. In one the existence of lead in the system had further complicated the diagnosis. Death in both took place suddenly from rupture and effusion into the peritoneum. It is often remarkable with what indistinct symptoms, and with what little affection of the general health, these chronic ulcerations of the stomach may progress, until a fatal termination by rupture occurs. According to Romberg, the following may be enumerated as safe means for establishing a diagnosis: 1. The effect produced by pressure. In neuralgic gastrodynia, the most superficial touch instantly produces pain, whilst firm compression produces no inconvenience, but even relief; the reverse is the case in structural lesions. 2. The function of digestion is disturbed, and the secretions altered, and painful in disorganization; painless in neuralgia. 3. The sympathetic affections are characteristic of hyperesthesia, but absent in organic disease. The occurrence of thirst as a symptom of irritation of the pneumogastric is a fact of some interest. In a case, lately under our care, of inflammation, and sloughing of the glands and cellular tissue in the superior triangular space of the neck on the right side, following an attack of scarlatina in a child aged 3 years and 9 months, the trunk of the vagus was exposed, trismus came on, soon followed by general tetanic rigidity, opisthotonos, and death. One of the most remarkable symptoms was the urgent thirst complained of, although, from the proximity of the irritation to the salivary glands, the mouth was always moist with secretion. Polydipsia is rarely, however, to be regarded as the result of hyperesthesia of the vagus, as it probably was in this case, and practically neither this symptom nor bulimia admits of being treated as an isolated nervous affection. We have not space to enter into the inquiry of the dependence of hunger and thirst upon the vagus, Reid’s experiments showing that distension of the stomach, oesophagus, and pharynx, after its division in animals, is not dependent upon a loss of the sense of satiety, but rather upon paralysis, are not referred to by Romberg.

Hyperesthesia of the Nerves of Special Sense.—These are characterized by phenomena varying according to the nerve affected—being, in the case of the optic, luminous spectra; of the acoustic, different kinds of sound; of the olfactory, odours, generally more or less unpleasant; in the case of the gustatory nerve, where patients complain of bitterness, saltiness, or acidity in the mouth, it is difficult to separate the effects of disordered secretions from subjective states of the nerve itself. It is difficult to determine what part the nerve takes in the production of these symptoms, and how much depends upon the activity of the hemispheric ganglia, which we recognise as the centres of the intellectual operations. When, therefore, Romberg asserts that insanity may be caused by optical hyperesthesia, there is much doubt if he does not mistake disorders of the internal sense—“the mind’s eye,” as Shakspeare calls it—for irritation of the optic nerve. Upon the diagnosis in question, Romberg writes as follows:

“It is important, in reference to a diagnosis between central and peripheral dis-
ease, to ascertain the shape, and especially the sharpness, of the contour. If the retina be the part affected, the images present a sharp outline, which may be so marked, that, as the retina in this condition is sensible of itself, the patient may perceive parts of it or its bloodvessels, or even the movement of the blood corpuscles. The patients themselves see the phenomenon with such precision, that they attempt to give a delineation of it. Ruete, who has laboured successfully to establish the physiological relations of ophthalmic disease, has described such luminous phenomena as originating in the circumference of the optic nerve, and invariably commencing externally to the optic axis, in the direction corresponding to the optic nerve. They generally have a semilunar form; they are less frequently circular, with an asteroid border, and a silvery, golden, or coloured margin. The rays are in a constant state of intense cilia-like movement, appearing most frequently in the right eye, less frequently in the left, and, least of all, in both eyes at once; they follow the movements of the eye, and as the organ adapts itself to nearer or more remote objects, they increase in apparent size and intensity. If the distance of the object remains the same, they retain the same size only for a short time; they then begin to extend and to move to one side, and almost backwards; at last, the fire seems to dart from the forehead, the temple, and the zygoma, if the cause of irritation resides in the vicinity of the ciliary portion of the retina, as the lines of vision of this part pass through the localities alluded to. As the lines of vision approach the ciliary portion, the phenomenon ceases, because the nervous fibres terminate here. Its duration varies from several minutes to several hours, and it may return after weeks, months, and even years. The phenomenon remains luminous, whether the eye is open or closed, except that it is rather more vivid and distinct in the latter case. Vision is not impaired; even during the persistence of the phantasmata, objects that are not covered by the rays appear distinct and well marked; but those that interfere with them become indistinct, and look as if surrounded by a halo. Violent headache generally ensues, accompanied by a sense of tension and weight in the eye. If the central organ of the optic nerve is the seat of the affection, the luminous pictures are less defined; they resemble the images of dreams, are removed from the circle of human or animal forms, and, from the field of vision presenting no depth, appear disposed upon a flat surface."

When figures of men or animals, or other complex phantasmata, occur, or where words or sentences, or distinct voices, are heard, there can be no doubt of the implication of the intellectual centres. Delirium tremens affords us frequent illustrations. In this disease, the optical and acoustic phenomena are strikingly distinct, and even during convalescence, continue to trouble the patient. Not long since, we had under our care a man who, after an attack of delirium tremens, was annoyed for nearly five weeks by the constant repetition of the same sentence in his right ear; and many patients have told us how vividly, for days after an attack, they could see the objects which presented themselves during the stage of excitement.

Subjective sensations of the olfactory nerves are among the more rare clinical phenomena. Romberg remarks, that the cases hitherto published are from central disease. Fœtid gases evolved from the respiratory and digestive organs, and delay of the secretions in the sinuses connected with the nasal cavities, may lead to a fallacy in diagnosis.

Hyperæsthesia of the Sympathetic Tracts.—Under this head Romberg arranges angina pectoris, celiac neuralgia, mesenteric neuralgia, and neuralgia of the hypogastric and spermatic plexuses. Though an unlimited amount of time has been bestowed upon the subject by the best observers, our anatomical and physiological knowledge of the sympathetic is not so far advanced as to afford a sure basis for pathological theories, Romberg
is therefore careful to use the word "tracts," for though we can advance
but little that is certain respecting the sympathetic as an independent
system of nerves, we are able to recognise with some distinctness the
affections of the cerebro-spinal fibres which are commingled with it.
Hyperæsthesia of these tracts may give rise to reflected irritation, both
of the voluntary and involuntary muscles, and probably, also, to an
alteration in the functions of secretion and excretion. Romberg believes
that the peculiar sense of fainting and annihilation accompanying the
pain, and which finds an expression in the vascular system, and in the
pale and haggard appearance of the patient, in so-called gout in the
stomach, is pathognomonic of its seat being in the nerves of the celiac
plexus, as distinguished from the branches of the vagus. He also admits
that the development of carcinoma in the stomach may be a direct result
of long-continued celiac neuralgia.

"We do not possess positive proof," he says, "of the transition of hyperæsthesia
to organic derangement, still it may be assumed with much probability to take
place. Even during the neuralgic paroxysm, certain phenomena in the circulation
and secretion are known to occur. Neuralgia of the celiac ganglia often precedes
the development of carcinoma for many years. Frequent repetition and perma-
nence of hyperæsthesia influence organic formation, and give rise to structural
changes."

Hyperæsthesia of the Spinal Cord.—This title will no doubt lead the
reader to suppose that Romberg is a believer in all that has been written
in this country on so-called spinal irritation; he is, on the contrary, one
of the greatest opponents of this once fashionable nervous theory:

"In the first edition of the present work (1840), I pointed out that, to satisfy
the critical demands of science, we required more data about the disease in ques-
tion, and that medical men, after rashly affirming its existence, had delighted in
paradoxical and hypothetical arguments about it. I have, since that time, both in
my private and hospital practice, subjected the question of spinal irritation to a
rigid inquiry, and have arrived at the conclusion, that beyond the knowledge of
some irradiated sensations and reflex phenomena, it has contributed nothing either
to physiology or pathology, nor is it likely to do so. The patients generally being
females, much deception is practised upon the medical man; and, in addition to
this, the whole range of hysterical and neuralgic affections has been made avail-
able to obtain the materials for interpreting, or rather for misinterpreting, the
affection. In hysteria, the tendency to sympathetic and reflex phenomena is
frequently so much exalted, that irritation of the skin of the posterior as well as of
the anterior surface of the trunk, or the sternum, the abdomen, and especially
pressure applied to the ovarian region, is calculated to produce the entire group
of neuralgic and spasmodic phenomena."

The opinion here expressed is in accordance with that of the best
observers in this country and in France. Valloix's excellent article on
dorsio-intercostal neuralgia is worthy of perusal in reference to this sub-
ject. According to Romberg, hyperæsthesia of the spinal cord occurs in
two forms: either as a spinal malady, manifested by reflex action, without
any sympathy of the brain as an organ of perception, as we observe
in poisoning by strychnia in tetanus and hysteria,—or as excitement,
which becomes the direct object of the consciousness, and is characterized
by pain in its different varieties. In our experience, where morbid
changes—as softening, and the like—have been limited to the cord itself,
the pain complained of has not been great, and has occurred only in the
direction of those nerve-trunks which have had their origin at or above,
but contiguous to, the seat of injury.

We have watched cases of softening of the cord, where the protective
coverings have been healthy, without observing any modifications of
sensibility referrible to the seat of disease. It is, for the most part, only
where the membranes, bones, or ligaments, and the posterior roots of the
nerves are implicated, that there is an expression of pain in any degree
of severity. The following case, as bearing upon spinal irritation, appears
to us worthy of recording:

In February, 1853, we were requested to see a gentleman, aged 48, who
was said to be labouring under a very painful rheumatic affection, which
he dated from cold and fatigue at the funeral of the Duke of Wellington.
He had been treated in various ways without benefit, and for three weeks
previous to our visit had taken lemon-juice in large quantities, and was
the worse for it. The following report was made of his condition:—He
is about the middle height; moderately well nourished; light com-
plexion; pale; of a nervous and rather desponding temperament; skin
cool; extremities cold; no swelling in any of the joints; tongue moist,
with white fur; bowels regular; urine high coloured, normal in quantity,
and without deposit. Complains of great tenderness at a point on the
left heel, over the pisiform bone of the right wrist, and at a circumscribed
spot over the acromion process of either side. Percussion of the spines
of the vertebrae in the dorsal region gave him great pain, and on pressing,
even lightly, the seventh, he almost fainted. There was no pain or sense
of tightness in the course of the intercostal nerves; no weakness of the
legs or of the sphincters. At a subsequent visit, when, on taking his hand,
the spot over the pisiform bone was accidentally touched, he gave a sudden
shout of pain, quite startling. On examining the part, though there was
no appreciable affection of the tissue, yet he asserted that the pain on
touching it was indescribable. The neuralgic sensibility in the course of
the spine, and especially at the seventh dorsal vertebra, continued unab-
ated. Counter-irritation by blisters, the vapour douche, sedatives,
diaphoretics, and tonics, produced no impression on the hyperæsthesia.
The pain was far more intense when the skin over the seventh dorsal
vertebra was manipulated than is excited when there is disease of the
parts beneath. As the spring advanced, with change of air, and zinc in
gradually increasing doses, and a liberal allowance of wine, he slowly
recovered, though there was a partial recurrence of the symptoms for six
or seven months.

Hyperæsthesia of the Brain. Encephalalgia.—(Hirnschmerz, brain-
pain.)—The translator has headed the chapter “Cephalalgia,” which term
is too comprehensive, including all the painful affections to which the
head is subject, whilst Romberg here treats only of those which are
dependent upon lesions of the encephalon itself. Although, as is seen
from accidents in men and experiments on animals, the brain substance
may be extensively injured without giving rise to pain, yet it is notorious,
in clinical experience, that no symptom is more frequent when the same
parts become the seat of disease. Romberg rejects the theory of its
arising from insensible organs becoming sensible during a state of irrita-
tion and inflammation:
"In what manner," he says, "are we to reconcile these facts with the results of physiological experiments? Assuredly not by the theory that insensible organs become sensitive during a state of irritation and inflammation: we can have no stronger proof of the fallaciousness of this argument than is presented by the fact, of a portion of brain which has been forced out of the skull, and is attacked with inflammation, continuing painless. We obtain more information from the effect produced by pressure exerted upon the brain. Both hemispheres may be extirpated in a living animal without inducing paralysis, whilst the injection of a few drachms of fluid into the cranial cavity produces hemiplegia of the opposite side. This is owing to the uniform pressure exerted upon the distant motor nerves. In the same way, irritants act upon the sensitive points, though the seat of the former may be at a great distance; the different parts of the brain seem, in a measure, to be responsible for one another, and probably the organs of the living brain—an organ, be it remembered, enclosed in unyielding walls—may contribute to the propagation of an irritant influence: surgical observations of penetrating wounds of the skull, as well as the effect already alluded to, of holding the breath, appear to confirm this."

Admitting the truth of these remarks, we cannot believe that pressure and sympathy will explain all the cases of encephalalgia depending upon lesions of the brain-tissue. As Romberg himself states, hemorrhage into the brain is less frequently accompanied by pain than other diseases of the organ, though this cannot occur without producing increased pressure, and more rapidly than arises from development of tumours or abscesses. On the other hand, white softening, in which there is atrophy of the part, and a condition the converse of pressure, is often attended with great pain. We do not, therefore, reject the theory alluded to as summarily as Romberg does.

In general, neither the seat nor character of the disease can be determined by the seat or character of the pain, if we except the instances in which the membranes become involved by extension of the disease:

"The question as to whether the seat of the pain corresponds to the seat of the disease may be generally answered in the negative. Circumscribed alterations not unfrequently give rise to pain in the entire head, or in one half; derangement in the cerebellum is often characterized by pain in the forehead; in some patients the pain shifts about, while others, again, always feel the pain at that part of the head which happens to occupy the lowest position. The sensation as if the head were ready to burst accompanies diseases of trifling extent; while tumours of great bulk excite no feelings at all commensurate with their size. The situation of the disease affords no satisfactory key to the intensity and varieties of the pain."

Although Romberg considers pain as a symptom taken by itself to be but of little value in the diagnosis of cerebral lesions, yet, together with the history of the case, it is a most important phenomenon. By considering the combination, the relation, and succession of the other symptoms, the occurrence of derangement in the intellectual or voluntary centres, the increase of the pain after sleep, the character of the intermissions, in which, if there be organic disease, the patient is rarely free from all traces as well as the exciting cause, the age of the patient, and, we may add, the co-existence of other diseases—rigidity of the arteries, degeneration of the kidneys, &c., we may generally complete the diagnosis.

There is a form of headache occurring with disease of the arteries, to which Romberg does not especially allude. It has been noticed by Dr.
Bright, and in some particulars corresponds with the cervico-occipital neuralgia of Valleix, the pain being principally referred to the occiput and upwards in the course of the occipital nerves. A few months since, a case of this kind fell under our care, in a gentleman aged 56, who for four years had been troubled, almost daily, with pain in the head, of a dull heavy character, but sometimes more acute, and referred to the region of the head above described. The heart-sounds were natural, the digestive, secretive, and excretive organs healthy: he was of the middle stature, moderately nourished, and apparently of a nervous temperament, in part no doubt owing to his continued suffering. Most physicians of eminence in London had tried their therapeutics for the relief of his symptoms, but in vain, and had given various accounts of their cause. One day, in the midst of his usual avocations, the pain became more severe, he quickly became insensible, and died in five hours. The arteries of the brain were extensively ossified, and death had occurred from hemorrhage, with laceration into the lateral ventricles. Dr. Bright supposed that in these cases the pain might be due to irritation of the occipital nerves by ossific deposit in the vertebral arteries, with which they are in contact.

Neuralgia Cerebralis.—Under this term Romberg treats of hemicrania. We have great doubt if hemicrania depend primarily upon a neuralgic condition of the brain. From observation of its phenomena in others, and frequent experience of it ourselves, we have been led to regard it as originating in the sympathetic system of nerves, whereby the tonicity of the arterial trunks, distributed to the brain, is lessened, and for the time an atonic condition of the cerebral circulation produced. The experiments of Reid, Bernard, and others, upon the cervical ganglia of the sympathetic, seem to be in favour of such an hypothesis. The more prominent and characteristic symptoms of an attack, the imperfection of vision, the throbbing of the carotids, the sense of weight, tension, and heat about the head, the congestion of the eye on the affected side, the nausea, vomiting, and coldness of the extremities: as well as the phenomena of its subsidence, and the entire freedom of the interval, accord with such a theory. On the other hand, the intellectual faculties are unaffected, except so far as their exercise is attended by an increased severity of the symptoms.

Hypersæsthesia Psychica.

"I apply the term hypersæsthesia psychica," says Romberg, "to that frame of mind in which abnormal sensations are excited and maintained by directing the attention to impressions; it is commonly called hypochondriasis."

The classification of hypochondriasis with mental disorders has been admitted by the best authorities. There is often, however, in these cases, great difficulty in estimating the rapport du moral et du physique. Romberg treats of the subject but from one point of view, and sees in the functional and organic changes which often occur with hypochondriasis, only so many results of a psychical hypersæsthesia.

"Structural changes supervene in those organs which have hitherto been the stage upon which so many sensations, determined or increased by the patient's attention, have appeared. Thus a new period of the disease commences. The digestive organs, the liver, the stomach, the spleen, and intestinal canal, most frequently become the seat of the affection. Tumefaction or induration of the
organs may be recognised by palpitation and percussion. Hypertrophy and
dilatation attack the heart, and tubercle is deposited in the lungs. The organs of
sense and the brain are less frequently affected. The constitutional symptoms
correspond to the local malady. The complexion alters, nutrition becomes impaired,
and hectic follows; but through the chaos of symptoms, the red line of hypochondriasis may be traced; the sensations that are really present are increased, and
new ones are generated by the power of the imagination. The older physicians
distinguished between hypochondria cum materia and hypochondria sine materia,
a distinction which is still admitted. The former is considered to depend upon
somatic changes, and especially upon disturbances in the organs of digestion and
the abdominal circulation; while the latter is stated to be an independent mental
affection. No great acumen is required to see the mistake here committed, it
results from the history of the disease having been severed, and the successive
stages having been treated as distinct conditions. Hypochondriasis can only be
said to exist, if the mind creates new sensations, which, in their turn, give rise
to nutritive derangements."

We have not space to enter upon a discussion of these views; yet,
with all deference to so high an authority, we believe that the influence
of functional and organic derangements in producing hypochondriasis is
often more than a mere assumption, as Romberg regards it; and in a
large proportion of cases, the success of treatment depends upon our
viewing the disease under the two aspects of the physical and the moral.

With this rapid survey of the Hypoesthesia, we must conclude our
remarks on the neuroses of sensibility, and would occupy the remainder
of the space allotted to us in reviewing the Aciness or paralytic affec-
tions.

Dr. Todd justly remarks, that medical men are apt to speak of palsy
as if it constituted the whole essence of these maladies, though in no
instance has morbid anatomy done us better service than in demonstrat-
This is true in a like manner, though in a less degree, with the muscular tissue. Romberg gives a remarkable instance of arteritis, attended with paraplegic symptoms, to illustrate such a form of muscular paralysis. The case is, however, too complicated to admit of any rigid analysis; but the pathological principle insisted upon is universally admitted. During the course of last year, we were consulted in the case of a lady, aged thirty-two, who, subsequent to an injury of the middle finger of the left hand, began to suffer from paralytic weakness and wasting of the muscles of the left arm. The wound, though slight, had suppurred, and the whole finger was for a short time inflamed; but there were no symptoms of extension of the disease up the arm. On examination, the brachial artery was found hard and tender, and obstructed up to the point at which the sub-pectoral branches are given off. The temperature of the left hand was 77.5° Fahr., whilst that of the right was 97.4°. The left forearm was one inch less than the right. At the end of nine months, the pulse could be again distinguished at the wrist, and the muscles had nearly regained their usual power and size.

The conservatism of this important function of vascular supply is, for the most part, so admirably provided for, that we are apt to overlook the perfection of the arrangements which subserve to it. The rete mirabile of the pia mater, and the anastomosis of the large vessels at the base of the brain, provide against all general disturbances in this organ; but the supply of the principal ganglionic masses being by branches which have less communication, disease in them is soon followed by defect in the function and nutrition of the parts to which they are distributed. It is not, however, to the arterial branches only that we look for the causes of paralysis from deficient supply; the part played by the heart in these effects is beginning to be appreciated with greater precision; its fibres, its valves, and its orifices have in turn their share in the phenomena, according as the one or the other is affected by disease. Most observers will admit, that, from cerebral anemia, attended with syncope to syncopeal coma, followed by transient paralysis and actual disorganization from deficient supply, the gradations are easy, and, as Stokes says, "if not stages of the same process, at least proceed from one cause."

Dr. Todd, in the lectures before us, points out the intimate connexion of atrophic softening with sanguineous effusion.

"It (white-softening) very frequently,—I incline, indeed," he says, "to believe almost always,—is the precursor of apoplexy, and, therefore, we frequently find in these patches of white-softening one or more clots of blood of various sizes. The artery or arteries leading to the part are diseased; that portion of the brain fails in its nutrition; it passes into the state of white-softening; and the minute vessels, losing the support which they must receive from the firm brain texture, and being themselves often more or less diseased, give way, and allow the blood to escape into the tissue of the brain."

They who have had much clinical experience have had frequent opportunity of noticing the concurrence of these two conditions in different parts of the same brain, not only isolated, but frequently both conjoined. The appreciation of this relation is of great importance in a practical point of view, it having been too readily admitted that effusion of blood into the brain is a sign of vascular determination, rather than,
as it frequently is, of capillary defect. Rigid arteries, granular kidneys, and hypertrophied left ventricle, are not only coincident, but correlated conditions, which may induce apoplexy and paralysis, with a very variable character of the local lesion;—a sudden attack of renal coma; or the equally sudden supervention of paralysis from softening;—or a stroke of the *apoplexie foudroyante*. Had this relation been more commonly recognised, we might have heard less of the uncertainty of diagnosis in cerebral affections, and less expression of disappointment at *post-mortem* examinations, where sometimes much has been expected and but little found.

Dr. Todd's lectures, in many parts, set forth the relations here named with great clearness. Our space does not permit us to enter upon all the points of this wide subject, including capillary degeneration, plugging of arterial trunks by loosened vegetations, spontaneous coagulation in certain dyscrasias, arteritis, and endocarditis; on which, through the labours of Paget, Kirkes, Virchow, Todd, Romberg, Ruhle, Simpson, and Stokes, every day is adding to our knowledge.

Reflex Paralysis.—Under this term Romberg comprises such cases of paralysis as arise apparently from a morbid impression made upon the spinal centres through the incident nerves, and especially through such of them as are distributed in the course of the sympathetic tracts to the abdominal viscera. The subject is but little more elucidated by him than it has been by Stanley, Graves, and Stokes. It is one where illustrations are apt to be very fallacious, and where a more minute anatomical inquiry is necessary; in order satisfactorily to establish the negative facts upon which the theory rests. Whilst we write this we would not be understood to be sceptical on the subject; but no one can have perused the many cases which the above authors have brought in support of their views, without feeling that a large proportion will not stand the test of a rigid inquiry. Without a microscopical examination, the statement that no morbid appearances were discoverable in the cord cannot be accepted as positive evidence that none existed; and, besides, we find, in several of Mr. Stanley's cases which are referred to by Romberg and Graves, indications of the existence of such. In one it is stated, there was "an unusual vascularity of the membranes below the first lumbar vertebra." In another, "some turgescence of the vessels both in the membranes and substance of the lumbar portion, and a few drachms of transparent fluid in the theca, but neither the turgescence of the vessels, nor the effusion of fluid, were sufficient," says the writer, "to explain the paraplegia by pressure on the cord." And in another, "the pia mater covering the lumbar portion of the cord was very vascular, and there was effusion into the theca." For establishing a pathological principle, there is obviously need of more than usual reserve, especially if, as in the present instance, by its ready adoption we incur the risk of regarding as a functional change that which depends upon inflammation, or other nutritive changes.

Whilst we are ready to admit that, through shock, cold, or exhaustion, the motor centres of the cord may become paralyzed, we must express our opinion that reflex paralysis, from enteritis or diseases of the genito-urinary organs, does not rest upon altogether unequivocal evidence. When para-
ysis supervenes upon colic, independently of lead poisoning, it appears to be too hasty a deduction that the former is the cause of the latter. We should rather regard them as sequences, the colic being but the first appre-
ciable phenomenon of the nervous disturbance, which is more probable, since diseases of the cord are often preceded by such symptoms. Com-
haire's experiments, alluded to by Romberg, in which extirpation of the kidney in dogs induced a paralytic weakness in the hind leg of the same side, are not of much value, for we daily see atrophy, fungoid disease, and disorganization of these organs, without any such symptoms.

In the last six years, during which our attention has been particularly directed to this subject, two instances of paraplegia following upon stric-
ture of the urethra and disease of the kidneys have come under our observation, where the cord presented nothing abnormal to the unassisted eye beyond slight congestion of the superficial veins; and the surrounding parts, on the usual examination, appeared to be healthy; yet the cord itself was the seat of inflammatory exudation, and in one of the cases, a more careful examination of the spinal veins demonstrated the existence of phlebitis. Romberg makes three sections of this part of his subject: 1. Reflex paralysis, arising from intestinal affections, as colic, enteritis, and dysentery; 2. Reflex paralysis, dependent upon affections of the urinary organs; 3. Paralysis, depending upon affections of the sexual organs. The facts contained in Dr. Churchill's recent article on paralysis occurring during gestation and child-bed, seems to us to render still further doubtful the ready explanation which offers itself in the assump-
tion of reflex paralysis, although he probably draws a different conclusion. Of 22 cases of paralysis occurring during pregnancy, "12 were examples of hemiplegia, 1 of paraplegia, 4 of facial paralysis, 2 of amaurosis, and 3 of deafness." Of 12 cases occurring during or after labour, "5 were cases of complete hemiplegia; in 1, the arm only was affected; 1 was a case of complete paraplegia; in 1 the right, and in 1 the left leg, only was para-
lized; 2 were examples of amaurosis, and 1 of facial paralysis."

It is seen from this that, if we abstract the cases which may probably have arisen from local injury of the nerves during labour, or from conditions of the pelvic organs arising subsequently, paralysis from the spinal centres is not more frequent under these circumstances than other forms which can scarcely be referred to the operation of the law now under consideration.

From the beginning of pregnancy to the end of lactation, we have a fertile soil for the development of nervous affections, both functional and organic; and as the latter, favoured by changes in the blood and circu-
lating system, are apt to come on insidiously, and without any apparent exciting cause, the most rigid criticism is necessary before we can venture to assign them their place, and determine their reflex origin.

Romberg refers hysterical paralysis to this class. According to him, hysteria is a reflex neurosis, proceeding from the genital system being sometimes characterized by an excess of motility and sensibility, and at others, by reflex inactivity, under the various forms of paralysis, either as paraplegia, hemiplegia, or paralysis of single parts.

All will admit that this is an important aspect of hysteria, but so mul-
tiplex a subject cannot be comprehended from one point of sight. The
complication of hysterical conditions with moral perversion is more than an accident, as Romberg himself admits; and a large proportion of cases are obviously due, as Brodie has explained, to defect of the will in its objective relations. The curious phenomena referrible to the centres of volition, which may be induced by emotional conditions, even in healthy persons of either sex, have only recently begun to be studied with advantage, and are still too much deformed by the meretricious dress in which mesmerists and others have arrayed them, for the sober eye of philosophy to deign them a look of approval. Dr. Todd, without entering into the pathology of hysterical paralysis, writes as follows:

"I believe," he says, "hysterical paralysis is caused by a depraved nutrition of the nerves of the limb affected, or of some part of the centre of volition. Moral causes, no doubt, exercise an important influence in the production of this state, and the power of the will becomes impaired; but that a depraved state of general nutrition, which tells chiefly upon the nervous system or upon parts of it, is at the foundation of the malady, I think no one can doubt who considers fairly its natural history."

Notwithstanding so high an authority, we doubt if this theory will be so readily admitted. The very occurrence of such lesions would go far to remove the cases into another category; for if they essentially depended upon disordered nutrition, they could hardly admit of being called hysterical. Their sudden accession under mental emotion in persons previously enjoying good health, and their equally sudden disappearance, even though the affected muscles may have wasted by long disease, seem to contradict this theory; and such objections against it are strengthened by that well known fact in their history, that those parts of the body are most prone to hysterical paralysis whose movements are most distinguishably volitional, as the arm, leg, organs of voice, and the bladder being often singled out in a very characteristic way, without any reference to anatomical arrangement, and thus contrasting remarkably with paralysis having an organic origin. We suppose, therefore, that Dr. Todd refers to the predisposing influence of general derangements of nutrition, such as we see in anæmia, amenorrhea, &c., and not to sensible local changes in the nerves or nervous centres.

We regret that the limitation of our space prevents us from following Romberg, section by section, through this part of his subject. He has given a physiological account of the different forms of paralysis with a masterly hand. They who object that there is a deficiency in the practical character of his remarks, and a want in the therapeutical indications, must remember that these are to be supplied in some future volume, when he proposes to enter upon the disorders of nutrition (bildungskrankheiten).

We must now take our leave of this treatise. The translator has very ably executed his task, but the work shows many traces of haste in its passage through the press; thus we have "pulse fat" for "pulse full," "articular" for "auricular," "axillary" for "axial," "with any" for "without any," "hyposion" for "hypopion," "umblyopic" for "amblyopic," "interior" for "inferior," "deduced in size" for "reduced in size," "distend" for "destined," "having all" for "lining all," and many such like. Perhaps some readers would have been benefited by the transla-
tion of the word "decubitus" into "bed-sore." We would not, however, be hypercritical, and would congratulate our friend, Dr. Sieveking, on the completion of his labour, by which he has placed both the Sydenham Society and the profession under great obligations to him.

Dr. Todd's lectures have, for the most part, already appeared in the 'Medical Times and Gazette.' They are commentaries on cases which have presented themselves in his clinical course. The principal subjects discussed are the diagnosis, pathology, and treatment of hemiplegia, paralysis from lead, facial paralysis, cerebral symptoms from renal disease, syphilitic disease of the dura mater and periosteum, tetanus and trismus, chorea and hysteria. The remarks on hemiplegia are copious, and include the most important points of the subject, as hemiplegia from diseased vessels leading to white-softening and effusion of blood; hemiplegia following epilepsy; choreic hemiplegia; spinal hemiplegia; peripheral hemiplegia, and hysterical hemiplegia. The state of the muscles is particularly alluded to as affording indications for diagnosis and treatment. Three conditions are noted—1. Hemiplegia with relaxed muscles. 2. Hemiplegia with coincident or early supervening rigidity. 3. Hemiplegia with relaxed muscles, followed at a later period by contraction and rigidity. There is also a fourth class, in which the muscles are almost in their normal state. In hemiplegia following epilepsy;—in some cases of hysterical hemiplegia;—in disruption of the fibres from white-softening;—including a large proportion of ordinary apoplectic cases (provided they be not attended with extensive effusion of blood lacerating the brain or extending to the surface), the muscles are relaxed. When the cause of the hemiplegia affects the membranes and surface, and especially if it be of an inflammatory kind, rigidity is present from the beginning, and is indicative of irritation. In many cases of this class, the paralysis is not complete, and the rigidity is increased by an effort of the will. Where effusion of blood lacerates healthy brain texture, there is often with general relaxation of the muscles a slight rigidity of some of the flexors, or this may be excited by extending them roughly.

Cases of primary relaxation, followed at a later period by slow contraction and rigidity, especially of the flexors, are, according to Dr. Todd, due to a process of cicatrization, which he explains as follows:

"At the seat of the original lesion, whether it be simply a white softening or an apoplectic clot, or a red softening, with more or less destruction of the brain substance, there takes place an attempt at cicatrization, more or less perfect. Attendant on this there is a gradual shrinking or contraction of the cerebral matter, which, acting on the neighbouring healthy tissue, keeps up a slow and lingering irritation, which is propagated to the muscles, and excites in them a corresponding gradual contraction; while, at the same time, their nutrition becomes seriously impaired by the want of proper exercise, and the general depressing influence of the lesion."

It will be seen, from the above account of Dr. Todd's views, if they be correctly stated, that when rigidity comes on early it is due to a cause of active irritation. Although this may be generally so, we have in our note-books cases in which rigidity of a most marked and general kind was present from an early period of the attack, and where the lesion was yet of a passive kind, depending upon an obstructed vessel. Where
the softening extends to the surface of the brain, or where it implicates the superficial fibres of the pons Varolii, we have noted an earlier supervision of rigidity than could be attributed to cicatization; and in many of the cases where rigidity has come on later, and been most intense, there has been no evidence (post-mortem) of histological changes in the part allied to the production of cicatrix tissue.

A remarkable case of spinal hemiplegia is recorded, depending upon a fibro-cartilaginous growth from the odontoid process, compressing and flattening the cord to the left of the median fissure. At the commencement the paralysis was limited to the left side, affecting the arm more than the leg, and the power of motion more than sensation. The patient was a girl sixteen years of age. The catamenia had been arrested for six or eight months.

The illustrations of hemiplegic paralysis following, and sometimes even preceding, an epileptic attack, are of very great interest. The oversight of such an occurrence has, in our experience, been the source of many fallacies both in diagnosis and prognosis, as well as of serious errors in treatment; effusions of blood or other lesions having been diagnosticated where none existed, and a permanent paralysis prognosticated where the effects have been transient. Dr. Todd thus explains these results:

"The phenomena of an epileptic fit depend upon a disturbed state of the nervous force in certain parts of the brain—a morbidly excited polarity. . . . This undue exaltation of the polar force induces, subsequently, a state of depression or exhaustion, not only in the parts primarily affected, but in parts of the brain connected with them, according to the degree of the primitive disturbance. This state of exhaustion is very apt to continue as one of weakened nutrition, in which the brain tissue is more or less in the condition of white softening. If the parts involved in this be the convolutions, mental power, memory, perception, suffer; if deeper parts, as the deeper parts of the white matter of the hemisphere, and the corpora striata and optic thalami, then we have hemiplegic paralysis."

The relation of chorea to paralysis, discussed by Dr. Todd, is an important point in its pathology. It is shown, not only by the occurrence of actual paralysis, but we have observed, in many cases of chorea, wasting of the muscles of the affected side during the continuance of the choreic movements. The treatment of the disease points to the same atonic and exhausted conditions of the nervous centres.

Dr. Todd seems to have had some doubt of the correctness of the term peripheral hemiplegia, as applied to the cases he has described under this head, and we participate with him in his misgivings. Such a term is properly applicable only to hemiplegia dependent upon causes affecting the nervous trunks and their branches. Graves drew attention to such cases, and Romberg, as we have seen above, includes them in the class of reflex paralyses.

A striking instance of peripheral paralysis occurred to us, and which we have recorded, where a woman, from her situation as a cook, was exposed to draughts of cold air on the left side of the body, and which, as in facial paralysis from the same cause, led to general hemiplegic weakness and atrophy of the muscles. The cases described by Dr. Todd, as well as the one quoted by him from Cheyne, are hemiplegic but at one stage of their course, and then not completely so. As they progress, symptoms of
paraplegia and general paralysis supervene, and sooner or later there is
impairment of the mental faculties.

In the Gulstonian Lectures of 1849, our attention was drawn to this
subject, and since that time we have examined a case presenting the
symptoms met with in this class;—the brain was wasted;—the cerebro-
spinal fluid was in large quantity;—there were spots of brown discolora-
tion in the optic thalami, and the lining membrane of the fourth
ventricle was thickened and roughened with translucent granulations.
Some of the cases begin with paraplegic rather than with hemiplegic
symptoms—as numbness and coldness of the feet. Pathology refers them
to atrophy and degeneration of the centres, rather than of the nervous
trunks or their expansions.

Although given to students Dr. Todd’s Lectures, cannot but be very
acceptable to the profession at large, as conveying, in a practical manner,
the views of their distinguished author on some of the principal points in
the pathology of nervous affections.

William W. Gull.

Review VIII.

1. *Observations on the Mortality of the Scottish Widows’ Fund and Life
Assurance Society, from 1815 to 1845.* By JAMES BEGBIE, M.D.,

By ROBERT CHRISTISON, M.D., V.P.R.S.E., Professor of Materia Medica
in the University of Edinburgh, &c. &c.—Edinburgh, 1853. (Re-
printed from ‘Monthly Journal.’) pp. 56.

3. *Observations on the Causes of Death among the Assured of the Scottish
Widows’ Fund and Life Assurance Society, from 1846 to 1852.* By
JAMES BEGBIE, M.D., F.R.S.E., Fellow of the Royal College of
Physicians, &c. &c.—Edinburgh, 1853. (Reprinted from ‘Monthly
Journal.’) pp. 31.

That the statistics of the causes of death deducible from the records of
Life Assurance Societies were likely at some time to prove valuable to
the profession, must, we have little doubt, have occurred to many. A
certain period of existence, however, was required before the details of
the mortality of any single office could be rendered valuable from
numbers, even though their accuracy made them otherwise available.
Regarding value, too, much improvement has resulted since the institution
of the first Life Assurance Society, the Equitable, of London, in 1801:
for it is since that period that the business of life assurance has attracted
so much attention, embraced so many interests, and, by the devotion of
many able and qualified persons, has assumed the important position it
now occupies. Along with this improvement in the business of life
assurance itself, there has been a great advancement in the capabilities of
medical science as connected with, and adapted for it. It is within the
same period that some of the most useful of the present means of diagnosis
have been discovered, and that others have been perfected; and if we
select the single instance of auscultation, it is probably not going too far

to say, that without the discovery of Laënnec the insurance of human
life could not have occupied the commanding position it now does. If,
then, we consider how much medical science has done, and continues to
do, in the business of life assurance; how large a share of the respon-
sibility necessarily involved in the selection of lives, falls upon the
physician, it does not seem unreasonable to entertain the hope that for a
time the tables may be turned, that the creditor may now become debtor,
and that the business of life assurance may be caused to yield some fruits
to medical science: thus gratefully affording to our profession a share in
benefits which the latter has so largely contributed to bestow.

To Dr. Begbie is due the merit of first directing the attention of the
profession to the valuable statistics of mortality contained in the records
of life assurance offices, and in order to render such statistics practically
useful, to the necessity of making the certificates of the causes of death
furnished by different medical men, more trustworthy and complete.
Prior to the publication of Dr. Begbie's first report, in 1847, a table,
showing the diseases—as certified to the court of directors—of which
persons assured by the Equitable Society of London had died during
thirty-two years, from 1801 to 1832 inclusive, was published by the
learned actuary of that office. The results of this otherwise interesting
report cannot, however, be regarded as of any practical value, owing to
the many and serious defects in the nosological arrangement adopted by
the Equitable, so that, in the words of Mr. Neilson, in his very instructive
pamphlet on the 'Mortality of the Provident Classes in this Country, and
on the Continent,' the paper of Dr. Begbie, to the title of which we have
given the first place at the head of this article, was, up to 1853, "the only
published document of any importance which gives the mortality from
different causes amongst assured lives." The example given in Dr.
Begbie's paper has, during the past year, been followed; and we have now
to congratulate the profession on the possession of two additional most
instructive and valuable documents on this subject; the one, an extended
investigation into the mortality of the Scottish Widows' Fund, by the
same author; the other, into that of the Standard, by Dr. Christison.

To these two reports, viewed chiefly in their relation to medical
statistics, we now propose to direct the attention of our readers. It is in
this respect that the nature of the reports mainly differs; that of Dr.
Christison being chiefly occupied with the mortality from different
diseases as affecting the business of life assurance offices; that of Dr.
Begbie, while also directed to this important feature, entering more fully
and strictly into medical details, for which greater opportunity was
afforded, owing to the larger numbers he had to deal with. In both
papers the various causes of death are given with much accuracy; and
comments of great practical value, as well to insurance directors as to the
physician charged with the selection of lives, are made. We now propose
to follow both authors in their remarks upon some of the most frequent
causes of mortality.

First of all, let us present a comparative view of the mortality in the
two offices, as included in the reports of each.
Scottish Widows’ Fund.

Deaths from 1815 to 1846 642
 " 1846 to 1852 690
 Total 1332

The deaths during the seven years from 1846 to 1852 inclusive, are thus seen to exceed by 48 the deaths during the previous thirty-one years, or from the period of the Society’s first institution. This apparent paradox is, however, easily accounted for, by the rapidly augmenting number of entrants, and the advanced ages of the earlier insurers. It is to the 690 deaths we propose chiefly to refer.

Standard.—The emerged risks referred to by Dr. Christison amount to the much smaller number of 293.

The first great cause of mortality arises from epidemic and infectious diseases. In the Scottish Widows’ Fund, 130 of the 690; and in the Standard, 69 of the 293, arose from this source; the chief diseases being continued Fever and Asiatic cholera. From a Fever there occurred, in the experience of the Widows’ Fund, 63 deaths, or fully nine per cent. of the gross mortality: from the latter 27; in that of the Standard, from fever 38, and from cholera 20. This is a class of deaths from the scrutiny of which it is not possible to deduce any lessens of instruction whereby to reduce the mortality from it; for it is clear that no foresight or precaution, whether in regard to the family or personal eligibility of the proposer, of universal or even general application, can be adopted so as to guard an insurance office against loss by fever or by cholera. We say of general application, because there are some means of less general or special application which ought to be, and to some extent already have been, adopted for this purpose. For example, there are certain professions and callings, which more than others expose persons to the influence of infectious diseases: and there are certain districts in which infectious diseases, and particularly fevers, are known to be both more prevalent and more frequently fatal than in others. On these points the papers contain much information, and many useful hints.

“It appears necessary, therefore,” says Dr. Christison, “for the security of assurance companies, that in the medical and all other professions, necessarily much exposed to infection in great towns, it should be made a condition of acceptance, that the proposer has either already had typhus, or has been freely exposed without taking it.” (p. 15.)

In speaking of the mortality from fever in the Widows’ Fund, Dr. Begbie remarks:

“Of the 63 deaths, 38 occurred in Scotland, 14 in Ireland, and 11 in England,—a much larger number having taken place in Ireland in proportion to the number of the assured, but not more so than our knowledge of that country had led us to expect.” (p. 5.)

At another place the same author observes:

“On the former occasion of our report we were called to remark, that of 54 deaths from fever, one-sixth part occurred among members of the medical profession—an experience which had led the directors to view with suspicion the proposals of medical men who had not previously passed through the disease, or 27-xiv.
whose residence or duty subjected them to a more than usual exposure to contagion. It may be owing, in some measure, to the caution thus exercised, that only two deaths are, on this occasion, recorded among the members of the medical profession.” (p. 7.)

Of the 63 deaths from fever, no less than 23, or upwards of one-third, Dr. Begbie found to have occurred in 1847, a year when, as is well known, the disease prevailed very generally over the British islands. Taking the total number of deaths from fever in the experience of the Widows’ Fund, only 3 occurred between 20 and 30 years of age, 23 between 30 and 40, 38 between 40 and 50, 35 between 50 and 60, 16 between 60 and 70, and 2 after 70 years of age. Of the 38 deaths in the Standard’s experience, 3 were between 20 and 30, 8 between 30 and 40, 9 between 40 and 50, 11 between 50 and 60, 4 between 60 and 70, and after that age only 3. Some interesting remarks are made by Dr. Begbie in regard to the period of the disease at which death took place, but on this point we must refer to the paper itself. The experience of both offices in regard to cholera, just as with fever, permits the deduction of little practical instruction, though it affords some interesting points for consideration. Of the 27 deaths in the Widows’ Fund, 23 were those of males, and 4 of females. One victim only belonged to the medical profession; of the 27, 10 deaths occurred in Glasgow, a city in which the disease committed great ravages; and not one occurred in Edinburgh, which in 1848 and 1849, though not preserved from cholera, was more leniently dealt with. The opinion that cholera chiefly attacks unsound or enfeebled constitutions, receives no countenance from the experience of the Standard, according to Dr. Christison; but the argument he adduces against it, from the fact of 17 of the 20 victims of the disease being regarded, at the period of their selection for assurance, “above the average, and many of them as first-rate lives,” does not appear to us to carry much weight, for it is quite possible that lives deemed free from organic disease, and altogether eligible for assurance one year, may, even before the lapse of another, be in a totally different condition; and this is much more likely to be the case when, as in one of Dr. Christison’s own examples, the insurer survived not one year only, but two-thirds of his expectation term. While, therefore, disposed to accept the fact, because established by post mortem examinations, we demur to the argument by which, in this instance, it is sought to be supported.

We pass on to the mortality from diseases of the brain and nerves. In the experience of the Scottish Widows’ Fund it is here that the mortality reaches its highest rate, and in that of the Standard it is only exceeded by the deaths from infectious diseases. From diseases of the brain and nerves, there have occurred in the Widows’ Fund no fewer than 150, or 21½ of the total mortality. In the Standard, 53 have been cut short from the same causes. Apoplexy and palsy are the two most fatal diseases under this division. In the Standard, 26 deaths resulted from the former, and 15 from the latter. In the Widows’ Fund, 54 and 28 respectively. In combining the experience of both of his investigations in regard to the period of life when apoplexy and palsy occur, Dr. Begbie finds the statistics of Rochoux, so frequently quoted, amply confirmed. He thus analyses the results: Of 154 deaths, 37 only took
place before 50, and 117 after that age. Nearly one-third of the whole occurred between 60 and 70, and twice as many between 60 and 70 as between 70 and 80. While quite disposed to agree with Dr. Christie in the remark that much is still left for medicine to accomplish, in order to determine what is the organization, and what the other circumstances favourable to the development of the diseases of the brain, particularly apoplexy, we think that already we possess, to a certain extent, these means, and that, from investigations such as his own and Dr. Begbie's, we are likely soon to make them more useful and perfect. It is impossible to exaggerate the importance of the connexion of cardiac with cerebral disease, particularly of the apoplectic nature. And it is also too well known that apoplexy finds its victims in persons who exhibit in many ways a marked proclivity to cerebral affections; and very frequently in hereditary descent, and at exactly the same period of life as a father or progenitor has been cut off.

"Among the victims of apoplexy and palsy, as well as of disease of the brain in general," writes Dr. Begbie, "who have, during the last seven years, become claimants on the benefits of the Widows' Fund, there were many of whom it was known, previous to admission, that they had inherited a predisposition to these cerebral diseases; of many, that they had been affected with rheumatic fever; and of others, that they had suffered from, or were predisposed to, gout. The influence of gout and acute rheumatism on the heart and great blood-vessels, and the injurious effects of intemperance, as aiding and engendering a predisposition to cerebral disease, is still a subject too little considered in conducting the business of life assurance. Apoplexy and palsy are the two diseases of the class which it becomes the directors and medical referees carefully to study and guard against, and there is reason to hope that the same strictness of rule, applied to the examination and admission of those suspected of tubercular disease of the chest, when brought to bear on those inheriting predispositions to affections of the head, may lead to a corresponding diminution in the rate of mortality." (p. 11.)

In regard to the rapidity of the fatal issue in cases of apoplectic or hemiplegic seizure, the following interesting facts are elicited in the experience of the Widows' Fund. Of 50 cases, death took place in 25, or in one half, within the first twenty-four hours; while in 19 of the 25 it occurred within the first twelve. In the remaining 25 cases, the fatal event took place from the second to the twenty-first day after the occurrence of the apoplectic attack, the largest number of deaths being on the second and third day.

In speaking of the mortality from diseases of the respiratory organs, Dr. Begbie notices a reduction in the experience of the Widows' Fund as compared with that of the former investigation. In 1847, the mortality from chest affections amounted to 23 1/3 per cent. of the total loss; in the present report, it is found to be reduced to 18 3/4 per cent. This change is proved to be chiefly due to the diminished mortality from consumption, and is, in all probability, the result of the care and caution exercised by the directors in the selection of lives as far as possible free from consumptive taints, and to the rejection, as ineligible, of all the younger applicants of assurance in whose immediate family tubercular disease has unequivocally manifested itself. Of the 690 deaths, 42 occurred from consumption—that is, 6 per cent. of the gross mortality; of these 42, 6 died between 20 and 30; 12 between 30 and 40; 10 between 40 and 50; 10 between 50 and 60; 3
between 60 and 70; and 1 at the unusual age of 73. In the experience of the Standard, of the 293 deaths, 29 were caused by consumption. In speaking of consumption, Dr. Christison separates it from the affections of the respiratory system, and includes it, with cancer, under the head of diseases of deprived constitutional habits. Of the 29 deaths, 1 fell between 20 and 30; 18 between 30 and 40; 4 between 40 and 50; 6 between 50 and 60; and 2 after 60. Hence 17 deaths took place under 40 years, and no fewer than 21 under 50. Consumption, perhaps, of all the diseases from which selected lives are known to suffer, is the one to which most attention has, in connexion with our present subject, been directed. It is, also, a disease which all medical men who have had much to do with the selection of lives for assurance, and both authors of the papers under review, will be agreed in regarding as one from whose risks life offices are now, in no small degree, relieved. This is, of course, owing to the circumstance to which Dr. Christison thus alludes: “There can be no doubt that much greater loss has been saved by the vigilance of the directors and their officers in avoiding consumptive risks.” This might almost be rendered in different words by expressing the advantages which have accrued to assurance offices by the careful examination into the family history of every applicant, now practised by the medical officers of all life offices, but first acted on by the Scottish Widows’ Fund. In the case of consumption, the value of such inquiries is amply attested by Dr. Christison; but it appears to us that, in almost all cases, the same diligent and careful investigation of family history and hereditary predisposition is called for. It is, in a word, the prevailing diathesis in the family of a proposer for life assurance which must be taken chiefly into consideration; the party proposing may, in his own person, have exhibited no marked peculiarity of habit of body, or tendency to disorder of system; but it may—indeed, undoubtedly will—lead to a more accurate estimate of his probable longevity, and immunity from, or proclivity to, disease, if the family history of his nearer relatives be inquired into. Such a one, perfectly free from recognisable disease or disorder at the usual youthful period of first effecting a life assurance, may have lost a father, or mother, grandfather, or grandmother, or other near relative, at a maturer age, of gout, or of pleurisy, or of carditis intimately connected with the gouty or articular poison, the knowledge of whose existence in his own system is thus alone disclosed, and from which cause the insurer’s life is not unlikely, at something of the same period of life, to be terminated. This, we firmly believe, is not carrying the case too far. Dr. Christison says: “Physicians know little of the constitutional and other circumstances which predispose to pleurisy.” We do, however, know something of these; for—not to multiply examples—that peculiar disordered condition of the constitution which results in degeneration of the kidney, or Bright’s disease, leads to pleurisy—frequently most severe, and often fatal—and rheumatism and gout, and other allied disorders, lead to both, so as to convince us that, if ever the “little” we do know is to become more, and to prove valuable in the selection of lives for assurance, it will be by the study of the diathesis of disease, if we may use the expression, and of its hereditary transmission. The experience of the Widows’ Fund, in regard to the periods of life at which phthisis proves fatal, is thus referred to by Dr. Begbie in his first report:
"In the experience of the Society, the largest number of deaths took place between the thirtieth and fortieth years: 9 occurred between 20 and 30; 35 between 30 and 40; 15 between 40 and 50; 7 between 50 and 60; and 5 between 60 and 70. The period between 30 and 40, including both, numbers 37 deaths, or more than a half of the total mortality; and the age of 39 alone numbers 9 deaths, the largest in any one year, and equal to the first of the decennial periods, and exceeding considerably either of the two last." (p. 11.)

Commenting on this experience, Dr. Christison remarks:

"Of 72 deaths from consumption, after the age of 20, 22.2 per cent. occurred between 41 and 50, 9.7 between 51 and 60, and 7.0 above 60—that is, 38.9 per cent. above 40, and 16.7 above 50. The experience of the Standard Life Assurance Company during the last five years is to the same purport:—Of 29 deaths from consumption, 13.8 per cent. occurred between 41 and 50, 20.7 between 51 and 60, and 7 above 60—that is, 41.5 per cent. occurred above 40, and 27.7 above 50." (p. 43.)

These statements appear to us both of interest and value; they correct the statistics furnished by the Equitable Society from what must have been faulty data—for though phthisis does often occur after the age of 40, it is not so alarmingly common between that period and 80 as these statistics would lead us to believe. On the other hand, the statements of Drs. Christison and Begbie confirm, in great measure, those of other authors; and being founded on carefully examined data, and with an earnest desire after truth, they afford us a starting point for other and still more extended investigations.

From diseases of the heart and great bloodvessels, there were 21 emerged risks of the 293 in the experience of the Standard; and of the 690 in that of the Widows' Fund, there were no less than 66, or 9.1 per cent. of the whole. Of these 66 deaths, 11 were caused by aneurism, and 55 by disease of the heart itself. Combining the experiences of both offices, 6 deaths occurred before 40, 17 between 40 and 50, 31 between 50 and 60, 27 between 60 and 70, and after 70, 8. "The morbid alterations of the heart chiefly noticed," says Dr. Begbie, "are hypertrophy or enlargement principally of the left ventricle; dilatation chiefly of the right chambers; valvar imperfection of the mitral and aortic orifices; ossification of the coronary vessels; and fatty degeneration of the muscular fibre of the heart." Both authors are particular in directing attention to the connexion of acute rheumatism with cardiac disease; a subject of great importance in the business of life assurance, to which Dr. Begbie drew the notice of the directors of offices very fully in his first report; and which is now beginning to be by them thoroughly appreciated. We cannot agree with Dr. Christison, when he says, as the result of his own experience in the Royal Infirmary, as well as in private practice, that "rheumatism is not so very often associated with inflammation of the pericardium and endocardium here, as it undoubtedly is in London, by Dr. Latham's showing." We have before us an account of 16 cases of acute rheumatism, admitted into the Royal Infirmary of Edinburgh during a period of eight months, and of these no less than 10 suffered from the extension of the rheumatic inflammation to the heart. The question raised, however, by Dr. Christison is a very important one; and it is not unlikely that the statistics of insurance offices may hereafter prove valuable in enabling us to determine, whether or not in certain
situations or localities, the heart is less likely to become affected during rheumatic fever than in others. The experience of the Widows' Fund and Standard differs on the point in question. Of 53 persons assured by the Widows' Fund, who died of diseased heart, there were 13 who had suffered from acute rheumatism before acceptance; whereas in 17, of what are called adequately recorded deaths in the Standard's investigation, only 2 occurred in persons ascertained to have suffered from rheumatism.

Diseases of the organs of digestion is another class from which insured lives suffer in large proportion; and it is one, writes Dr. Begbie, "which calls for particular attention on the part of the directors of life assurance societies; and there cannot be a doubt that, by instituting a more rigid inquiry into the habits and mode of living of the parties proposing insurance, the number of deaths might be materially reduced. The diseases of the organs of digestion are especially those of intemperance, both as regards eating and drinking; and a careful examination of the documents in the possession of the society, shows that too many have been admitted on the ground of their good health, while their habits and mode of living might have given rise to serious doubt how long this was likely to be preserved." (p 21.) These sentences appear to us alike pregnant with important truths, and suggestive of what must prove to be a better and a fairer discrimination and acceptance of lives. The grounds indicated in the passage now quoted, for the rejection of otherwise eligible lives, are most righteous; for while we are, on the one hand, entirely opposed to the narrowing and exclusive system in insurance, of which we see some symptoms; and while we feel deeply for many lives which are wisely, because necessarily, rejected from the benefits of life assurance, at least, on ordinary terms—we confess to feeling no sympathy for that other class, who may have been accepted, but would have been rightly excluded—whose disease, though of course inflicted by a higher hand, is undoubtedly due, in great measure, to their own folly and sin. Insurance of life for mutual benefit has always appeared to us, if we may be allowed the expression, a great moral mistress; and we have little doubt, that over all well-regulated minds it has a moral weight, and by those persons who share in it, it is so regarded. Once insured, a man is bound, not by personal or family motives merely, but by the even higher claims of being answerable to other and fellow-sharers in insurance benefits, to maintain his bodily health in as high a state of vigour and excellence as possible, and so to avoid all excesses which will infallibly lead to a different result. Thus, often reflecting, we have conceived the idea that insurance offices, established to meet the wants of persons lower in the social scale than those assurance presently benefits, might take the place, in certain cases, at least, of temperance or total abstinence associations. We want assurance offices for the lower orders; and we desiderate the total destruction of burial societies. Any man who is convinced of the folly and sin of intemperance, and has sufficient moral vigour and courage left to determine on a wiser and better course of life, might effect an insurance in such an office as we have indicated; and his premium paid weekly or monthly, while the tangible proof of his own reformation, would stimulate and encourage him.
The chief diseases included under the head of Organs of Digestion, are those of the Stomach, Bowels, and Liver. They are thus tabulated:—In the Standard—Organic disease of the stomach, 11; of the liver, 11; dysentery and diarrhoea, 11; obstruction of the bowels, 1. Of diseases of the stomach and bowels there were, in the Widows' Fund, 34; and of the liver, 34; the large mortality being between the ages of 50 and 60. The only other source of mortality to which we shall allude, is that from disease of the urinary organs, which, in the experience of the Widows' Fund, amounts to 30, or \(\frac{4}{9}\) per cent. of the whole; in that of the Standard, to 8 deaths only. It is probable that the per centage of deaths in both offices would have been raised—certainly so in the Standard—had there been a nicer and more truthful distinction of the dropsical cases which occurred; and several of which, from want of more certain information, are placed under the unmeaning title of Diseases of Doubtful Seat.

We must here bring our remarks to a close, having referred, as proposed, to some of the more frequent causes of mortality, as given by both authors. We might continue our observations, and with great pleasure and propriety transfer to our pages many of the interesting and valuable remarks with which, in both pamphlets, the details of the fatal causes are accompanied; but as both are easily obtainable, we prefer recommending their attentive perusal to our readers.

The subject of the mortality of insured lives, viewed in both aspects—medically, and as affecting the business of life assurance—is one for which much still remains to be done; but access to the hidden stores of useful information has been obtained; the Equitable, the Scottish Widows' Fund, and the Standard, in the persons of their directors and medical advisers, merit our warmest thanks. We shall look for further insight from the extended investigations of the latter; and we shall also look for fellow-labourers with them in the same rich and extensive field; for, placed in such responsible and honourable, but desirable, positions, our profession has a right to expect a harvest from their labours.*

Review IX.

Observations on the Structure and Development of Bone. By John Tomes, F.R.S., Surgeon-Dentist to the Middlesex Hospital; and Campbell De Morgan, Surgeon to the Middlesex Hospital. (‘Philosophical Transactions,’ 1853.)

No part of physiology has undergone a more complete revolution, within the memory of man, than that which treats of absorption. Five-and-twenty years ago the Hunterian doctrines reigned supreme. Hunter, whose very errors have a certain grandeur, had propounded a most com-

* We beg to direct the attention of those interested in this subject to two very well considered letters on the medical department of life assurance by Horace Dobell, Esq., the second of which particularly contains many suggestive remarks, in which we entirely concur. Also, to a very valuable pamphlet from the pen of the late lamented staff surgeon Dr. Henry Marshall, entitled, ‘Memorandum for the procedure for effecting a Life Assurance, with Observations on some of the points which require to be considered by the Directors of an Association for the Assurance of Lives.’*
prehensive scheme, in which the power of absorption, in every possible degree and variety, was attributed to the lymphatic vessels. These he supposed to possess the function, not merely of introducing new material into the animal body, and of removing the old, but likewise of modelling and giving the finishing touch to all organic forms; for it was assumed that the various tissues were first roughly cast, as it were, by the blood-vessels, and then pruned of all excrescences and superfluities by the absorbents. And not merely so, but the removal of tissues before an increasing abscess or aneurism was ascribed to the same agents; ulcers were considered the work of the devouring "mouths of the absorbents;" and the formation of ulcers in bone and cartilage was taken as an irre-fragable proof that those tissues must possess these vessels, though so small as to defy the most microscopic search.

The first inroad on the established belief was made by the investigations begun by Magendie, and carried on by various observers down to Liebig, into the fact of imbibition by the blood vessels; and by the knowledge, gradually gained, of the circumstances regarding the fulness of the vessels and the composition of the blood, which cause exudation from, or absorption by, the vessels, as the case may be.

Then came a new phase of opinion. The observant and practical surgeon, Aston Key, was led, by what he saw in the processes of disease, boldly to reject the Hunterian hypothesis, and to declare that ulceration was not an absorption, but a physical degeneration and liquefaction; except that, in some instances, ulceration of cartilage was effected by means of a false membrane creeping over its surface, which he believed to have the power of absorbing the cartilage; or by means of granulations springing from the bone, which he supposed able to eat through it from its attached surface.

We could, did our space permit, give an amusing account of the opposition which Key's doctrines met with at the hands of physiologists, so thoroughly imbued with Hunterian doctrines that they were absolutely incapable of comprehending any vital process whatever in which action of vessels was not concerned.

But these quarrels were soon forgotten in that greatest change of all—when physiologists began to scrutinize the structure and vital processes of tissues themselves, and when cell growth took the place of organization by means of capillaries, and modelling by absorbents. Amongst the earliest workers in the microscopic school, Good sir soon began to investigate the processes of ulceration and absorption; and arguing from the phenomena of the absorption of chyle and lymph, he adopted and worked out Key's theory of the absorption of cartilage by means of a vascular membrane; illustrating it by the light of the cell theory, and believing that he could demonstrate the law of the growth of one set of cells at the expense of another, and the fact that not only was articular cartilage absorbed by the instrumentality of an active cell-growth on its surface, living on it, and increasing as it diminished, but that all other ulcerations were caused in the same way.

Having given this rapid sketch, the relevancy of which to the matter in hand will soon appear, let us turn to Messrs. Tomes and De Morgan, and see what additions they have made to our knowledge of the structure, development, and absorption of bone.
And, following the plan of our authors, let us begin with a glance at a transverse section of the shaft of a long bone. Here we have the spectacle so familiar to our readers—the central medullary space; the numerous smaller apertures, well known as the Haversian canals for bloodvessels; the series of concentric laminae of bone surrounding each of these canals; and the numerous small cavities, or lacunae, lying amongst the laminae, and having minute tubes, or canaliculi, radiating from them. Each Haversian canal, with its surrounding laminae and lacunae, forms a separate entity—an Haversian system; and of such systems all bone is essentially composed: differences in density and porosity being due to the greater or less compactness with which these systems are packed together, and to the size and number of the canals, not to any essential difference in structure.

But a closer inspection will reveal some other points in our transverse section that must be noticed, and for our knowledge of the real signification of which we are indebted to our authors.

For instance: a long bone is composed of a number of Haversian systems, packed together like a bundle of rods. Between these systems there must be interstices. Now, let the observer notice that these interstices are filled with bone tissue; which is not amorphous, as if merely interstitial, but is composed of patches of laminae, curved and parallel, but broken and fragmentary. Now, how is the presence of these interstitial laminae, as they are called, to be explained? It may be seen that they are not related to, or continuous, or conformable (as the geologists would say) with the strata of the adjoining Haversian systems; but their regular parallel curves show them to have some relation, not obvious at first sight. What is this relation?

Then, again, if any one Haversian system be closely inspected, it will be seen that its innermost ring, forming the canal for the vessels, is smooth and oval; but that its outer ring is more or less waved and irregular in outline, fitting in, like a piece of a dissected map for children, between the irregular patches of interstitial laminae by which it is surrounded.

Further than this, a careful scrutiny of the section will reveal that, in addition to the smooth oval apertures of the Haversian canals, each of which is surrounded by one unbroken lamina, there are other spaces, widely different in character. These (which our authors propose to call Haversian spaces) are irregular—jagged in their outline; which outline, instead of being formed by one smooth unbroken lamina, is formed by the irregular and broken edges of several Haversian systems of laminae.

But it must be evident, that if any one entire Haversian system were taken clean away from out of the irregular patches of broken laminae which surround it, the empty space left would be exactly similar to, or more properly, exactly identical with, one of those spaces which we have described as Haversian spaces.

If these points be borne in mind, our readers will be prepared for the explanation which our authors have given of them, which is this: that bone is not a thing of permanent substance, but that portions of it are incessantly disappearing, leaving the irregular spaces which our authors have designated Haversian spaces; that these spaces so formed are filled
up with new Haversian systems; whilst the remains of the older systems are found interspersed amongst the new ones, in the form of the interstitial laminae.

"This," say our authors, "is a very important fact, as it demonstrates that the old tissue is removed in masses, and a new one developed in its place. It has long been taught that the older particles of an internal tissue are removed by absorption, and new ones substituted, and this throughout the life of the individual. But the authors believe that they have demonstrated it for the first time."

We shall return to this part of the subject hereafter; for the present, having briefly sketched the Haversian systems, and our authors' views of their vital history, we may complete our survey of the parts visible in a section of bone, by noting the ultimate structure of bone tissue: which is not, as is sometimes described, fibrous, but is composed of granules or granular cells, imbedded in a more or less clear homogeneous matrix; the laminae in which the tissue is arranged being constituted by an alternation of the granular with the transparent structureless material; and lastly, that the circumferential laminae, which are usually described as forming the surface of bone, are entirely absent in the bones of fast growing animals, and only present in those of adults, whose bones have attained their full diameter, and in those of young individuals whose growth from any cause is arrested.

Having thus plunged in medias res, let us now go back, and, as briefly as is consistent with intelligibility, relate ab ovo what our authors tell us of the processes of development by which bone attains its perfect condition. And here we meet with an instance not uncommon in the history of development, of an end attained by two different series of means; or of one process employed for the original formation, another for the increase, extension, and renewal of a tissue. For bone may be developed in either of two forms: either through the medium of cartilage, or of osteal cells. Bone in general is first formed, and cylindrical bones increase in length, through the medium of cartilage; but the flat cranial bones increase in size, the cylindrical increase in breadth, and all receive renewal of their tissue internally, by means of the osteal and lacunal cells. Let us describe the cartilaginous process first.

"Temporary cartilage," say our authors, "when it first appears in the embryo, consists of an aggregation of closely-packed nucleated cells, which in the process of growth become separated by the development of a tissue external to them, usually designated the hyaline tissue of cartilage."

The next step seems to be the fusion of the outer wall of the cartilage cell with the hyaline tissue, and the conversion of the original nucleus into a granular cell, with one or more nuclei. In making sections of cartilage, many of these granular cells escape from their cavities in the hyaline tissue, and may be seen detached and floating about in the field of the microscope. Next ensues a rapid growth, principally in the direction of the long axis of the future bone. "Each granular cell becomes divided into two, by segmentation transverse to the line of ossific advance." These cells are again divided, and the process repeated from time to time, till in the place of a single granular cell, we have a long line of cells, extending from the unchanged cartilage, to the point where ossification is taking place. Contemporaneously with this development
of lines of cells, other changes are going on in the individual cells composing them. If we examine those situated near the advancing bone, it will be observed that they have enlarged, have become separated from each other by wide intervals, and that each is surrounded with a thick pellucid cell-wall. The increase in the size of the cells has occurred at the expense of the hyaline tissue, which at these points where the rounded cells approach each other, is reduced to a thin film. Here, then, we have a hyaline matrix, containing cells composed of three parts—an outer pellucid cell, a granular cell, and in this one or more nuclei.

Thus, then, the preparatory changes in temporary cartilage previous to ossification, consist in its rapid growth, in the production from single cells of long lines or columns of cells, and in the enlargement of, and formation of a pellucid wall around, each individual cell. On this last point, say our authors:

"In examining a line of these bodies, extending from the forming bone of the diaphysis, we shall see them in various degrees of forwardness. Thus, if attention be directed to the end of the line furthest from the bone, the cells will be found small in size, granular, and with a perceptible nucleus: but they have not an outer wall distinguishable from the hyaline substance, which is abundant between the contiguous lines, but small in quantity between the cells composing the lines. But if the other end of the line be examined, very different conditions will be observed. The granular cells will be seen to have become rounded in form; to have increased to three times their original bulk, and to possess well-marked circular nuclei; in addition to which, each granular cell will have acquired a thick pellucid outer wall, while the hyaline tissue between contiguous lines of cells will have dwindled down to a thin film, except in those parts where spaces are necessarily left in the approximation of spherical bodies."

So far, then, we have changes preparatory to ossification. Now for ossification itself. First, the hyaline or intercellular tissue, both that which lies between the columns of cells, and likewise that which passes more or less perfectly between individual cells, "becomes in some cases slightly fibrous in appearance, and of a light-brown colour; this condition speedily gives way to a highly granular state; in fact, it has become bone." Thus, then, the intercellular substance has become bone, and forms little bony crypts, containing the cells, which, on making thin sections, and examining them in water, may occasionally be seen detached from the crypts, and floating in the field of the microscope. The next step is, that these cells (henceforth to be called lacunal cells) themselves ossify. First, the outer pellucid coat displays a few granules on its surface; the granular cell is seen distinctly within it, minute processes or elongations beginning to project from its surface, and the nucleus is also seen distinctly. Next, the outer pellucid coat becomes more distinctly granular, the enclosed cell decidedly angular or ragged, and the nucleus is obscured. Next, as ossification advances, the granular cell, with its processes, becomes united to the outer coat, so that they cannot be separated the one from the other, and are no longer to be recognised as distinct parts. "If accidentally broken across, we see that they have a hollow centre, in fact a lacuna; but when loose and entire, they appear as rounded dense masses, projecting from the surface of which, we may not unfrequently detect a few short needle-like processes." Lastly, the lacunal cells, thus ossified, unite with the previously ossified intercolumnar tissue, from which they are henceforth inseparable.
These various steps of the ossifying process may be very favourably seen by making a transverse section through the ossifying parts. First, the intercellular tissue which has become bony, will present itself in the form of more or less perfect septa, lying between and enclosing the lacunal cells. At a part rather more advanced, the lacunal cells will be seen becoming granular at their circumference, whilst the granular cell (the future lacuna) is seen within, with its nucleus distinct, and with numerous processes (the future canaliculi) extending from the circumference to the surface of the outer cell-wall. Again, if another section be taken at the point where ossification is just completed, the various points described as existing in ossifying cartilage will be seen in that which is converted into bone. Thus, we shall see the intercellular tissue preserving its original form, and highly granular; and that, while the outer walls of the lacunal cells have become calcified, the granular cells will have assumed the form of perfect lacuna and canaliculi, the latter freely intercommunicating when the surface of the lacunal cells is in contact, but seldom extending into the ossified intercellular tissue.

The successive steps of this process may be thus briefly summed up: formation of cartilage cells; formation of intercellular substance; fusion of cartilage cell-wall with intercellular substance; development of the nucleus of the cartilage-cell into a granular nucleated cell; multiplication of these granular cells in linear series; enlargement of them, and formation of a thick pellucid outer coat around them; ossification of the intercellular substance; ossification of the pellucid outer coat of the cell; development of the granular cell into a lacuna, with projecting canaliculi; union of the ossified cell-wall with the intercellular substance.

Bone, thus formed by the calcification of cartilage which has previously assumed the structural arrangements of bone, is called primary, and, we shall presently show, is destined to no long existence, but is soon excavated by absorption into channels in which Haüvian systems are developed; but we must return to this point after having spoken of the second mode of bone development—that, namely, by osteal cells; by which latter process, the flat bones increase in breadth, and the cylindrical in diameter, and by which Haüvian systems of laminae are formed within the substance of all bone.

"If the advancing edge of a parietal bone be taken either from a human foetus or from a fetal lamb, and the pericranium and dura mater be carefully removed from their respective surfaces, we shall find the growing bone still invested with soft tissue on the inner and outer surface, which is prolonged from the free edge. When examined under a favourable light, this tissue will show differences of character in different parts, varying with the distance from the bone at which the observations are made. Thus, if attention be directed to the part farthest removed from the bone, it will be seen that the membrane-like mass is composed of oval cells, with slight prolongations from the extremities, which are frequently arranged in the form of bands of fibrous tissue. Dr. Sharpey has observed, that the membrane into which the bone extends is exactly like fibrous tissue in an early stage of development; and this observation is strictly true when confined to the part indicated, but the analogy ceases as we extend our examination towards the bone. Here, in the place of cells with elongated processes, or cells arranged in fibre-like lines, we find cells aggregated into a mass, and so closely packed as to leave little room for intermediate tissue. The cells appear to have increased in size at the cost of the processes which existed at an earlier stage of development, and formed
a band of union between them. Everywhere about growing bone, a careful examination will reveal cells attached to its surface, while the surface of the bone itself will present a series of similar bodies ossified. To these we propose to give the name of osteal cells, as distinguished from lacunal and other cells.

"In microscopic characters, the osteal cells closely resemble the granular cells of temporary cartilage; so closely, indeed, that the latter, when detached from the cartilage, could not well be distinguished from them. They are, for the most part, spherical or oval in form, and lie on the surface of the growing bone in a crowded mass, held together by an intervening and apparently structureless matrix. Here and there we find a cell which has accumulated about itself an outer investment of transparent tissue, and has, in fact, become developed into a lacunal cell, destined to become a lacuna.

"The process of growth may be thus described: In the meshes of the fibrous tissue, on the surface of the bone, osteal cells are developed, and gradually take its place; a few cells become developed into lacunal cells; the earthy salts are added, and, concurrently, lacune and canaliculi are formed. We, then, have bone presenting the usual characters of that tissue.

"The process by which cylindrical bones are increased in diameter is, in all respects, similar. Osteal and lacunal cells are present, but the relative amount of matrix is greater; moreover, the osteal cells have a disposition to assume a linear arrangement, corresponding to the direction of the laminae of the contiguous bone. In these lines, the cells are placed so close to each other as to leave but little room for intervening tissue; but between the lines, an appreciable amount may be recognised. This appearance, however, varies in different specimens. In one, the cells predominate; in another, the transparent tissue is the more abundant. Generally, the younger the animal, the greater will be the amount of the intervening transparent tissue, and the smaller the number of the osteal cells."

Through either of these processes, then, bone may be developed. On the teleological or final-cause question, as to the special purpose answered by either mode of development, the authors believe that it may be stated thus: The temporary cartilage previous to the development of bone affords a mechanical support and protection to the soft tissues contained within or lying around it. These offices could not be rendered by a mere mass of soft osteal cells.

"A second and scarcely less important purpose, effected by temporary cartilage, is that of affording a medium for which a more solid tissue may be substituted, without the mechanical support being withdrawn from the adjoining parts during the process of change. It affords, also, a means by which the long bones are gradually increased in length, without any interference with the functions of the limb. These changes are brought about by the gradual increase in the number of the cartilage cells, at those points only where ossification is about to commence; and by the conversion of the cells into lacunal cells, at the cost of the intercellular tissue, which, while its bulk is diminishing, becomes impregnated with the earthy salts; so that, although the quantity is lessened, the strength of that which remains is increased."

It may suffice, however, to sum up this part of the subject with the statement, that wherever mechanical firmness is desirable, before or during the development of bone, there we have temporary cartilage; wherever this is unnecessary, we have the osteal cells.

But, as we have before said, bone, however formed, is a thing of no permanent existence; but is subject to incessant absorption and renewal. Even here, however, there is a striking difference between the primary bone, or calcified cartilage, and that derived from osteal cells. The former, which is, as it were, a solid block of material, very speedily becomes per-
forated and channelled into Haversian spaces, which are necessary in order to permit the adit of bloodvessels, and in order to allow material to be brought for the calcification of successive strata of cartilage; for true bone seems always to require a good supply of red blood in its vicinity. On the other hand, the bone which is developed through osteal cells already contains the bloodvessels of the fibrous tissue, in which the cells were formed. The surface of a young and growing bone, moreover, instead of being smoothly circumscribed by a circumferential lamina, is perpetually "sending off outrunning processes between those vessels of the periosteum which lie nearest the surface of the bone;" which processes increase, bifurcate, arch over, and enclose the vessels, and send out fresh processes, enclosing fresh vessels which become the centres of Haversian systems: so that the latter kind of bone does not require to be immediately channelled out for the introduction of bloodvessels, as the former does; yet, in process of time, it is perforated equally with the other; and those longitudinal channels are formed, the section of which we took notice of in a former part of this paper under the name of Haversian spaces.

The Haversian spaces, then, are longitudinal cavities tunnelled out of the substance of bone, and are evidences of a constant process of removal or absorption of tissue. They are, as we before said, irregular in their parietes; cut out apparently at random, and having the cut edges of numerous laminae at their circumference. They are, as might be surmised, most numerous and large in young and rapidly-growing bone, especially in the primary bone, which, we need not repeat, is the recently calcified cartilage; in old bone, they are less numerous, but never entirely absent.

Concurrently with the disappearance of tissue by the formation of Haversian spaces, is the reproduction of new tissue, by which these spaces are filled with new Haversian systems of concentric laminae. This our authors shall describe in their own words:

"The manner in which the Haversian spaces become gradually occupied by Haversian systems is peculiarly interesting. To obtain a good view of the process, it is necessary to make a transverse section of the developing systems; it may then be seen that osteal cells arrange themselves in single file within the Haversian space, with intermediate lines of transparent tissue, and here and there a lacunal cell; the process commencing at the surface of the Haversian space, and extending gradually inwards till the system is completed. In fact, the soft tissue takes the permanent form previous to the addition of the salts of bone, much in the same manner, and to the same degree, as occurs in temporary cartilage before the earthy ingredients are deposited. Lamination is nothing more than a definite linear arrangement of the osteal cells, with their outlines permanently retained in the perfected bone; a character much more strongly marked in the bones of adult than in those of young animals."

It must be added, that the production of new Haversian systems, like the process for the formation of Haversian spaces, is more active in young than in old subjects; but the authors have noticed it in the bones of those who have passed their sixtieth year.

We hope that the foregoing remarks, which have cost us no small pains to elaborate with even the slightest pretension to clearness, will be tolerably comprehensible to such of our readers as will take the trouble to examine for themselves a piece of ossifying cartilage, and such sections of bone as
they may be able to obtain. We must quit this part of the subject, with one word about the lacunae, or bone corpuscles, as they are sometimes called. Respecting these, it seems established by our authors, that they are real cells, having persistent nuclei and real cell walls; and that the canaliculi are minute tubes passing off from these cells, and having also real parietes; that the lacuna originate in granular cells; either those of temporary cartilage (if the bone be primary), or in certain ones scattered at equal distances amongst the osteal cells, which have been designated lacunal cells, and which are distinguished at an early period by the accumulation of a greater quantity of transparent substance around them, in the form of an outer coat, which afterwards ossifies, and adheres firmly to the tissues around. Meanwhile, when a portion of bone attains its highest development, its canaliculi are numerous, passing chiefly across the laminae towards the Haversian canal; but likewise forming rich anastomoses with the neighbouring lacunae, and with those of adjoining Haversian systems.

But to return from this digression. We have hitherto been treating of matters of fact, which admit of perfect demonstration. Now we have to approach matters of inference, with regard to the mechanism by which the absorption of bone generally, and the formation of the Haversian spaces in particular, is effected. Our authors' views are essentially those of Key and Goodsir; but we will let them describe them in their own words.

"During the present winter, it became necessary to remove a portion of the femur which protruded from a stump six weeks after the removal of the limb. From the medullary cavity a granulating mass projected, and covered the surface of the bone left by the saw; and as the bone was rapidly wasting from the inner or medullary surface, we had in this specimen a favourable opportunity of examining the tissue which lay in immediate contact with the surface of the wasting bone. On cutting through this piece of femur in its length, with a very fine jeweller's saw, it was found that a dense pale pink tissue lay in contact with the inner surface of the bone, which was hollowed with numerous minute cavities, into which the soft tissue accurately fitted, but from which it could be detached without tearing. The outer surface of the bone had been deprived of membrane many days before its removal from the limb.

"The examination of the tissue thus applied to the fast-wasting bone, offered as favourable an opportunity for learning something of the means by which absorption is effected, as we could reasonably hope to obtain; the more so, since the outer surface having been for some time exposed, and covered only by dried periosteum, the actions had been confined to the inner surface of the bone. A careful examination showed that the surface of this tissue was composed of minutely granular nucleated cells, which lay in close and immediate contact with the bone, and increased in an exact ratio with its diminution. What the bones lost in bulk the cells gained, the cellular mass presenting a perfect cast of the surface of the bone; suggesting to the mind that the soft was growing at the cost of the hard tissue, or, at all events, that the former was instrumental in the removal of the latter. The cellular mass was tolerably vascular, but the vessels did not reach the surface in contact with the bone; hence they could not be regarded as having any immediate action in the process of absorption. Section of the bone showed that the medullary cavity had been greatly enlarged by absorption; and no doubt, had sufficient time been allowed, the femur at that part would have been reduced to a thin scale. A transverse section showed, that in many, though not in all instances, the Haversian canals had been enlarged, and rendered irregular in shape,
but it was evident that the process of removal had been less active in this situation than on the medullary surface of the bone.

"If we examine the fangs of temporary teeth, when they are undergoing removal, similar states to those described as existing in the portion of femur will be found to obtain. A similar cellular mass will be seen to be closely applied to that surface of the tooth which is in process of removal, and the surface itself will present the characteristic emargination observed in the bone. When we connect these conditions with the fact, that the nucleated cells which form the embryo have the power of appropriating the material which lies about them to the purpose of their growth and their conversion into the various animal tissues, it is difficult to resist the belief, that the cells which lie in contact with wasting bone and dentine, take up those tissues and use all or part of their element for the purposes of their own increase or multiplication, or else form a medium through which they are passed into the circulation.

"But as the process of absorption, with concurrent development of cells, is most active in primary bone, where but few vessels exist, the former hypothesis seems the more probable. An objection may be raised to the supposition, that the bone is absorbed by the cells, on the ground of the density of the former; but it must be borne in mind, that as the density is gradually imparted to the bone through the agency of the adjoining soft parts, there seems no good reason for disbelieving that they may also be instrumental in its removal."

The authors have not been able to discover any distinguishing marks between the absorbent cells and those by which the new bone is constructed, although, when in situ, the developmental cells may usually be known from the absorbent, by the presence of lacunal cells amongst them, and by the fact that the Haversian space in which they are found, is also, by their means, losing its ragged and eaten appearance. The situations in which absorbent cells arise, are either beneath the periosteum, or beneath the medullary membrane, or within an Haversian canal; but their mode of origin, their measure of increase, the reason why, after a certain time, they cease their destructive, and commence their reconstructive, functions, are at present incalculable. Moreover, in the case of the deciduous teeth, the absorbing organ commences within the periosteum which covers the fang, absorbs this part so as to come in contact with the pulp, which then assumes the same function, and grows, absorbing as it grows, till little besides the enamel is left. When this mere residuary shell is removed, the hitherto devouring organ becomes covered with epithelium, and assumes the structure and appearance of the surrounding gum.

In conclusion, the authors state their belief, that ivory pegs driven into bone, for the purpose of causing the reparation of ununited fracture, may be attacked and eroded by the absorbent cells, just like the fangs of deciduous teeth, or parts of the living bone. If we were to sum up their views on this part of the subject, they would probably amount to this,—that bone and tooth, living or dead, may be absorbed by a cell-growth developed within or upon them; that these absorbent cells have no special characters, and that they may be afterwards developed into bone, fibrous tissue, or epithelium; and that the growth of one tissue at the expense of another is a sort of general law.

Now, in treating of absorption, we must make a distinction, for there are few terms more loosely applied. For instance, there is the so-called absorption of all the tissues, which takes place during periods of great bodily exertion, mental anxiety, and insufficiency of food; the wasting
of a paralyzed limb;—the formation in the fetus of various natural apertures;—these are not instances of absorption, properly so called, but of waste ill repaired, or of a ceasing to live: there is absorption, it is true, but incidental, secondary, or passive; a part having first ceased to live, its molecules are removed, and are not replaced. The efficacy of pressure in "stimulating the mouths of the absorbents" seems to consist, in most cases, in its mechanical property of hindering stagnation or distention of the veins; but in others it may interfere with the life of the part pressed on, and cause it to waste, and, once wasted, not to be replaced. Drugs seem to owe whatever efficacy they possess in promoting absorption to two causes. Sometimes such medicines as were once called debistruments, but now catalytics, seem incompatible with the life of some morbid growths, and cause them to waste; in other instances, they deprive the blood of a certain ingredient, which it then more readily takes to itself, if it meets with it in the course of the circulation. But, with the exception of the few cases in which a solvent or exhauster drug causes absorption, the use of the term, so far as it implies an active, primary, substantive process, is a mistake; for most instances of absorption are not cases of a destructive, but of the failure of a reconstructive process; not of the operation of anything external to the part disappearing, but of its own inherent laws of life.

What shall we say, then, to the fact revealed by our authors, of the formation of the Haversion spaces? Is there a vital change in the bone preceding the cell-growth? or is the cell-growth the real, primary, efficient cause of the absorption of the bone? If what our authors have told us of the absorption of ivory pegs be true, the cell-growth must be the real agent. But can this be regarded as a general law? It may be, but we doubt if there are yet facts enough, in human anatomy at least, to prove it. The case which comes nearest to it—viz., the supposed absorption of cartilage by the agency of a cell-growth—has been clearly shown by Reidfern to be a mistake. It is not the false membrane which absorbs the cartilage, but the cartilage which, by a gradual and intrinsic series of changes, becomes converted into a substance like false membrane. Ulceration of soft tissues by cell agency, as assumed by Good sir, is a thing which we do not believe to have been ever proved. The growth of the ovum is not at the expense of the uterus. In fact, absorption—active, direct, and primary,—of a living part by the growth of another tissue, which really takes into itself the substance of that which it causes the removal of, seems, so far as we know at present, to be confined to bone and teeth.

This extremely interesting fact, however, which our authors have unfolded, makes us thirst for more of the same sort. What is the length of life of each tissue? How fast, for example, is the brain worn and replaced?—how much faster in the hard student than in the idle? Is there a process of removal and renewal in morbid growths, as cancer? But to these, and similar questions, patient, conscientious, and intelligent research, like that of our authors, will in time find replies.

Robert Druitt.
REVIEW X.

The fatality of cholera, and the great difference of opinion as to its prevention and appropriate treatment, gave rise, during the epidemic of 1848-9, to a very general wish that some expression of opinion should be made by the College of Physicians on these points, and that, if possible, a summary of our knowledge of cholera, which might be taken as a convenient point of departure for future inquiries, should be given by that learned body.

The Reports of the Board of Health, able as they were, were limited in scope and did not touch at all on the pathology and treatment of the developed disease, while there was an impression (an unfair one, as we think, in the case of cholera) that the Board was committed to uncertain and imperfectly proved views.

The College of Physicians, therefore, appointed a committee, who issued a series of questions to the fellows and members of the College, and to other gentlemen who were supposed to be willing to aid in the inquiry. The answers given to the questions were submitted to two members of the committee, Drs. Baly and Gull, to whom were entrusted the formation of the Report. The reporters selected for their respective treatment different parts of the subject: the phenomena attending the transmission of the disease falling to the share of Dr. Baly, while Dr. Gull undertook to report on the pathology and treatment.

It was soon found that it was necessary to extend the inquiries beyond the materials collected by the committee, although these were abundant and important, and to include all recent observations, wherever made. The Reports, therefore, have assumed the shape of a complete summary of the facts observed in the recent epidemic in Europe and America, and in addition, the records of the earlier epidemics have been in many cases referred to for illustration and corroboration. An extremely valuable work has been thus written, which may justly be compared to those elaborate and able Reports which were issued in Bengal and Madras, immediately after the tremendous epidemic of 1817.

Dr. Baly’s Report is "On the Cause of Asiatic Cholera, and its Modes of Increase and Diffusion." A few words must be said in the first place on the method in which Dr. Baly has carried out the inquiry.

After getting before him all the facts elicited during the epidemic, and keeping in view, though not allowing himself to be influenced by, the various theories hitherto proposed, Dr. Baly proceeded to observe whether any generalizations at once presented themselves. Taking the map of England and the various reports on the prevalence of cholera, he saw at once that certain conclusions must be drawn. An obvious but a very important one was, that the distribution of the disease was very unequal—that is to say, that certain places were much more affected than others.
Pursuing the inquiry, it at once appeared that the districts most severely affected had, as a rule, certain common characters; yet occasionally, severely affected districts had not these characters, and other districts which did have them were not severely affected. Here then was a general rule, and two grand exceptional rules, to be investigated. After this had been done, and a vast amount of evidence brought to bear on the points, the facts were again contemplated, and other general rules presented themselves—viz., that cholera had a longer duration in a large than in a small town; that it varied in intensity during its continuance; and that after a time it altogether disappeared. Then, of course, came the questions, Why did it last longer in a large than in a small town? why did it vary in intensity? why did it disappear? &c. By the time these questions have been answered, the modes of prevalence, increase, and transmission of cholera begin to appear; and elucidated as they are by numerous authenticated facts, they assume the position of conclusions as certain as any that are known in what are rather ostentatiously called the exact sciences. The inquiry was then pursued by proposing certain questions to which answers were sought in the facts at command, such as, How far was the outbreak simultaneous in various towns? what were the periods of greatest intensity in various towns? what were the features of local outbreaks? how did the disease traverse a continent or a sea? &c.

It is apparent that not only is this the proper method of inquiry, but that the plan pursued by Dr. Baly has had the great advantage of presenting us with an investigation altogether based on original facts, and conducted entirely irrespectively of the opinions of others. The result is, that when Dr. Baly agrees with the opinions previously held—and he does this in a great number of cases—it is confirmatory testimony of the best description; testimony which we should regard in the same light as when one chemist repeats the experiments and confirms the conclusions of another.

We do not intend to follow Dr. Baly in his elaborate argument; it would be impossible to do so without giving either a dry abstract, or overloading our pages with illustrations. We shall not so logically commence ab origine, but shall rather ascend to the culminating point of the inquiry, and then wander here and there into the various questions which open before us.

Our readers must not expect to find that every proposition stated by Dr. Baly is novel. We have already intimated that much of the value of the Report consists in the confirmation given to previous opinions, and in the increased certainty and precision of the evidence. Of course the subject of cholera offers no virgin soil for any one; the labourers on it have been too numerous and ardent.

The cause of cholera is held by Dr. Baly, not to consist in any special atmospheric condition, but to be a material substance; an opinion which is now, we believe, almost universally received. This material substance finding its way into any place, can increase under the influence of foul and damp air, with the aid of some degree of warmth; cholera is thus "so far connected with the conditions of low site and defective sanitary provisions, that it is never rife, except when they are present in a marked degree." (p. 216.) The variations in the intensity of an epidemic are in
great part owing to accessory circumstances, which increase the dampness or foulness of the air. Among these, temperature plays an important part; but, in addition to temperature, and to all other appreciable circumstances, it is shown that there are some unknown agencies differing from the ordinary meteorological conditions, which have a powerful influence in aiding the development of the material cause.

The transmission of this material cause from place to place depends, Dr. Baly thinks, most decidedly and to a great extent on human intercourse—that is to say, men carry the disease with them in their clothes, in their ships, in their caravans, as first pointed out by Jameson, in the Bengal Report of 1824: and as since especially insisted upon by the Swedish Commissioners of 1848. At the same time, it is argued with great clearness that, although thus spreading in many cases by this agency, it does not follow that the material cause spreads by true contagion:—i.e., by reproducing itself in the bodies of men, and there only. As this is a very material distinction, we give Dr. Baly's own words:

"A large body of evidence renders it certain that human intercourse has, at least, a share in the propagation of the disease, and that it under some circumstances is the most important, if not the sole means of effecting its diffusion..."

"The facts, however, by no means sanction the belief that cholera is always propagated in this way. On the contrary, it is certain that the extension of the disease over large towns, if not over larger areas, may take place independently of communication between the sick and the healthy. This is proved by the frequent outbreak of the disease within public establishments, such as prisons and lunatic asylums, in almost every case without a source of infection being traced, and likewise by the rapidity with which the arrival of an infected ship, or the occurrence of the first indigenous case in a large city, is followed by the appearance of the disease in various and distant parts of the city; the extension of the epidemic having, in some of these cases, been so rapid that several hundreds, or even thousands, of persons have perished in the course of between two and three weeks.

"In the cases where human intercourse cannot have been the means of diffusing cholera, the agent most likely to have conveyed the poison from one spot to another is the wind. The poison of cholera being so dependent on the states of air for its existence, increase, and power of action, and having the capability of passing from place to place, must, it would seem, not only be exposed to the air, but, even though it be in part attached to the surfaces of bodies, must, in part, also float in the air. The statistical facts, showing the extension of the disease from centres, and the successive attacks of different localities, though they might be owing to the transmission of the cause of the disease by human intercourse, are quite in accordance with the view that the poison is scattered by varying atmospheric currents from the foci in which it had been developed and increased; while the extension of the disease through a large city with the rapidity above mentioned is, indeed, explicable by no other agency, if the cause of the disease be a substance of the nature supposed. There are, however, few direct observations which tend to confirm this view, by showing a correspondence between the position of a place newly attacked with regard to an existing focus of the disease and the direction of the wind at the time or just previously; and of the few observations which exist the majority are unsatisfactory. The belief, then, in the influence of the wind rests wholly on negative evidence and inference."

"If, however, the atmospheric currents, as is most probable, share with human intercourse the office of disseminating cholera, their part would seem, from the facts communicated to the Cholera Committee, as well as from theoretical considerations, to be rather the diffusion of the disease over limited areas—its transmission from some spots to others near at hand—than its conveyance to distant
places, which is probably effected, in a majority of cases, by the locomotion of men. But the proportion of instances in which the introduction of the epidemic into towns, parts of towns, and individual houses or public establishments, has been due to the one or the other mode of diffusion, cannot at present be determined.

"The propagation of the disease by human intercourse does not prove its contagious nature. If the poison of cholera increases in, or under the influence of, damp and impure air, and is likewise capable of attaching itself to the surfaces of bodies, to the walls of rooms and to furniture, it will also be collected by the clothes of persons living in infected dwellings, will be carried by them from place to place, and, wherever it meets with the conditions favourable to its increase and action, will produce fresh outbreaks of the epidemic. That its propagation in such a mode as this is at least more frequent than its communication by virtue of true contagion is to be inferred, from the impossibility of tracing communication between the first and subsequent cases at the commencement of the epidemic in a large city; from the apparent impossibility that any direct communication can have taken place in many of these cases; still more decidedly from the great rapidity with which the disease sometimes spreads at once through the whole population of a city; from the influence of season and temperature, and of the characters of localities on the rate of the diffusion of the epidemic; and from the occasional alternations of its intensity during its prevalence in a town. The ultimate cessation of the epidemic throughout a country, and even a continent, the restriction of its course in crossing a continent to a tract of comparatively limited extent, furnish, perhaps, still stronger objections to the theory of contagion; for not only are they, like most of those before mentioned, characters which diseases known to be in the strict sense contagious do not present, but they suggest the belief that the propagation of the disease cannot be maintained by any matter emanating from the bodies of the sick.

"Some facts, which constitute presumptive arguments, of more or less force, in favour of the dependence of the epidemic on contagion, namely, the relation, as a general rule, borne by the numbers of the population of a town, and even of a public establishment, to the duration of the epidemic there, the successive attack of different inmates of a house, or of the ward of a lunatic asylum, the ultimate cessation of the disease after a limited number of days in each house or ward, and the fact that, in the cases where the introduction of the disease into a locality has been traced to human intercourse, the supposed vehicle of the infection has usually been a person already suffering from the disease, or clothes or bedding which had been used by the sick in other places,—all these facts have been found susceptible of explanation in other ways; though the explanations offered have in some instances been necessarily of a conjectural nature.

"With reference to two other arguments, which, if established, would only prove that cholera is in some cases contagious, the evidence examined has been found contradictory. The frequent communication of the disease by the clothes or bedding of the sick to the persons who handle or wash them, under circumstances rendering other sources of infection than emanations received from the bodies of the sick improbable, appears to be by no means proved. The preponderance of evidence is, in fact, opposed to its occurrence. On the other hand, the evidence respecting the especial liability of nurses and others attending on the sick to suffer from cholera, though conflicting, is, in some instances, of such a character as to preclude the absolute rejection of the view that the disease has a contagious property, even though it does not usually spread by virtue of contagion." (pp. 218—22.)

In all probability, Dr. Baly thinks, the disease is not spread by the agency of the drinking water, as surmised by Dr. Snow. We may mention here, that in analysing Dr. Muller's 'Report on Cholera in Russia,' in our number for January, 1849, we noticed the statement that
the poison of cholera was said to penetrate the uppermost stratum of water, and to be thus carried along water-courses. We have not heard of any additional evidence on this point.

With respect to the relative frequency with which cholera is transmitted from place to place by human intercourse, or by the agency of currents of air, no exact expression of opinion is made by Dr. Baly; but it is evident that he attributes by far the greatest importance to the former agency. In fact, the passage of cholera across a sea from one continent to another, is held always to occur in this way; and the influence of currents of air is thought to be limited, and to operate chiefly in areas of small extent.

Dr. Baly does not deny that the material cause may be reproduced in the body, i.e., may be truly contagious; but he thinks that “true contagion bears a small part in the propagation of the epidemic,” and leaves the question open to further inquiry.

We should not thus content ourselves with stating Dr. Baly’s general conclusions, did we not believe that all will study for themselves the minute and valuable evidence on which they are based. And as we believe the work will be universally read, it would be a waste of space on our part, and an injury to Dr. Baly’s clear and condensed style, to give an abstract of his immense array of facts.

Leaving, then, the details, we shall now venture to criticise one or two points which appear to us to be less firmly based than the rest of the conclusions.

We have no doubt that the numerous examples and arguments brought forward by Dr. Baly of the conveyance of cholera over sea in ships, will appear to most of us sufficient to prove that this cause is operative to a great extent. But we question whether it is so frequent a cause as Dr. Baly supposes it to be.

Allusion is made to a well-known statement, that the cholera has been known to travel against the wind, and in the very teeth of the Indian monsoon.

“In India the disease has travelled for some hundreds of miles, and during several months in the teeth of the monsoon, and is, therefore, at least in some cases, independent of the influence of the wind.” (p. 218.)

As Dr. Baly only admits those two modes of transmission—currents of air and human intercourse—it follows that, if cholera travels against the wind, its transmission must be referred to human intercourse.

After attentively reading the volume, the only examples we can find of cholera travelling against the wind are thus given:

“The course of the disease along the main roads of a country is a fact which demands careful examination. Well-marked instances of it are undoubtedly rare, but one has already been referred to, namely, the passage of the disease along the great road leading from Nagpoor to Jnah, and thence to Aurungabad and Bombay. And it is with reference to this example of the transit of cholera in the line of roads that one of the arguments in favour of its dependence on human intercourse has principally been urged.

“The general direction of the roads leading from Nagpoor to Bombay is from the north-east to the south-west; and cholera extended along that line between the months of May and August, 1818. At the same period, namely, between the 15th of May and the 5th of October, the disease travelled along the east
coast of the peninsula from Chiecale and Vizagapatam to Madras, in nearly the same general direction. Now, the south-west monsoon prevails from the middle or the end of May till October. In both these instances, therefore, the disease seems to have travelled "in the teeth of the monsoon." The direction of the wind during the prevalence of the monsoon is modified, from time to time, in the interior of the peninsula, and also on the east coast, by the influence of high lands and by thunder-storms, generally attended by north-west winds, but it does not appear to be reversed so completely or so frequently, even in limited spaces, as to countenance the belief that the progressive passage of the disease from the south-east towards the south-west, over several hundred miles during the summer season in India could be due to the agency of currents of air passing in that direction.

"If, then, the extension of the disease in these instances was not effected by atmospheric currents, to what agency was it due? The numerous well-established facts, tending so strongly to show that the cause of cholera is a morbid poison, the increase of which is dependent on certain conditions of the atmosphere, leave two hypotheses as the only alternatives: one that the poison was carried by men, or through their influence, and the other that it diffused itself, in the manner of the admixture of gases, through the atmosphere more rapidly than the air itself moved. The latter hypothesis is, of course, opposed to all those facts already examined, which afforded apparently such firm grounds for the belief that the poison was not diffusible in its nature. On the other hand, the hypothesis of the conveyance of the poison by human means is not inconsistent with the history of the epidemic in England, and as applied in these instances to explain the march of the disease in opposition to the atmospheric currents, certainly finds support in facts which must now be noticed."

When, however, those cases are closely examined, we find some uncertainty about them. It is mentioned (as we have already pointed out*), that on one of the occasions cited above, the cholera took no less than 5 months (3 months, according to Orton) to travel from Masulipatam to Madras, and then passed slowly overland, while between the two places there is a constant passage of native boats, and the voyage occupies only 10 days. As the south-west monsoon is liable to considerable intermissions on the eastern coast of the Indian peninsula, it is quite a reasonable hypothesis, under the circumstances of the case, to suppose that the progress of the cholera was greatly delayed by the monsoon, but that it still travelled when the east and north-east winds occasionally set in. At any rate, it did not travel with the shipping, which was the route of greatest intercourse.

When, thus passing with extreme slowness against the wind, it arrived at Madras, the period of the north-east monsoon had commenced, and now the disease acquired great velocity, and spread very rapidly over the country to the south, although communication was very much interrupted by the monsoon.

In fact, this case seems to us as perfect an example as could be wished of the retardation of cholera by an adverse, and its rapid transmission by a favourable, wind.

In the second case cited by Dr. Baly, we find the facts somewhat similar. The disease certainly passed from Nagpoor to Jallah while the south-west monsoon was blowing, but it took no less than 6 weeks to travel these few miles, while between the two places travellers were con-

* See British Medical Review, April, 1847, p. 339.
stantly passing. It was, however, declared to have been at length brought by a detachment of troops, and the case is one of the most celebrated and most discussed instances of contagion (portability, we should rather call it) of the first epidemic.

If these are the only two instances which can be found of the passage of cholera against the wind, we must consider them as of little value. Dr. Baly, who has evidently very carefully perused the whole history of the subject, cites no other instance, and we are not able at present to recall to mind any less equivocal example. We have heard that in Russia, in 1848, it seemed to pass against the wind, but we have no definite information on the point.

A good example of the influence of the wind is given by Jameson. It is that, on investigating the reason why cholera had so singular a tendency to travel to the north-west during the first epidemic in Bengal, it was noticed that the wind, in the great majority of cases, was blowing from the opposite quarter.

We are inclined to think, then, that Dr. Baly has underrated the influence of the wind; and, while we fully admit that it may very likely be the case that, in a long transit with currents of air, the material cause may perish by decomposition, we must remember that there are scarcely any facts which can show us whether this is the case or not.

A statement connected with the transmission of cholera overland has been frequently made—viz., that it passes along the great trunks of communication, and never faster than a man can travel.

We are disposed to cavil at both these statements, as thus shortly expressed, since, as mentioned by Dr. Baly, if cholera spreads along the course of rivers, other circumstances come into play, as moisture, effluvia, &c.; and when it spreads along roads (of which, however, there are few examples), it may merely find, in the more crowded country thus presented, its conditions of development in greater abundance.

As to its rate of travelling, it must be remembered that, if it has seldom travelled faster than a man, it has generally travelled very much more slowly.

We have already referred to the case of Masulipatam and Madras. We may refer to one still more remarkable, which occurred in the first Indian epidemic, and which we have already quoted in the article formerly mentioned. It is the case of the 69th regiment, attacked in 1818 near Seringapatam, while on the march to Cannanore. The regiment carried the disease with them for some time, but finally outmatched it, arrived at Cannanore healthy, were put into quarantine, and afterwards entered the town. Cholera, however, followed them on the same route, and attacked Cannanore a sufficient time after the entrance of the regiment to do away with all suspicion of importation by its means. In Russia, in 1848, the cholera traversed 675 miles in two months, which (if we take two months to represent 60 days) would give only 11½ miles per diem. It may be said, that it is of no consequence to the argument whether cholera travels exactly at the same rate as a man travels, or more slowly. This is true; but we doubt whether the inference which is intended to be drawn from the expression above quoted would be so easily made if it is explained that the rates of travelling of men and of cholera are not identical.
Admitting that the transmission of cholera is to be explained by the conveyedance of its cause by men, or by being driven by the wind, and that the respective frequency of these two modes, and of the transmission by contagion, remains to be determined, have we so far exhausted the matter? Is cholera transmitted in no other way? Is not there some other cause, more inexplicable than these, which must be held to account for phenomena which neither ships, nor travellers, nor currents of air, can account for? Is there not, in one word, some unknown force which is connected with the diffusion of cholera, as well as with its development and decline?

It must be conceded that the notion that cholera travelled invariably from east to west is erroneous; its course is too erratic, too much influenced by modifying circumstances, thus to be expressed in a single phrase. Yet still we are not prepared to agree with those who reject altogether this common opinion. On two several occasions, cholera has reached England by the same route from India, and this route has not been the one of greatest intercourse. Although it has not invariably tended to the west and north, yet, with many deviations, this has been its general direction,* and in this there appears to be a considerable analogy with the path which influenza has frequently, though, also, not invariably followed. Then, when epidemic in a place, after making allowance for all the meteorological changes, and other circumstances, we have seen that Dr. Baly has been led, like others, to conclude that there is yet some peculiar and unexplained condition, which has as great influence on its increase and its decline. We are not fond of mysterious and occult causes, but we must ask, is there not, in the remarkable travelling power of cholera during certain years, and then only, in the peculiarity of its increase, in its as singular disappearance, an indication of a yet unfathomed force, which, influenced as it evidently and in a great degree is, by geographical, meteorological, and sanitary conditions, yet stands in most intimate relation to the development of the disease?

Among the most interesting facts communicated by Dr. Baly are some which appear clearly to show the presence of an unusual condition or force in England, in 1848-9. Thus, it is pointed out how the extraordinary mortality of diarrhoea in 1849, in almost all parts of England, indicated the presence of some fresh morbific agent; again, it is shown that the early part of the first epidemic had, in most of the places attacked, a faintly-marked climax in January, 1849; while the registrar-general has found that the second climax, in the autumn of 1849, occurred also, nearly at the same time, in the eleven great registration divisions of England.

As we had, doubtless, in 1849, a general condition which invaded us, and then ceased, and which regulated the grand mutations of the epidemic, and as this same influence must have passed over the continental countries which suffered, and had ceased to suffer, before the disease reached England, we really see no alternative but to concede the probability of some motive agency, in addition to winds and human intercourse, which thus impelled cholera over so large a portion of the earth's surface. And when we remember, that in the history of past epidemic diseases, such as the black death, or of diseases which still prevail, as the influenza,

we have also evidence of similar locomotion, the inference drawn from the
history of cholera receives, it appears to us, considerable support.

The concluding chapter of Dr. Baly's Report is occupied with a consi-
deration of the means of preventing the spread of cholera. It is charac-
terized by the same careful, judicious, and enlarged views as the rest of the
Report, and will, doubtless, be of great aid in any future legislation on
this point.

We must now turn to Dr. Gull's "Report on the Pathology and Treat-
ment." This has been a less difficult task, but has been executed with
equal skill and success. "It is not intended as an essay on the disease,"
but is meant to include the principal ascertained facts. The information
is drawn from all accessible sources, and is distributed under the following
heads:—1. Condition of the body after death. 2. Morbid appearances
after death in collapse. 3. Morbid appearances after death in reaction.
4. Pathology. 5. Treatment.

Under the second and third heads a very good account is given of the
researches of Reinhardt and Lebuscher, of Virchow, Leudet, Pirogoff,
and other continental observers on the morbid anatomy; and the labours
of British pathologists are, of course, not neglected. A tabular view is
given of the morbid appearances in fifty-eight cases, most of which were
supplied to the Committee, in answer to the questions sent out by
them.

The important researches on the chemistry of the blood by Garrod, of
London, and by Schmidt, of Dorpat,* are given in some detail. Dr.
Garrod's able paper must be familiar to all our readers. The observations
of Schmidt have an interest apart from the subject of cholera, as it was
in this work that correct views of the mode of analyzing the blood were
first laid down with sufficient clearness. As it is difficult to overrate the
importance of Schmidt's researches, we shall select this portion of Dr.
Gull's work for comment, rather than dwell on the familiar details of the
morbid anatomy.

Schmidt attempted to trace out the exact chemical steps which attend
the period of transudation from the blood into the intestinal canal, and
to give, so to speak, a formula of these changes. As far as the inorganic
constituents are concerned, this formula may, we presume, be considered
to be as precise and comprehensive as the present state of chemistry will
allow. The condition of the organic constituents, however, was much
less clearly ascertained, on account of the imperfect way in which
chemistry as yet deals with these bodies; and although Schmidt devised
an entirely new method of investigation, which consisted in observing
whether the changes of healthy and of choleraic blood, when brought into
contact with various decomposing and fermenting substances (urea, sugar,
amygdaline, asparagine), were identical, it led to no precise result, on
account of the cessation of the epidemic, and the most important problem
in the chemistry of cholera remained unsolved. We need, therefore,
scarcely remark, that an inquiry into the causes of the transudation
cannot yet be attempted; and it is evident that the investigation of the
organic constituents of the blood in cholera surpasses the present powers
of organic chemistry.

The results of Schmidt's observations, though imperfect, are, however, of extreme interest. He thus defines cholera:

"Separation of the water and of the salts of the intercellular fluid (of the blood) through the intestinal canal. Retention in the blood of an important excess of albumen, and of blood-cells, with apparent less, but (if the albumen be taken as unity), in reality great diminution of the salts and fibrine." (p. 36.)

We need scarcely observe that this is not really a definition, but only an enumeration of some of the most prominent phenomena of cholera.

In the transudation of cholera (a period of short duration = 36 hours, Schmidt), the intercellular fluid of the blood (i.e., serum and fibrine) is first affected, and water, salts, and a small portion of albumen pass off, and form the well-known liquid-stools.

The order in which the constituents of the serum are affected is thus laid down by Schmidt. The water transudes before the solids of the serum; the inorganic before the organic solids; the chlorides before the phosphates; the salts of soda before the salts of potash. The causes of this order of transudation are as little known as the cause of the transudation itself; but it is interesting to observe that the order is very much the same as takes place during the action of some purgative medicines, as elaterium.

Very soon after the transudation of some of the constituents of the serum commences, an important change occurs in the blood; the normal diffusion-currents between the fluids in the blood-cells and around them alter; and the constituents of the blood-cells transude into the serum in the same order as the constituents of the serum transude into the alimentary canal; that is to say, the water diffuses more readily than the solids; the inorganic solids more readily than the organic; the chlorides, and of these the soda salts, more readily than the phosphates. The result is, that at the height of the transudation period, the constitution of the blood is profoundly altered. Of course the per centage of the organic constituents (which pass off with so much difficulty) is enormously augmented; it is probable that their composition must have undergone alteration, but of this nothing is known. The inorganic constituents of the blood, if compared to the water, are at first (during the first four hours) increased, because at this time the water is passing off with great rapidity; afterwards, as the salts pass off, the disproportion is lessened, and after eighteen hours, the proportion of salts is greatly diminished, and if compared with the organic constituents, the diminution is enormous. With respect to the individual salts, there is in the blood a relative preponderance of phosphates over chlorides, and of potash salts over soda salts. This follows, indeed, as a matter of course, if the formula for the order of transudation, already given, be correct.

Schmidt has endeavoured to express the whole process of transudation in exact figures, and it may not be uninteresting to quote his chief results. For this purpose he selected a cholera patient (female) who had been in perfect health up to the moment of attack; a very complete examination was made of the blood after eighteen hours' vomiting and purging, and of all the fluids transuded into the alimentary canal during this period. This blood was then compared with that taken from a healthy female of the same race, age (nearly), habits, and bodily conformation, and it was
assumed that the composition of this blood would represent, with sufficient accuracy, the blood of the cholera patient immediately before the attack. Admitting this, the following figures (in which fractions are neglected) will be found interesting. We will speak first of the blood-cells, and then of the intercellular fluid (serum and fibrine):*

I. The Blood-cells.

(a.) The blood-cells (of the whole body) of this patient contained (presumably), before the attack of cholera, 87$\frac{1}{2}$ ounces (English) of water (in round numbers). During eighteen hours’ transudation—i.e., choleraic vomiting and purging—12 ounces diffused from the cells into the intercellular fluid (serum and fibrine). During eighteen hours’ transudation, 389 grains diffused into the intercellular fluid. As comparatively much more water had diffused away, the contents of the blood-cells were left of course much richer in organic constituents.

(b.) The blood-cells contained, before the attack, 548 grains of inorganic substance, (various salts, iron, &c.) After eighteen hours’ transudation, no less than 182 grains had diffused into the serum, so that the blood-cells were left very poor in salts as well as in water, though so rich in organic materials.

(c.) The healthy blood-cells contained 218 grains of potassium (all the potash being calculated as potassium); of this quantity 46 grains diffused into the serum in eighteen hours.

(d.) The healthy blood-cells contained 100 grains of sodium; in eighteen hours nearly 62 grains diffused away.

(e.) The healthy blood-cells contained 63 grains of phosphoric acid; in eighteen hours only 5 grains diffused away into the serum.

(f.) The healthy blood-cells contained 99 grains of chlorine, and lost, in eighteen hours, by diffusion into the serum, 29 grains.

(g.) The sulphuric acid in the healthy blood-cells, consisting only of 4 grains, passed entirely into the serum; so, also, did the chalk and magnesia, consisting of about 6 grains.

The blood-corpules were thus left, at the end of eighteen hours, in a most abnormal condition; the great loss of water and of salts, and especially of the chloride of potassium—that important constituent of the blood-cells—would at once lead us to conclude that their functions must have been greatly impaired. Schmidt accordingly found that the amount of oxygen contained in them was lessened by almost one half.

II. The Intercellular Fluid.—(Serum and Fibrine.)

Before the attack, the intercellular fluid of the whole body was composed as follows:

* For the mode in which Schmidt determines the relative amount of blood-cells and serum we refer to the work, or to Lehmann’s Physiological Chemistry, or to Carpenter’s Physiology, 4th edition, p. 181, 2.
1. Water 178 ounces.
2. Organic solids (fibrine, albumen, &c.) 7212 grains.
3. Inorganic solids 782 "
4. Potassium 30 1/2 "
5. Sodium 296 "
6. Phosphoric acid 55 "
7. Chlorine 339 "
8. Sulphuric acid 9 1/2 "
9. Lime and magnesia 23 "

During the period of vomiting and purging, the serum gained gradually, also, so much water, organic solids, salts, &c., from the blood-cells, as is given above.

During eighteen hours' purging, and vomiting there was measured 183 ounces of fluid, derived from the alimentary canal; 70 ounces of this had transuded from the blood, and 113 had been taken as drink. In the transused 70 ounces were contained—

2. Salts 474 "
3. Potassium 30 "
4. Sodium 165 "
5. Phosphoric acid 13 "
6. Chlorine 230 "
7. Sulphuric acid 12 1/2 "
8. Lime and magnesia 12 1/2 "

Some curious data can be made out from these numbers. The composition of the blood-cells was only altered, so to speak, by loss; the composition of the serum was altered both by what was lost in the intestinal canal, and by what was gained from the blood-globules. Thus, 339 grains of organic matter diffused into the serum, but only 366 grains passed from the serum into the intestines; so that the serum, at the end of the transudation, was absolutely richer in these constituents. So, again, the serum, at the end of the vomiting and purging, was richer in potassium, for it had gained 46 grains from the globules, and had lost only 30 by the purging.

On the other hand, the gain from the blood-globules by no means compensated the enormous drain from the serum, of the chlorine and sodium. The gain of phosphoric acid was also insufficient to make up the loss, although this was comparatively much less than in the case of the chlorides.

The utter breaking-up of the normal composition of the blood is thus very evident, but this is not all.

During the transudation into the intestinal canal it would appear that the diffusion-currents from the blood into various structures are diminished, while, on account of the density of the blood, the inverse-currents from these structures to the blood, are augmented in rapidity. In this way fluids are drawn from the muscles, the organs (except, probably, the brain), and, in fact, most of the tissues; and it is probable that these fluids are charged with substances (such as sugar, inosite, lactic acid, &c.) which, under ordinary conditions, are taken very much more slowly into the blood, and are soon decomposed when they get there. The extent to which the blood is contaminated and injured by this admixture, and
by the retention of urinary constituents, is, however, not yet accurately known.

Some writers appear to think that the rapid withdrawal of water from the muscles and nerves will explain the cramps better than the hypothesis, that they are reflex spasms from irritation of the alimentary canal; but if this were so, the cramps would be in proportion to the collapse, which is not the case.

In the case just related, Schmidt supposes that about four ounces and a half of water were lost by evaporation from the skin and lungs, so that the sweating in this instance must have been slight.

The foregoing statements are to be received as simple matters of fact, but they may be made to yield, or, we should rather say, they almost lead up to, an important inference.

When we remember the great share taken by the blood-globules in the respiratory and heat-furnishing processes, it is scarcely possible to avoid concluding that their loss of salts is connected with the characteristic cyanosis and lowered temperature in cholera. It is a matter of familiar observation, that, in most cases, there is vomiting and purging (often called the premonitory diarrhoea) before there is loss of heat, though this very soon follows, in a slight degree, and then gradually augments. In other words, the diarrhoea coincides with the first chemical alteration in the blood, the transudation of some of the constituents of the serum; and the lowered temperature follows afterwards at the time when we know that the diffusion from the blood-cells into the serum must be taking place, and augments gradually as the diffusion increases; it is, therefore, a matter of strong temptation to trace up all the phenomena of the disease from the starting point of transudation of serum-constituents: if we admit only that, from some unknown cause, the water and the chloride of sodium of the serum transude through the intestinal canal, and continue to do so for a specific number of hours, all the other chemical changes in the blood, and the most marked symptoms, such as the abnormal respiratory symptoms, seem to follow as a matter of course.

As we have already seen, in the definition we have quoted at a former page, Schmidt does not hesitate to adopt this view of the disease, and an early theory of the nature of cholera has thus received the support of one of the best chemists of the day.

We question, however, whether this is not too limited a view, when judged of by the necessary test of clinical observation. It would delay us too long to debate this question fully at present; but Dr. Gull has the following judicious remarks, which seem to us to express very correctly the opinion we ought provisionally to hold:

"As many of the symptoms of the stage of collapse depend upon the loss of fluid, it has been too absolutely inferred that the general phenomena of the disease are always in a necessary relation to the amount of these effusions.

"In tropical regions, where either the intensity of the poison is greater, or the predisposing conditions of constitution are more favourable to its operation, it appears to be by no means unfrequent for the strongest subjects to fall into sudden collapse, without any very notable loss of fluid. Such facts are authenticated by so many careful writers, as to leave us in no doubt of their occurrence. In temperate regions, such cases, though rare, are not unknown, and in a less marked degree are within the experience of most who have seen the disease in its severer
forms. Even when the loss of fluid is very great, it is doubtful whether death is due to it alone, since we often see patients in an apparently equally hopeless state, collapsed, and bloodless, whose tissues, so soon as the nervous system begins to react, recover their elasticity before any amount of absorption could, from the circumstances of the case, have occurred. (p. 131.)

Some evidence is afterwards given on these points, and Dr. Gull then says:

"Notwithstanding the incompleteness of the data, we conclude that, although, in a large number of instances, the intensity of the symptoms is in a general way proportionate to the amount of the effusion, yet that this will only in part explain the attendant collapse which often appears to be in no inconsiderable degree due to the adynamic state of the ganglionic nervous system, induced either primarily by the poison, or secondarily by the lesions of the affected mucous surface. A further elucidation of this subject is yet a desideratum." (p. 134.)

In spite of these elaborate chemical inquiries, from which so much was hoped, we are obliged to confess that the treatment of cholera has not been advanced during the late epidemic. Our more precise knowledge of the steps of the transudation period merely points out that, if the diarrhoea (intestinal transudation) can be arrested in time, the other changes in the blood will probably become impossible. The well-known practical rule, that the transudation is at once to be arrested, receives thus scientific support, but no further step of treatment is pointed out. How, in the collapsed stage, are we to reverse the current which is pouring from the blood into the intestines? How are we to get the potash salts into the blood-globules, and the water into both cells and intercellular fluid? How, in fact, are we to replace, in its wonted order, this extraordinary medley of substances which, in the healthy system, are kept in such singular accuracy within their proper boundaries? To these questions, chemistry is either dumb, or returns a despairing answer. The steps in one direction are traced, but the return appears impossible to science, since the causes of the phenomena are totally unknown: we are driven back on our empirical knowledge, and what is termed the scientific treatment of cholera must not yet be looked for. Dr. Gull gives us no less than 57 pages on the subject of treatment, and almost every plan is described and judged of. We shall not pause on this chapter, but beg to recommend its most attentive perusal; it indicates, at any rate, if not some invariably successful treatment, the most efficacious empirical means; and shows us, also, what measures—and there are not few—are dangerous in the treatment of cholera.

We have passed over without comment some very interesting chapters on the so-called "premonitory diarrhoea," and on the influence of age and sex on the mortality. Many of the facts are derived from the registrar-general's report, and have been given in former numbers of this journal; but there are many new facts well cemented in with the old ones, which give a great deal of originality to this part of the work.

In taking leave of these Reports, we can conscientiously say that we do not think the College of Physicians could have made a more fortunate selection than the two gentlemen to whose labours we owe so much valuable instruction. We believe that their work will be, in future years, constantly referred to, and when so referred to, we are confident it will always be with pleasure and profit.
Since these Reports were completed, an important paper has been partly published by Dr. Lauder Lindsay, of Dundee.* It would seem probable that this gentleman has solved the question of the contagion of cholera by communicating the disease to animals. We defer, however, any conclusion on this point, till the whole of the experiments have been made known.

E. A. Parkes.

Review XI.

2. The Article 'Respiration,' in the 'Cyclopaedia of Anatomy and Physiology.' By John Reid, M.D. 1848.

We must premise, at the outset of this article, that we shall confine our attention in the following pages almost exclusively to the Chemistry of Respiration—a term indicative of the process by which animals absorb oxygen from the surrounding atmosphere, and exhale a nearly corresponding quantity of carbonic acid.

Before proceeding to notice the changes which the respiration of the animal world impresses on the circumambient air, it may be expedient to refer briefly to the present state of our knowledge regarding the atmosphere itself.

The chief constituents of the atmosphere are oxygen, nitrogen, carbonic acid, ammonia, and watery vapour. Neglecting fractional parts, the oxygen and the nitrogen stand to one another in the ratio of 21 to 79 by volume, or 23 to 77 by weight; the other substances which we have named occur, as we shall presently see, in extremely minute, often almost imperceptible, quantities: they seem, however, to be always present. To the above list we should probably add nitric acid, ozone, and iodine.

To these principal and apparently essential elements many others must be added, which may be regarded as incidental. They are thus briefly summed up by Mulder:†

"Volatile exhalations from the organised matter of the soil; products of the volcanoes on the earth's surface, and of the artificial burning of fuel; gaseous fluids escaping from mines; vapours of volatile solid substances; hundreds of volatile oils from odoriferous plants; putrid volatile products of animal and vegetable decomposition; the hydrochloric acid arising from salt water in shallow lakes and lagoons; exhalations of men and animals; an innumerable multitude of substances ascending in vapour from manufactories and chemical processes; and finally, the volatile products of animal excrements; all these are sources of pollution to the atmosphere, which thereby undergoes innumerable alterations in its composition."

We need hardly remark that the accumulation of these noxious elements is prevented by atmospheric currents, and more especially by the rain which, again, to quote the words of Mulder,

"In falling, carries with it everything that floats in the atmosphere, and which is not essential to its constitution; which brings back to the earth what came

* Edinburgh Medical and Surgical Journal, April. 1854.
† Chemistry of Vegetable and Animal Physiology.
from the earth; and which, while it thus purifies the atmosphere from these hurtful adulterations, restores to the soil these numberless volatile substances, where they have abundant opportunities of forming not only harmless, but useful combinations."

We will now consider, with rather more minuteness, the composition of atmospheric air, from which it is supposed that the above-named impurities have been removed by the causes which we have already indicated.

The first point is to determine accurately the ratio in which the oxygen and nitrogen stand to one another. The earliest experiments on this subject are comparatively recent, for the whole science of weighing and measuring is scarcely seventy years old, and the true determination of the composition of the atmosphere obviously cannot date further back. At the close of the last, and the beginning of the present century, it was believed that there was no constant ratio between the oxygen and the nitrogen; and in proportion to the greater or less amount of oxygen, the air was supposed to be better or worse fitted for respiration. In 1804, Humboldt and Gay Lussac published a memoir, in which they maintained that the ratio between these gases is invariable. In twenty-nine experiments, instituted on twenty-nine different days during the months of November and December, in dry and in rainy weather, and during various winds, with the air of Paris collected above the Seine, their largest quantity of oxygen was 21.2 (by volume), and the smallest 20.9—a difference lying quite within the limits of the ordinary errors of analysis. Results confirmatory of the above-named constant ratio were subsequently obtained by De Saussure, with air collected over the Lake of Geneva: by Gay Lussac, with air obtained in a balloon ascent from a height of 21,430 feet: by Humboldt, with air from the Antisana, a mountain 16,640 feet high: by Confiliachi, from the Legnone, a mountain 8130 feet high: and more especially by Dumas and Boussingault, in their elaborate memoir published in 1841.

Moreover, impure air, after the removal of the foreign ingredients, has been found to contain these gases in the same ratio. Specimens of air collected over rice-fields (Confiliachi), from a crowded Parisian theatre (Seguin, Gay Lussac, and Humboldt), from the wards of a hospital (Edmund Davy), and from a dormitory in the morning (De Saussure), exhibited no difference in this respect.

Doubts, have, however, been recently entertained regarding the rigid invariability of this ratio. Lewy made seven analyses of air collected in November, 1842, at Guadaloupe; the maximum percentage of oxygen by weight was 23.14, the minimum 22.68. The air at Copenhagen gave, from the 17th of November to the 22nd of December, 1841, 23 per cent. (by weight) of oxygen, and at Elsineur (which lies upon the sea-coast) the amount was 23.037, while air collected during a journey between Copenhagen and Havre yielded only 22.6. Subsequent investigations by the same chemist confirm, rather than remove, these doubts. Air which he collected from above the surface of the sea (during a residence in South America), was found to contain more oxygen and carbonic acid

during the day than during the night, and this difference was more marked in clear than in cloudy weather. He accounts for this difference by supposing that as the surface of the water becomes warmed by the sun’s rays, some of the previously absorbed air is evolved, which is known to be richer in oxygen than atmospheric air.* In his last memoir† he gives the general results of a large number of analyses of air, some of the specimens having been collected over the Atlantic, and others in South America. The most important conclusions at which he arrives are that the atmospheric air in New Granada (the mean result from eleven different spots being taken) is the same as that in Europe. The air in New Granada was found to contain rather more oxygen and carbonic acid during the dry than during the rainy season; the differences are, however, very trifling. Regnault‡ has recently published the results of his analyses of air taken from different parts of the earth. In the year 1847, he proposed that specimens of air should be collected (and enclosed in hermetically sealed vessels) on the 1st and 15th of every month, at as many places as possible. Our space forbids our quoting any of his valuable tables: we merely quote a few of his results. The mean quantity of oxygen (by volume) in the air of and near Paris, was 20·96 per cent.; this was the result of more than one hundred analyses, the extremes being 20·913 and 20·999. While specimens of air obtained from Toulon in May, 1851, yielded 20·85 and 20·87 per cent., others from Algiers in the following month yielded 20·42 and 20·395 per cent. Of eleven specimens collected over the sea near the south coast of Asia, two presented an abnormal quantity of oxygen; air from the Bay of Bengal contained 20·46 and 20·45; and air from over the mouth of the Ganges (in March, 1849, when cholera was breaking out) 20·39 per cent. The air obtained by Sir James Ross from the Arctic Regions contained the normal quantity of oxygen. In conclusion, Regnault expresses his belief that the atmosphere presents appreciable, although extremely minute, variations in its amount of oxygen: the variations in general fluctuate between 20·9 and 21·0 per cent.; but in certain cases, especially in hot climates, the amount may fall as low as 20·3 per cent.

The amount of carbonic acid is by no means so constant as that of oxygen or of nitrogen. In 1827 and 1829, De Saussure made 225 experiments, with the view of determining the proportion in which this gas exists in the atmosphere. From 104 experiments with the air at Chambésy, a village near Geneva, it appeared that the average quantity of carbonic acid (by volume) in 10,000 parts was 4·15, the maximum being 5·74, and the minimum 3·15. He ascertained that during the day the air contained less carbonic acid than during the night, the average in the day being 3·38, and in the night 4·32, the respective maxima being 5·4 and 5·74. When gentle breezes prevailed, the proportion of carbonic acid was smaller than when the wind was violent. The proportion was less diminished by violent showers than by gentle continued rain. There

* Morren has likewise ascertained that air collected on clear sunny days, on the surface of sea-water in which algae abound, contains 23 per cent. (by volume) of oxygen. He attributes this excess to the rapid escape of oxygen from the surface of the water and of the sea-weeds under the influence of the sun’s rays. (Ann. de Chim. et de Phys. tom. xii. p. 34.)
was found, as might be expected, more carbonic acid over cultivated
grounds than over the Lake of Geneva, and more in the air of the town
than in that of the village of Chambeisy.* Lastly, he found that moun-
tain air contained somewhat more carbonic acid than air at the level of
the sea. Verver's† results, at Groningen, give 4·2 as the average, 5·1 as
the maximum, and 3·5 as the minimum, in 10,000 parts of air.

Boussingault, who made a continuous series of experiments for nine
months with the air of Paris, found, as a mean, 4 parts, the maximum
and minimum being 6·7 and 2·2.
The brothers Schlagintweit have recently experimented on the amount
of carbonic acid in the higher strata of the atmosphere. In their first
memoir‡ they state, that the air on the eastern Alps contains from 3·2 to
5·8 volumes of this gas in 10,000; there being a progressive increase to the
altitude of 3366 metres, or 11,073 feet, where a constant maximum seems
to be attained. In the second memoir.§ there is a record of experiments
made with the same object in the neighbourhood of Monte Rosa, at
elevations varying from 3162 to 4224 metres, or from 10,402 to 13,896
feet, above the level of the sea. In 10,000 parts of air at these alti-
tudes, the mean quantity of carbonic acid was 7·9, and the maximum
9·5. The largest quantity occurred in fine bright weather, and the least
(5·9 parts) on a cloudy day. In Berlin (which is 106 feet above
the level of the sea) they found (in three experiments) that the carbonic
acid ranged from 5·9 to 4·5 parts.

This subject is likewise investigated by Lewy in the memoirs to which
we have already referred, and by Mene.||

Considerable interest attaches to the question regarding the presence
of ammonia in the atmosphere, in consequence of the important part
which, according to Liebig, it plays in the nutrition of vegetables.
We must not here enter upon this disputed topic; we will merely
observe, that Mulder declares that it is impossible for plants to derive
their nitrogen from this source. A subsequent assertion by the same
distinguished chemist, that it has not yet been found possible to weigh the
quantity of ammonia contained in the atmosphere, has been disproved
during the last three or four years by various experimenters, amongst
whom we may especially mention Fresenius and Horsford. From obser-
vations made during 40 days in August and September, 1848, Fresenius¶
calculates that 1,000,000 parts of air contain during the day 0·098 and
during the night 0·169 parts (by weight) of ammonia. Horsford** made
frequent determinations of the ammonia in the atmosphere from July to
December; his results are very different from those of Fresenius; for in
13 experiments, he found that the quantity of ammonia in 1,000,000
parts of air ranged from 47·6 to 1·2; the quantity was greatest in July,
and least in December. The subject has been independently investigated

* In confirmation of this result, we may mention that a series of sixteen experiments,
made on the same successive days, in September and October, 1843, and at the same
time, by Boussingault in Paris, and Lewy, near Montmorency, gave for Paris, 3·19, and for the country,
2·984 parts of carbonic acid in 10,000 parts of air.
‡ Comptes Rendus, tom. XXXII. pp. 139 and 222.
|| Ibid., tom. LXXXIX. p. 293.
¶ Ibid., tom. LXXXVII. p. 293.
** Ibid., vol. LXXXIV. p. 243.
during the year 1852 by Pierre* and by Ville.† There is, however, no close accordance between the results of any of these chemists.‡

The quantity of aqueous vapour in the atmosphere must obviously differ considerably at different times and in different places, being dependent on various local and incidental causes, as, for instance, the temperature of the evaporating water, the temperature of the air, the velocity of the wind, &c. The most accurate experiments on this subject with which we are acquainted are those of Verver, instituted in the Netherlands. In 1000 volumes of air, the maximum was 10·18, and the minimum 5·8. The average of 50 observations during May, August, and September, was 8·47. From an early hour in the morning to 10 a.m., it was 7·97; from 10 to 2 p.m., 8·58; and from 2 till the evening, 8·85.

We now proceed to the consideration of those substances whose invariable presence is less well established. Of these, the first on our list is nitric acid. Heller§ announced in 1851 that this substance is always present in the atmosphere, basing his opinion on the fact, that paper saturated with carbonate of potash or of soda, after prolonged exposure to the atmosphere, contained an alkaline nitrate. A commission, appointed by the Vienna Academy of Medicine, failed in confirming Heller’s statements. The fact may, however, be as he represented it, without his inference being correct; for Schönbein has shown that alkaline carbonates after long exposure to the atmosphere, are, in part, converted into nitrates, in consequence of the ozone of the atmosphere oxidizing the nitrogen under certain conditions (as, for instance, in the presence of strong bases), and converting it into nitric acid. The presence of ozone in the atmosphere may be readily detected by test-paper, prepared with a mixture of iodide of potassium and starch. This mysterious substance, by its strong oxidizing power, liberates the iodine, and allows it to combine with the starch. As a considerable number of the members of the Provincial Medical Association are now regularly tabulating their meteorological observations, we trust that we shall soon be able to see whether an excess of ozone gives rise to the various bad effects that have been attributed to it by Schönbein and others ||

It seems certain, from the researches of Chatin and others, that iodine in very minute quantity is present in atmospheric air. Chatin has arrived at the interesting result, that expired air contains only one-fifth of the iodine contained in inspired air.

In Mulder’s ‘Chemistry of Vegetable and Animal Physiology,’ there is a chapter on “The Atmosphere in its Connexion with Organic Nature,” from which we have drawn some of the facts recorded in the preceding pages. It concludes with the consideration of the question—Has the atmosphere, since the appearance of man on the earth, preserved the same composition as it previously had? and will it at all times retain the same composition, assuming, of course, that the numbers of mankind are increasing and those of forests diminishing? We have space for little

* Comptes Rendus, tom. xxxiv. p. 878. † Ibid., tom. xxxv. p. 464. ‡ Menge found ammonia in hailstones: from 800 grammes he obtained 2·78 grammes of chloride of ammonium. (Comptes Rendus, tom. xxxiii. p. 918.) § Zeitsh. der Gesellsch. der Aerzte zu Wien, 1851. || Grigier, who experimented (at Mühlhausen) thrice daily, from December, 1850, to June, 1851, found an excess of ozone during the night. The influence of winds was not very clear, but there seemed to be a maximum with a south-west wind.
more than his conclusions, and must refer to the work itself for the arguments on which they are based.

"If," he observes, "the very first human beings had been able to make eudiometrical observations, it is probable, that in a given bulk of atmospheric air they would have found a little more oxygen, and somewhat less carbonic acid than exists in the present day, provided their method of investigation had been sufficiently accurate."

As plants must restore what man and animals have taken from the atmosphere, when the equilibrium between the two kingdoms of organic nature is destroyed—that is to say, when plants diminish and mankind increase—there will at length be no longer a sufficient quantity of carbonic acid decomposed to preserve what we consider to be the invariable composition of the atmosphere. When this time will arrive we know not; but this we know, that every being which now has life depends for its existence on the presence of about twenty-one parts of oxygen to seventy-nine of nitrogen in the atmosphere; and that whenever this proportion is materially altered, the present creation must cease, to be replaced, in all probability, by other and higher forms of life.

We now proceed to notice the nature of the changes impressed upon the atmosphere by the presence of the animal kingdom.

The breathing organs present an essential difference from the other organs of excretion in this respect, that while excreting one gaseous fluid, they are at the same time absorbing another. In fact, an interchange of gases takes place within these organs, and it is to this process—whether it be effected by lungs, gills, tracheae, &c.—that we apply the general term Respiration.

From a general review of the labours of those physiological chemists who have especially investigated this subject, we may consider it as an established fact, that the blood in the lungs takes up oxygen gas from the inspired air, and yields to it carbonic acid and aqueous vapour in exchange; and further, that it more commonly yields than absorbs a trifle of nitrogen.

The first point to be noticed is the relation subsisting between the exhaled carbonic acid and the oxygen that has disappeared in the lungs from the inspired air. It is well known that the volume of carbonic acid is equal to the volume of the oxygen contained in it; hence, if in the expired air there was found a volume of carbonic acid equal to that of the oxygen which had disappeared from the inspired air, it might be inferred that the oxygen absorbed in the pulmonary vesicles was precisely sufficient to form the carbonic acid that was exhaled. This inference was actually drawn by many of the earlier investigators of this subject; it does not, however, stand the test of accurate experimental inquiry, for it is found that, generally speaking, the volume of oxygen which is absorbed is far greater than that of the carbonic acid which is given off; and hence we must conclude, that the former gas serves not only for the oxidation of carbon, but also of hydrogen in the animal organism. If, for instance, we enclose animals in a suitable apparatus, and analyse the air which they have altered by their respiration, we find more free oxygen missing than can have been applied to the formation of carbonic acid; and we arrive at a similar result on instituting a comparison (as was done by Marchand) between the loss of weight of the animal during the
period of the experiment, and the oxygen contained in the expired air, in combination with carbon and hydrogen; when we find that the loss of weight which the animal has experienced is less than would have been expected from the quantities of carbon and hydrogen that have been given off. Hence the body of the animal has gained an appreciable weight during the experiment; and this weight can be due only to oxygen, for the quantities of nitrogen that are absorbed or exhaled are too trifling to produce any perceptible effect. Without at present entering into any detailed notice of the various series of experiments which have been made in reference to this subject, and to which we shall presently refer, we may incidentally remark, that on an average for every one volume of absorbed oxygen only about 0.8316 of a volume of carbonic acid is found in the expired air.

Many attempts have been made to institute a comparison between the volumes of the inspired and expired air. On examining these airs in their dry state—that is to say, after the removal of their aqueous vapour, there must necessarily be, in the latter case, a diminution of volume corresponding to the volume of oxygen that is absorbed, and not converted into carbonic acid. If, however, we compare these airs in their moist state, this rule no longer holds good, for the expired air being usually saturated with vapour, while the inspired air is comparatively dry, it necessarily follows that the tension of the aqueous vapour taken up in the lungs must augment the collective volume of the expired air. We need hardly observe, that the increased temperature of the expired air likewise induces a certain augmentation of volume.

The quantity of water exhaled by an adult male in twenty-four hours has been estimated by Valentini at 506, by Vierordt at 360, and by Horn at 350 grammes (the gramme being equal to about 15.5 grains); but, in all probability, 29 or 30 grammes of this water were contained in the inspired air.

It was long a doubtful question whether, in the process of respiration, there was an exhalation or an absorption of nitrogen; it has, however, been established, both by the experiments of Brunner and Valentini, and those of Regnault and Reiset, that there unquestionably is a slight excretion of nitrogen; the former physicists maintaining that there is an excess of 0.402 per cent. (by volume) of nitrogen in the expired air, and the latter finding, in their experiments on animals, that for every 10,000 parts (by weight) of oxygen that are absorbed, there are from 8 to 133 parts of nitrogen developed in the lungs. Boussingault* and Barral† have independently shown (the former by experiments on animals, and the latter on men) that the amount of the exhaled nitrogen is about one-hundredth that of the exhaled carbonic acid. A portion of the nitrogen of the expired air occurs in the form of ammonia.

Minute quantities of volatile matter, which have been taken either as medicines or with the food, are often to be detected in the exhaled air—as, for instance, alcohol, phosphorus, camphor, and ethereal oils; and even when no such substances have been directly introduced into the system, traces of organic matter, composed of carbon and hydrogen, may generally

† Comptes Rendus, tom. xxvii. p. 361.
be detected by the reddening which sulphuric acid undergoes when used
to dry exhaled air.

Different investigations have led to somewhat discordant results in
regard to the quantity of carbonic acid exhaled by an adult man in
a given time—as, for instance, twenty-four hours. The origin of these
discrepancies might, we suspect, be detected if we could afford space to
examine critically the different modes of experiment. According to
Scharling, a very trustworthy observer, a muscular man exhales in twenty-
four hours, 867 grammes (or 443,409* centimetres, the temperature being
32° Fahr., and the barometer standing at 29:8 inches).

Vierordt calculates that the oxygen absorbed by an adult man in twenty-
four hours (part of which is given off as carbonic acid and water, and part
retained in the body) amounts to 746 grammes, or 520,601+ centimetres;
consequently, about 116 grammes of the absorbed oxygen are retained
in the organism. According to Boussingault’s determinations, about 8
grammes of nitrogen are given off in the same period; and the researches
of Valentin show that there are also evolved about 500 grammes of
water.

The quantity of carbonic acid in 100 parts of the expired air, estimated
by volume (the breathing being perfectly quiet), has been determined by
Vierordt, from a very large number of experiments made on healthy men,
at 4:334. We extract the following table, bearing on this point, from Dr.
Reid’s admirable article:

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>Max.</th>
<th>Min.</th>
<th>Extreme difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prout‡</td>
<td>3:45</td>
<td>4:10</td>
<td>3:30</td>
<td>0:80</td>
</tr>
<tr>
<td>Coathue§</td>
<td>4:02</td>
<td>7:98</td>
<td>1:91</td>
<td>6:07</td>
</tr>
<tr>
<td>Brunner and Valentin</td>
<td></td>
<td>4:380</td>
<td>5:495</td>
<td>3:299</td>
</tr>
<tr>
<td>Thomson**</td>
<td>4:16</td>
<td>7:16</td>
<td>1:71</td>
<td>5:45</td>
</tr>
</tbody>
</table>

As we shall immediately show, the variations in the quantity of the
exhaled carbonic acid are dependent on certain conditions of the body and
of the surrounding media.

In noticing these conditions, we shall follow Lehmann’s arrangement;
promising, however, that this portion of the chapter on respiration is
little more than a complete abstract of Vierordt’s treatise,†† with inter-
spersed remarks and criticisms.

Vierordt commenced his inquiries by attempting to ascertain the con-

* Or about 27,058 cubic inches, if we consider one cubic centimetre to be equal to 0:061023
of an English cubic inch.
† About 31,740 cubic inches.
‡ In some subsequent experiments by Prout, the range in the quantity of carbonic acid was
between 2:8 and 4:7; the minimum number occurring once only, and when he was sleepy.
His experiments were performed upon himself, and at every hour of the day and night.
§ These experiments were 124 in number, and performed upon himself at almost every hour
of the day between 8 A.M. and midnight.
¶ These experiments were 34 in number, and were performed upon 3 males between 33 and
53 years of age.
‖ Vierordt’s experiments were nearly 600 in number; they were performed upon himself,
chiefly between the hours of 9 A.M. and 7 P.M., and were continued over an interval of nearly
15 months.
** These experiments were made on 10 males and 2 females, and between 11 and 12 in the
forenoon.
†† Physiologie des Athmenns.
nexion between the amount of carbonic acid in the exhaled air, and the frequency of the respiratory movements.

The following are the mean, maxima, and minima values determined for one minute, when the body was in a state of perfect repose:

<table>
<thead>
<tr>
<th></th>
<th>Mean.</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of the pulse</td>
<td>75·52</td>
<td>54</td>
<td>101</td>
</tr>
<tr>
<td>respiration</td>
<td>11·9</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>Volume of the expired air</td>
<td>384·7</td>
<td>256·6</td>
<td>568·2 cubic inches.</td>
</tr>
<tr>
<td>" carbonic acid</td>
<td>16·0</td>
<td>10·8</td>
<td>27·6</td>
</tr>
<tr>
<td>Volume of one expiration</td>
<td>31·0</td>
<td>22·4</td>
<td>42·7</td>
</tr>
<tr>
<td>Per-cent of carbonic acid</td>
<td>4·334</td>
<td>3·55</td>
<td>6·220</td>
</tr>
</tbody>
</table>

These standard values being obtained, he next found that when the number of respirations was doubled (without any diminution of their normal depth), the relative quantity of carbonic acid was 0·907 per cent. less than during quiet normal breathing; when trebled, 1·125 per cent. less; when quadrupled, 1·292 per cent. less; and finally, when increased eightfold, 1·600 per cent. less.

When the respirations were diminished to half their original number—that is to say, 6 in place of 12—the difference in the amount of carbonic acid was 1·316 per cent.

Lehmann arranges these values in the following tabular form:

<table>
<thead>
<tr>
<th>Respirations in one minute.</th>
<th>Carbonic acid in 100 volumes of expired air.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>5·328</td>
</tr>
<tr>
<td>12</td>
<td>4·262</td>
</tr>
<tr>
<td>24</td>
<td>3·355</td>
</tr>
<tr>
<td>48</td>
<td>2·948</td>
</tr>
<tr>
<td>96</td>
<td>2·662</td>
</tr>
</tbody>
</table>

Vierordt has deduced a formula which (as he believes) expresses the relation between the per-centage of the carbonic acid and the number of respirations in a minute. As, however, the strict accuracy of this formula has been questioned by Marchand and Stürmer,* we pass on to the consideration of the influence which the extent or depth of the respiratory act exerts on the per-centage of the carbonic acid in the expired air. Vierordt has ascertained that—

If the air, after a normal inspiration, contains 4·60 per cent. of carbonic acid,
Then air after one twice as deep 4·00
" thrice " 3·70
" four times " 3·38
" eight times " 2·27
" half " 5·38

Hence, by modifying the frequency and depth of the inspirations, we can throw off a greater or lesser quantity of carbonic acid.

The older experiments of Allen and Pepys, as well as those of Jurine, tended to show that the respired air received most of its carbonic acid in the finest ramifications of the air-passages. Vierordt attempted to decide this point in the two following ways:

* Observationes de Acidi Carbonici Respirations exhalati Quantitate. Halias, 1848.
He divided each expiration into two as nearly as possible equal halves, the second half being obviously associated with the deeper portion of the lung. In the air yielded by the terminal portions of the expirations, he found, as a mean of twenty-one experiments, 5.44 per cent. of carbonic acid; while, in the corresponding commencing portions, he found only 3.72 per cent.

His other method was to compare the amount of carbonic acid in an ordinary expiration, with that after a deep and laboured respiratory effort. He found, as a mean of eight experiments, that when the carbonic acid of a normal expiration (of 574 cubic centimetres, or 35 cubic inches), amounted to 4.63 per cent., a very complete expiration (of 1800 cubic centimetres, or 110 cubic inches) yielded 5.18 per cent.

From four independent series of experiments, the same observer was led to the conclusion, that any impediment to free respiration produces a very marked diminution of the absolute, but a decided augmentation of the relative quantity of carbonic acid—a result fully confirmed by the still more recent experiments of Horn.*

We shall now briefly notice the results of the most trustworthy inquiries regarding the respiration of artificial atmospheres of various kinds. Most of the researches bearing upon this point have of course been made upon animals.

It appears, from the experiments of Regnault and Reiset, on dogs and rabbits, that an atmosphere two or three times richer than our own in oxygen produces no very striking results; the animals seemed to suffer no inconvenience, and the products of respiration were the same as in the ordinary atmosphere. This is a result we should have hardly expected, because the earlier observations which had been made by Lavoisier and Seguin, and by Allen and Pepys, on men, and by Marchand on frogs, seemed distinctly to prove, that when pure oxygen was breathed, although there was little or no augmentation of carbonic acid, far more oxygen was absorbed than in the normal condition of things: according to Allen and Pepys there was also, under these circumstances, a considerable exhalation of nitrogen.

Numerous experiments have been at different times made on the respiration of air containing an excess of carbonic acid, and on the repeated inhalations of the same air. Marchand found that when frogs were kept in a confined atmosphere they developed less carbonic acid, and absorbed less oxygen, towards the end than at the commencement of the experiment; and that at length they scarcely took up more oxygen than was necessary for the formation of the carbonic acid. Lehmann thinks it probable that an excess of nitrogen is exhaled in an atmosphere rich in carbonic acid. We all know, from Davy's experiments, that pure carbonic acid cannot be inhaled, in consequence of its exciting spasmodic closure of the glottis; and an atmosphere containing about 50 per cent. of carbonic acid is irrespirable from the same cause; air, however, containing a smaller quantity of this gas can be breathed without imminent danger for some time: its unfitness for respiration not depending so much upon the presence of an excess of carbonic acid as upon the absence of a sufficient quantity of oxygen.

Experiments on the inhalation of nitrogen and highly nitrogenous atmospheres have been made by some of the earlier French chemists (Nysten, Coutenceau, and Legallois), but did not lead to any definite results.

The admirable experiments of Davy on the respiration of nitrous oxide have been subsequently repeated and confirmed by P. Zimmermann. It appears, from Davy's analyses of the expired air, that a large quantity of nitrous oxide is absorbed by the blood, and that comparatively large quantities of carbonic acid and nitrogen are given off. Zimmermann, who has experimented somewhat largely with this gas on pigeons and rabbits, found that the pulse very soon became accelerated and irregular, and that the respiration was much quickened; slight convulsions afterwards supervened, and finally asphyxia. A strong rabbit, after remaining for three hours and twenty minutes in an atmosphere of nitrous oxide, was restored by the inflation of fresh air. The same observer found that a rabbit, which, in one hour, produced, on an average, 0.8 grams of a gramme (about $12\frac{1}{2}\text{ grains}$) of carbonic acid in atmospheric air, exhaled 1.3 grammes (about 20 grains), in a similar time, in nitrous oxide.

An atmosphere containing more or less hydrogen may be breathed for a considerable time without injury, provided a sufficient quantity of oxygen be present. Regnault and Reiset placed rabbits, a dog, and frogs, in an atmosphere in which the greater part of the nitrogen had been replaced by hydrogen (55 to 77 per cent. of hydrogen, 1.1 to 14.4 per cent. of nitrogen, and 21.8 to 28.8 per cent. of oxygen); the rabbits inspired this mixture for twenty, and the dog for ten hours, apparently without any injury. At the end of the experiment there was scarcely any loss of hydrogen; there was a greater absorption of oxygen than would have occurred with ordinary atmospheric air; and a little nitrogen appeared to have been exhale, but this was questionable. These results are almost entirely in accordance with those which had been previously made, both by Lavoisier and Seguin, and by Davy. It follows, from the experiments of Regnault and Reiset, that there is nothing positively injurious in the inhalation of pure hydrogen, the reason why such an atmosphere would not support life being referable to the absence of oxygen. Marchand found that frogs, confined in pure hydrogen, died in from half an hour to an hour. When breathing this gas they exhale far more carbonic acid than in the ordinary air; the hourly quantities for every 1000 grammes' weight of frogs being 0.077 of a gramme in the latter, and 0.263 of a gramme in the former case.

Carbonic oxide, when mixed, even in very small quantities, with atmospheric air, induces a sensation of tightness, suffocation, insensibility, and death. It appears to be definitely established, by the researches of Leblanc and others, that it is to this gas that charcoal vapours chiefly owe their deadly power.

We need hardly remind our readers, that sulphuretted hydrogen,
seleniuretted hydrogen, phosphuretted hydrogen, arseniuretted hydrogen, ammoniacal gas, sulphurous acid, chlorine, &c., are not merely irrespirable, but poisonous gases, like carbonic oxide.

Amongst the various external conditions which modify the respiration, we will first notice the temperature of the atmosphere. The earliest experiments on this subject were instituted on animals which, at a low temperature, fall into a condition more or less closely allied to hibernation. Spallanzani, Saissy, Treviranus, and others, having observed that insects and mollusca, as well as marmots, bats, and hedgehogs, exhaled less carbonic acid at a low than at a high temperature, it was inferred by physiologists that a cold atmosphere produced the same effect on all classes of animals. More recent observations have, however, fully demonstrated, that in the higher animals the exhalation of carbonic acid diminishes with the elevation of the temperature from the freezing point. It appears, from the experiments of Letellier* on greenfinches, pigeons, mice, and guinea-pigs, that these animals exhale most carbonic acid between 23° and 37-4° Fahr., and least between 82° and 110° Fahr. This was even more marked in birds than in mammals; none of the animals could bear a higher temperature than 110°. Marchand has experimented in a similar manner on frogs, and his results only differed from those of Letellier in this respect, that at a temperature as little reduced as from 35½° to 37½° Fahr., they fell into a torpid condition, in which they excreted an extremely minute quantity of carbonic acid (1000 grammes' weight of frogs yielding only 0.039 of a gramme in one hour), whilst they exhaled the greatest quantity (0.124 of a gramme) between 43° and 45° Fahr. As the temperature rose the quantity of carbonic acid gradually diminished, and between 82° and 84° the amount yielded by 1000 grammes' weight of frogs was only 0.077 of a gramme.

Vierordt has made a very extensive series of observations, with the view of ascertaining the connexion between the temperature and the pulse, the respiratory movements, and the volumes of expired air and of carbonic acid in one minute. His experiments were made at every degree of temperature between 37° and 76° Fahr. We shall place the mean results in two parallel columns, the first having reference to temperatures from 37° to 55°, and the second from 56° to 76°.

<table>
<thead>
<tr>
<th>Mean Temperature</th>
<th>47°</th>
<th>67°</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse in one minute</td>
<td>72-93</td>
<td>71-29</td>
<td>1.64</td>
</tr>
<tr>
<td>Respiration in one minute</td>
<td>12-16</td>
<td>11-57</td>
<td>0.59</td>
</tr>
<tr>
<td>Volume of one expiration</td>
<td>33.5 cub. in.</td>
<td>31.8 cub. in.</td>
<td>1.7 cub. in.</td>
</tr>
<tr>
<td>Air expired in one minute</td>
<td>407'0</td>
<td>367'2</td>
<td>40</td>
</tr>
<tr>
<td>Carbonic acid expired in one minute</td>
<td>18'3</td>
<td>15'7</td>
<td>2'6</td>
</tr>
<tr>
<td>Carbonic acid in 100 parts of expired air</td>
<td>4'48</td>
<td>4'28</td>
<td>0'20</td>
</tr>
</tbody>
</table>

From this table we see that elevation of the temperature is accompanied by a diminution of the number and of the depth of the inspirations; its effect upon the excretion of carbonic acid is, to a certain degree, of an indirect nature, since the diminished number and depth of the expirations must have a considerable influence; but inasmuch as the diminution does

not merely show itself in the total quantity excreted, but also in the
per centage of carbonic acid in the expired air; it seems obvious that the
elevation of temperature has a more direct influence on the excretion
of carbonic acid than could be accounted for by the modified respira-
tory action.

The degree of atmospheric moisture to a certain degree influences the
respiratory functions and the excretion of carbonic acid. Lehmann, some
years ago, experimented on this subject with pigeons, greenfinches, and
rabbits. The quantity of carbonic acid exhaled in a moist air was much
greater than that in a drier atmosphere. For example, 1000 grammes’ weight
of pigeons yielded in one hour, in dry air, 10·438 grammes at 32° Fahr.,
6·055 at 75°; and 4·69 at about 100°; while in a moist atmosphere, they
yielded 6·769 grammes at 73°, and 7·176 at 100°. The other animals
yielded similar results; and although the experiments were not very
numerous, they are sufficient to show that there is a connexion between
the degree of moisture of the inspired air and the quantity of carbonic
acid excreted, although we cannot clearly see the reason of it.

The researches of Vierordt on the influence of atmospheric pressure,
show that this also is by no means an unimportant element. The fol-
lowing numbers are extracted from his tables:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>27 in. 8 lines ... 70·9 ... 528·6 cc.* ... 6121 cc. ... 272·51 cc. ... 4·450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 ″ 2 ″ ... 72·2 ... 529·2 " ... 6607 " ... 271·16 " ... 4·141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The influence—real or apparent—of different periods of the day was
carefully examined by our distinguished countryman, Prout, and has sub-
sequently been made the subject of experiment by Scharling, Vierordt,
and Horn. Although these chemists have clearly shown that the pro-
ducts of respiration differ to no small extent at different periods of the
day, there can, we think, be no doubt that these differences depend far
more on the internal condition of the organism, as, for instance, on the
digestion, on sleep, &c., than on mere cosmetic conditions. Marchand was
led to believe, from his earlier experiments on frogs, that there was a great
difference between the daily and nightly secretion of carbonic acid; but
on further investigation, and on eliminating certain causes of error, he
arrived at the conclusion, that the influence of day and night is extremely
trifling, and that any slight diminution during the latter period may be
referred simply to the comparative quietude of the animals.

As might naturally be expected, abstinence from food exerts a very
marked effect on the pulmonary excretion. Letellier found that while
1000 grammes’ weight of turtle doves, in their ordinary condition, exhaled
in one hour 5·887 grammes of carbonic acid, they yielded only 4·120
grammes in an equal time, after a week’s starvation. Boussgault has
made similar experiments with a like result; a week’s fasting reduces
the hourly exhalation from 4·169 to 2·650 grammes. But, perhaps, the
most carefully conducted experiments on this subject are those of Mar-
chand on frogs. He found that these animals, when deprived of food,
gradually exhaled less carbonic acid, and absorbed less oxygen; the ratio,

* We retain the French measure here, as the centimetres show the differences more dis-

tinctly than our own inches.
however, of the absorbed oxygen to the exhaled carbonic acid continued to rise till it reached about 420 : 100, the great excess of oxygen being clearly applied to the oxidation of the hydrogen; it afterwards fell to 300 : 100, and even to 270 : 100, so that there was scarcely sufficient oxygen absorbed for the formation of the carbonic acid; and this low ratio remained tolerably constant.

It appears, from the extensive researches of Regnault and Reiset, that the expired air during fasting presents nearly the same characters in the most varied classes of animals. The consumption of oxygen is invariably less in fasting than in well-fed animals: thus, for instance, 1000 grammes' weight of rabbits, when fasting, absorbed, on an average, only 0.749 of a gramme in an hour; while, after a full meal, the quantity was 0.877. In the fasting state, however, far less of the absorbed oxygen reappears in the carbonic acid than in the case when the animals are fed upon amylaceous food: thus, for instance, in rabbits fed upon carrots, from 84 to 95 per cent. of the absorbed oxygen is applied to the formation of carbonic acid; while, in the fasting state, the quantity does not exceed from 70 to 76.2 per cent. These observers very frequently noticed an absorption of nitrogen in fasting animals; in birds it was an almost constant phenomenon.

We may here notice two well-devised series of experiments which Bidder and Schmidt instituted, with the view of determining the modifications which the respiration undergoes during a total abstinence from food.

A cat, weighing 2464 grammes, exhaled, during an eighteen days' fast, 699.52 grammes of carbonic acid (\(= 100 \cdot 78 \) grammes of carbon), and 525.67 grammes of aqueous vapour. It was shown by the quantitative determination and analysis of the other excretions, that (almost exactly in accordance with the direct observations of Regnault and Reiset) only 76.5 per cent. of the absorbed oxygen was again separated with the expired carbonic acid; further, that with every 100 parts of carbonic acid, 75.15 parts of aqueous vapour were exhaled, and that 41.72 per cent. of the whole water given off was removed by the perspiration.

From the daily observations, it followed that the absorption of oxygen gradually diminished till the animal died, at first rapidly, then more slowly till the thirteenth day, and then again more rapidly till death ensued. The quantity of the expired oxygen which was not applied to the formation of carbonic acid, at first diminished with considerable rapidity, but afterwards more slowly and uniformly. At the beginning of the experiment, 80 per cent. went to form carbonic acid; on the second day, 77.4 per cent.; and for some time before the end, only 73 per cent.

The quantity of carbonic acid excreted in twenty-four hours, diminished with nearly uniform rapidity for the first six days; in the next six days, only slowly; and in the last six days, again more rapidly. The daily amount of the exhaled aqueous vapour sank slowly and tolerably regularly; it being somewhat accelerated at the beginning and towards the close of the experiment.

In the second series of experiments (which were made on an adult cat, into whose stomach a large quantity of water had been injected), the ratio of the absorbed oxygen to that which was exhaled in the form of carbonic acid, was almost precisely the same as in the former case, there being 75.3 per cent. of oxygen thus employed; with every 100 parts of
carbonic acid 95·7 parts of aqueous vapour were exhaled; while in the previous case (where no water was allowed) for every 1000 grammes' weight of the animal, there were daily exhaled 21·641 grammes of carbonic acid, and 16·281 of aqueous vapour: here (where water was abundantly given) the relative quantities of carbonic acid and water were 16·30 and 15·60 grammes respectively. Hence the water clearly impedes the loss of tissue.

It appears from certain experiments of Vierordt's that we cannot omit one of our ordinary meals without materially affecting the respiratory process. The experiments were made upon himself, and half-past twelve o'clock was his dinner-hour.

<table>
<thead>
<tr>
<th>Time</th>
<th>Pulse</th>
<th>No. of respiration</th>
<th>Vols. of one expiration</th>
<th>Air in one minute in ditto</th>
<th>Carb. acid in 100 vols. of expired air</th>
</tr>
</thead>
<tbody>
<tr>
<td>At 12 o'clock</td>
<td>63</td>
<td>10</td>
<td>545 cc.</td>
<td>5450cc.</td>
<td>270·22cc.</td>
</tr>
<tr>
<td>At 2 o'clock, having dined</td>
<td>78·8</td>
<td>11·22</td>
<td>558·7 cc.</td>
<td>6162 cc.</td>
<td>307·36 cc.</td>
</tr>
<tr>
<td>At 2 o'clock, not having dined</td>
<td>62·5</td>
<td>9·5</td>
<td>575·0 cc.</td>
<td>6479 cc.</td>
<td>258·18 cc.</td>
</tr>
<tr>
<td>Differ. at 2 o'clock dependent on dinner</td>
<td>16·3</td>
<td>1·17</td>
<td>16·3 cc.</td>
<td>683 cc.</td>
<td>49·18 cc.</td>
</tr>
</tbody>
</table>

It is obvious from this table that, ceteris paribus, the respiratory functions are most energetic very shortly after a meal, and that they then gradually diminish in intensity. The only apparent exception is in the case of the volume of each expiration; but this may be readily explained on anatomico-mechanical grounds. Vierordt and Barral agree in the opinion that more carbonic acid is excreted in winter than in summer.

The effect of the chemical nature of the food on the respiratory products has been made the subject of inquiry by numerous chemists, amongst whom we may especially mention Dulong, Despretz, Lassaigne and Yvart, Letellier, and Regnault and Reiset. We must restrict ourselves to a notice of the results obtained by the last-mentioned investigators. They found that when dogs were fed on amyloaceus food, far more oxygen was applied to the formation of carbonic acid than when they were fed upon flesh; in the latter case only 74·5 per cent. of the oxygen being thus used, while in the former the per-centage amounted to 91·3. A little nitrogen was exhaled during a vegetable diet, but far less than when flesh was eaten. A dog fed on mutton-suet neither exhaled nor absorbed nitrogen, and only 69·4 per cent. of the oxygen which it absorbed was returned as carbonic acid. Fowls, when fed on flesh after several days' starvation, absorbed a considerable quantity of nitrogen, but after they became accustomed to this abnormal diet, they returned to their ordinary habit of exhaling it; and, as in the case of the dogs, far less of the absorbed oxygen was returned as carbonic acid than when they were fed on their natural food; in two cases only 63 per cent. of the absorbed oxygen was contained in the carbonic acid which was exhaled. It further followed from these experiments, that after an animal diet the interchange of gases in the lungs is very similar to what occurs during fasting; and as similar observations have been made with reference to the urine and other excretions, it may perhaps be a legitimate inference, that a fasting animal to a certain degree lives upon its own flesh.

* Or 1 cubic inch. † Or 41·7 cubic inches. ‡ Or 3 cubic inches.
We shall give Lehmann's views on the question, how far the nature of the food influences the absorption of oxygen, and the excretion of carbonic acid, in his own words, with very slight abbreviations:

"We commence with a postulate (which will be subsequently established by inductive proof) that all the carbon and hydrogen of the fats and carbo-hydrates derived from the food, are completely oxidized in the living body into carbonic acid and water. It must be obvious to every one acquainted with the composition of these substances, that very different quantities of oxygen are required for their complete oxidation. The mean composition of the fats is about 75·13 C, 11·64 H, and 10·13 O; for the oxidation of the carbon (into carbonic acid) and of the hydrogen contained in 100 grammes of fat, there would be required 298·35 + 93·92, or 392·27 grammes of oxygen; but as the fat already contains 10·13 per cent. of oxygen, it would only require 292·14 grammes of that gas for its perfect combustion into carbonic acid and water. On comparing the composition of sugar with that of fat, we at once perceive that the carbo-hydrates require far less oxygen for their perfect oxidation than the fats; the former have no hydrogen to oxidize, as the oxygen they already contain is sufficient for this purpose; the carbon is, therefore, the only substance in them requiring oxidation, and it occurs in far smaller quantity in the carbo-hydrates than in fats. In the organic acids, as tartaric, citric, and malic acid—which occur in many articles of food—there is so large a proportion of oxygen, that it suffices not only for the oxidation of the hydrogen, but also of a portion of the carbon.

"In the case of nitrogenous food we cannot, however, admit the postulate, that all the carbon and hydrogen are consumed in the animal body; for we know that the greater part of the nitrogen in these substances is not liberated in the form of ammonia, but is eliminated in combination with carbon, hydrogen, and a little oxygen, by other channels than the lungs. Hence we are led to inquire, whether, and to what extent, the nitrogenous nutrient substances yield materials for oxidation, and consequently, how much carbonic acid and water they are able to furnish for respiration. As we have already seen that the albuminates and collagen* are capable of maintaining respiration, we are induced, in explanation of their value in this respect, provisionally to adopt the mere hypothesis, that these substances are disintegrated in the animal body only into carbonic acid, water, and urea, although we know that other nitrogenous products of excretion besides urea are formed; but since the urea preponderates very much in quantity over all similar compounds, and in some organisms—as, for instance, in the carnivora—occurs almost alone, this hypothesis is not altogether unworthy of notice in estimating the quantity of oxygen which is applied to the oxidation of the albuminates and of collagen: we therefore subtract from the composition of the albuminates, and other nitrogenous articles of food, a quantity of urea equivalent to their amount of nitrogen. If, for instance, we assume the composition of the albuminates, independently of their sulphur and salts, to be 54·36 C, 7·27 H, 16·05 N, and 22·32 O, there will remain, after the abstraction of the quantity of urea (=6·88 C, 2·29 H, and 9·18 O) equivalent to the (16·05 parts of) nitrogen from 100 parts of an albuminate, 47·48 parts of carbon, 4·98 of hydrogen, and 13·14 of oxygen. These relations will be more clearly seen in the following table:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Carbon</th>
<th>Hydrogen</th>
<th>Oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 parts of fat</td>
<td>75·13</td>
<td>11·64</td>
<td>10·13</td>
</tr>
<tr>
<td>starch</td>
<td>64·45</td>
<td>6·17</td>
<td>40·38</td>
</tr>
<tr>
<td>sugar (C₁₁H₁₄O₆)</td>
<td>40·00</td>
<td>6·86</td>
<td>53·34</td>
</tr>
<tr>
<td>maltic acid (C₆H₈O₇)</td>
<td>41·38</td>
<td>3·45</td>
<td>55·17</td>
</tr>
<tr>
<td>albuminates</td>
<td>47·48</td>
<td>4·98</td>
<td>13·14</td>
</tr>
<tr>
<td>collagen</td>
<td>42·82</td>
<td>4·47</td>
<td>13·59</td>
</tr>
<tr>
<td>muscular substance (muscle)</td>
<td>46·10</td>
<td>4·72</td>
<td>13·68</td>
</tr>
</tbody>
</table>

Oxygen requisite for the formation of CO₂ and H₂O in addition to that present...

* A word introduced recently into chemistry, to indicate the tissues yielding gelatin.—Rev.
† Physiol. Chem., vol. iii. pp. 312, 313.
Passing over Lehmann's observations on the intimate bearing which these proportions have upon the development of animal heat, and confining ourselves to the respiratory process, we obtain from the last column certain numerical relations which may be regarded as representing the respiratory equivalents. If, for instance, we assume that an organism requires, for the proper discharge of its vital functions, to absorb 100 grammes of oxygen in a given time, the following quantities of the above-mentioned substances would be necessary to combine with that quantity of oxygen: 34.23 grammes of fat, 84.37 of starch, 93.75 of sugar, 120.80 of malic acid, 65.23 of an albuminate, 73.77 of collagen, or 68.01 of dry flesh. As every student of physiology is aware that no one of these substances would of itself preserve the system in a normal condition, and that it is still a scarcely solved problem in dietetics as to the proportions in which they should be combined, these numbers must obviously be regarded as mere relative estimates of the values of these kinds of food in connexion with the respiratory process.

The following experiments, made by C. Schmidt on one and the same animal (a cat), afford a good illustration of the extent to which the quantity of food modifies the respiratory process. The cat was kept in excellent condition, and lost no weight when receiving 142.41 grammes of flesh daily. On this allowance, it absorbed 60.14 grammes of oxygen, and exhaled 65.60 grammes of carbonic acid and 30.88 of water in twenty-four hours. When receiving 247.32 grammes of flesh daily, the corresponding quantities of oxygen, carbonic acid, and water, were 103.84, 113.52, and 47.86 grammes. Regnault and Reiset obtained similar results with herbivorous animals.

Like Prout, Vierordt has found that the excretion of carbonic acid is both absolutely and relatively diminished even by the moderate use of spirituous drinks; he likewise confirms Prout's statement, that the augmentation of carbonic acid, which naturally accompanies the process of digestion, is considerably lessened by the ingestion of alcoholic fluids.

The excretion of carbonic acid is very considerably diminished during sleep. This is most decisively proved by the experiments of Scharling, who found that a man, during one hour of the night, exhaled only 22.77 grammes, who, during an hour of the next day, immediately after a meal, exhaled 33.69 grammes; and who, in another case, found that the horary excretion of carbonic acid during the night and during the day was as 31.39 : 40.74. Lehmann, some years ago, published some experiments of a similar nature on birds (wood-pigeons): he found that, for every 1000 grammes' weight of birds, there was, on an average, 6.156 grammes of carbonic acid exhaled in an hour during the morning, while during the night the quantity was 4.950 grammes.

Regnault and Reiset have made some interesting observations on the remarkable influence which hypbernation exerts on the respiratory process. They found that marmots absorbed, in their winter sleep, from 0.040 to 0.048 of a gramme of oxygen in an hour to every 1000 grammes of their own weight; while in their summer state, when awake, they consumed from 0.774 to 1.198 grammes. In their sleeping condition, only 56.7 per cent. of the absorbed oxygen was found in the carbonic acid; while in their active state, it amounted to about 73 per cent. In two out of three experiments,
they observed in the hybernating animals a considerable absorption of nitrogen; whilst in their active state, like other animals, they exhaled this gas. This excessive absorption of oxygen, and considerable absorption of nitrogen, explain the fact first noticed by Sace, that marmots frequently increase in weight during their hybernation. They obtained similar results with lizards, which were reduced to a state of torpor by the action of cold.

Prout, and subsequently Vierordt, showed that in man, immediately after waking, there is a considerably augmented excretion of carbonic acid; as a parallel experiment, Regnault and Reiset found that their marmots, on first awakening in the spring, exhaled very large quantities of carbonic acid, and consumed more oxygen than after they had become entirely active.

"That age," says Lehmnn, "is not without its influence on the respiratory process, is proved by experiments both on men and animals. Andral and Gavarret have instituted tolerably extensive observations on the absolute quantity of carbonic acid that is exhaled; from which it follows, that the daily amount increases, on an average, to the 40th or 45th year, varying in accordance with the development of the muscular system. In Scharling's experiments, the two children that he employed (a boy aged nine years and three-quarters, and a girl of ten) exhaled nearly double the quantity of carbonic acid, in relation to their weight, that adults did; excluding, however, this reference to weight, there is a perfect coincidence between Scharling's results and those of Andral and Gavarret. The observations made by Regnault and Reiset on animals are in accordance with those made on man. They found that in animals of the same species the young consumed more oxygen than the adult.

"With regard to the influence of sex upon respiration, Scharling's observations, as well as those of Andral and Gavarret, show that males exhale more carbonic acid than females; a law which holds good even in childhood, boys producing more carbonic acid than girls.

"As the results of Scharling's investigations must be regarded as giving us (at all events for the present) the standard numbers for the normal excretion of carbonic acid in man, we give those numbers here, calculated for one hour, and reduced from (Danish) grains to grammes.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age</th>
<th>Weight of body</th>
<th>CO₂ in 1 hour</th>
<th>Ditto calculated for 1000 grammes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man</td>
<td>35</td>
<td>65·50</td>
<td>33·530</td>
<td>0·5119</td>
</tr>
<tr>
<td>Youth</td>
<td>16</td>
<td>57·75</td>
<td>34·280</td>
<td>0·5887</td>
</tr>
<tr>
<td>Soldier</td>
<td>28</td>
<td>82·00</td>
<td>36·632</td>
<td>0·4466</td>
</tr>
<tr>
<td>Maiden</td>
<td>17</td>
<td>55·75</td>
<td>25·342</td>
<td>0·4546</td>
</tr>
<tr>
<td>Boy</td>
<td>9½</td>
<td>22·00</td>
<td>20·338</td>
<td>0·9245</td>
</tr>
<tr>
<td>Girl</td>
<td>10</td>
<td>23·00</td>
<td>19·162</td>
<td>0·8831</td>
</tr>
</tbody>
</table>

"According to Andral and Gavarret, an adult man exhales, on an average, from 38·5 to 40·3 grammes in an hour; an adult female, when not pregnant, from 22·0 to 23·8 grammes, during pregnancy 29·3 grammes, and after the cessation of menstruation from 27·5 to 31·2 grammes of carbonic acid. Although Scharling includes the products of perspiration, yet Andral and Gavarret's numbers are the highest; this apparent anomaly may be probably explained by supposing that in their experiments the respirations were more laboured, and, at all events, more frequent, than in the corresponding experiments of Scharling, which were instituted on persons enclosed in a large and commodious respiratory chamber (Respirationsbehältnissen)."†

* The kilogramme = 1000 grammes = 2·21bs. nearly.
We now arrive at that part of Lehmann's chapter in which he discusses the chemistry of the respiratory process in the lower animals. Passing over, for want of space, his remarks on this process in mammals, birds (and their eggs), reptiles, and insects, we shall give a brief abstract of some interesting experiments recently made by Baumert,* on the respiration of fishes. The subjects of his inquiry were the tench (cyprinus tinca), the gold-fish (cyprinus aureus), and the pond-loach (cobitis fossilis). He found, by means of an ingeniously constructed apparatus, that tench inspired, on an average, to 1000 grammes of their own weight, 0.0143 of a gramme of oxygen, and exhaled 0.0138 of a gramme of carbonic acid in one hour; while for the more active and lively gold-fishes the corresponding numbers, representing the oxygen and carbonic acid, were 0.0409 and 0.0419 of a gramme respectively. The volume of the absorbed oxygen is, to that of the exhaled carbonic acid, in about the ratio of 10:7; and of 100 parts (by weight) of the absorbed oxygen, 72.3 are returned with the carbonic acid. With the loach the results were somewhat different. This fish, in common, we believe, with a few others, possesses what may be termed an intestinal respiration, in addition to the ordinary gill-respiration. It may be very commonly seen ascending to the surface of the water, opening its mouth, and swallowing air, which is transmitted to the stomach and intestinal canal. Baumert has analyzed the air after it has passed through the intestines, and has found it to contain considerably less oxygen than when it was swallowed; and in the place of the oxygen, there is considerably less carbonic acid than we are accustomed to find in either branchial or pulmonic respiration. The oxygen absorbed by the intestine must, therefore, pass directly into the blood, while the carbonic acid which it contributes to form would seem to be separated by the gills. This view is, at all events, borne out by Baumert's observation, that in the branchial respiration of the loach there is exhaled far more carbonic acid in proportion to the inspired oxygen, than is given off in a corresponding manner by the tench or gold-fish.

The loaches were observed to swallow air, in the manner we have described, much more frequently in stagnant than fresh (and, therefore, well-oxygenized) water; and it seemed, from certain experiments made by Baumert, that they soon exhibited symptoms of disease if either of their respiratory functions were impeded. Lehmann seems to have overlooked the observations made many years ago by Ermann† on the intestinal respiration of the loach.

Our knowledge of the respiratory products in special diseases is still, and will probably long continue to be, in a very unsatisfactory state. In many acute diseases it would be obviously impossible to submit the patient to the necessary course of investigation. In connexion with this subject, Lehmann records certain experiments which he instituted on rabbits, in which he had artificially set up inflammation of the lungs and muscular tissue, and gives an abstract of the researches of Hervier and Saint Sager on the respiration in inflammatory disorders, of Hannover in chlorosis and pulmonary tuberculosis, of Doyère in cholera, and of Mal-

colhm on typhus. Isolated inquiries, such as these, can, however, be of little service to science; and we can hope for no trustworthy and available observations until chemists shall have so far agreed upon the methods of analysis that their results will bear comparison with one another.

Review XII.

The plan which Dr. Henoch has adopted in the work before us is one which we would gladly see more generally introduced into our professedly practical literature. He treats of diseases as met with at the bed side, classifying them less according to the organs which they affect, than according to the prominent symptoms which they exhibit. This method is identical with that which is adopted in the clinical instruction given in hospitals, where cases are grouped together which resemble one another in some more prominent characters, with a view to point out the way in which they are to be distinguished from one another, and the reason of the different modes of treatment demanded by each. But while we see in this arrangement a great practical end gained, the objection arises that certain diseases are from time to time separated which, though disagreeing in their prominent symptoms, agree in affecting the same organ, or even the same part of an organ or its appendages. But where the aim of the work, as that of Dr. Henoch’s, is purely practical, this is of little real moment, since the diseases omitted find their place (and clinically, their natural and proper place) amongst those perhaps of other organs, which they resemble in their symptoms, and with which there is consequently a possibility of their being confounded.

Dr. Henoch devotes the early pages of his book to a brief discussion of some of the most obvious signs of disease apparent upon inspection, handling, and percussion of the abdomen; and then, seizing upon the presence of firm tumour as a prominent sign of disease, and consequently one which cannot be overlooked in making a diagnosis, he proceeds to give a brief clinical account of those affections which, not being, strictly speaking, diseases of the organs of the abdomen, are nevertheless capable of simulating them by producing abdominal tumours. We will follow him through his observations upon these diseases.

Fecal Tumours it is well known have frequently been mistaken for enlargements of abdominal organs, of the liver, kidney, ovary, uterus, &c. In illustration of these errors, Dr. Henoch transcribes a case from Andral, where a tumour, which was taken by that observer for a tumour of the liver, manifested its true nature by being dispersed, with all its accompanying symptoms, on diarrhea being induced by a dose of taraxacum juice. He alludes also to one of his own observations, in which gall-
stones were at one time suspected; there were present in this case great enlargement of the liver, with tenderness, bilious vomiting, and fever; while close above the navel, where, considering the size of the liver, the gall-bladder might have been expected to lie, there were perceived, apparently immediately beneath the abdominal wall, four or five small hard somewhat moveable tumours, which however disappeared on free evacuation of the bowels. In cases of fecal retention of this kind, we must not always expect to meet with complete constipation, since it is known that even diarrhoea may be present, with great and serious fecal accumulation; jaundice may also arise in consequence of the fecal masses exercising more or less pressure upon the cholecystic duct.

Peritoneal Abscess.—Dr. Henoeh relates a case in which the first idea was, that an excessively tender tumour, situated in the right lateral region of the abdomen, and accompanied by vomiting, was an enlarged kidney; but the absence of all the symptoms of renal disease discomtenanced this view, and the patient recovered completely, with total disappearance of the tumour, in the course of a few weeks. He also refers to two cases by Andral, in one of which a collection of pus, enclosed by thick false membrane, formed during life a tumour below the margin of the ribs on the left side, extending behind them, and simulating an enlarged spleen; while in the other, a similar accumulation in front of the stomach produced a projection in the epigastrium, such as is accustomed to result from a tumour of a subjacent organ.

Pelvic Abscess, which has at various times been mistaken for disease of the liver, kidneys, ovaries, &c., or for fecal tumours, chiefly occurs in females after delivery; but, putting parturition out of the question, Grisolle has shown that the disease is by far more frequent in the male than in the female sex. Out of 73 cases which he collected, 17 occurred after delivery, and of the remaining 56, only 10 were observed in females. The causes of the disease, which our author illustrates by reference to cases, are, in addition to a recent confinement, mechanical injury, such as may arise from sudden muscular effort in straightening the body, as a result of which some fibres of the psoas may be ruptured, and a portion of its investing cellular tissue torn; the presence of suppurating bubo; disease of the prostate gland, or of the urethra; and inflammation of the spermatic cord. In these cases the suppuration mostly occurs in the cellular tissue, between the peritoneum and the fascia, more rarely beneath the fascia, or in the cavity of the peritoneum. In distinguishing pelvic abscess from cystic disease of the ovary, a diagnosis which the position of the tumour often renders necessary, Dr. Henoeh properly insists upon the great importance of keeping clearly in view the early history of the affection. Encysted disease of the ovary nearly always commences without any striking morbid phenomena, whilst pelvic abscess is ushered in by marked symptoms of acute inflammation. Among these may be enumerated fever, cold shivering, vomiting, sweats, local pain, and tenderness. Extension of the thigh and sudden movements of the trunk are apt to increase the pain; and Dr. Henoeh has observed in addition, that the leg may become shortened, and consequent lameness be induced, by contraction of the psoas and iliacus muscles, especially in those instances in which the abscess, situated behind the fascia iliaca, compresses and irritates
the muscles. On this ground he dissents from the view which regards this symptom as one by which peritonitis may be distinguished from the disease under consideration. In the diagnosis of pelvic abscess, also, he places little reliance upon a sign commonly much depended upon—the detection of fluctuation. He states, that in the cases which have come under his observation, he has always failed to perceive it; and refers to two cases of large pelvic abscess related by Bourenne, where not the slightest fluctuation was present. Among the errors into which the form of a tumour may lead the practitioner, he specially mentions that of mistaking it for an acute inflammation of the right lobe of the liver, as was once observed by Dupuytren. He also relates a case which he observed himself, in which a tumour of the left ischium might have been confounded with pelvic abscess.

Tumours of the Peritoneum, and especially of the large or small omentum, or of the mesentery, may readily simulate disease of the abdominal viscera, as of the liver and uterus, instances of which are referred to in the writings of Andral and Bright. One of the results of chronic peritonitis, familiar to us from the description given of it by Dr. Hodgkin, is the shrinking up of the large omentum, so as to form a mass beneath the great curvature of the stomach. When this mass is further thickened by the deposition of the products of inflammation, tubercle, or cancer, it may give rise during life to palpable tumour. Dr. Henoch relates a case at great length in connexion with this fact, and illustrative of the diagnostic errors which may arise out of it.

Tumours of the Organs of the Abdomen.—Dr. Henoch takes up, in the first place, the _diseases of the liver_, of which enlargement or tumour is a prominent indication. The clinical description of these diseases forms the mass of the volume under review. Before entering, however, upon the subject of the true diseases of the liver, the reader is very properly warned, that it is not enlargement of the organ alone which can give rise to palpable tumour below the margin of the ribs, or to extended dulness upon percussion. Causes acting upon the liver from without, such as a habit of tight-lacing, may so flatten and lengthen the organ, and contract the thoracic space, as to cause the exhibition of both of these physical signs of enlargement. Diseases in parts adjacent to the liver may also have the effect of displacing it, and of pushing it downwards, upwards, outwards, or laterally, according to the structures they affect, and the amount of pressure they exert. In distinguishing _dislocation of the liver_ downwards, in consequence of pleuritic effusion from enlargement of the organ by disease, Dr. Stokes relies, among other signs, upon the presence of a furrow, which may be perceived between the diaphragm and convex surface of the liver. Dr. Henoch, however, asserts that he has noticed the same sign in cases of cancerous enlargement of the liver, where he has been able, without difficulty, to introduce the fingers under the margin of the ribs, and, therefore, between them and the enlarged liver. The descent of the liver on deep inspiration, a sign used by Dr. Stokes to distinguish enlargement of the liver from its dislocation by empyema, is regarded

"Of especial value where the liver has enlarged upwards towards the right cavity of the chest, a state of things which may easily give rise to the error of
supposing empyema to be present, on account of the great upward extent of the
dulness on percussion. But whilst, in the presence of the latter disease, deep
inspiration is without effect, in enlargement of the liver, the upper limit of the
percussion-dulness becomes lowered. 59 (p. 59.)

Hyperæmia and Inflammation of the Liver are the first of the pathological
conditions noticed as productive of enlargement of the organ. After
alluding to the usual causes of _mechanical_ hyperæmia, such as those dis-
eases which impede the pulmonary circulation, or produce over-fulness of
the right side of the heart. Dr. Henech mentions, with a view to criticiz-
ing it, the assumption of Bright, that an overloaded state of the bowels
may occasion congestion of the liver, by exercising pressure upon the
returning veins of the organ. The only vein returning blood from the
liver is the hepatic vein, and it is not easily perceptible how this can
suffer compression from the cause referred to.

Our own experience fully confirms the recommendation of our author,
in the treatment of hyperæmia of the liver, to apply leeches to the anus,
in place of withdrawing blood from the surface of the body over the
hepatic region. One great object gained is, that through the free anasto-
mosis of the systemic and portal vessels in this situation, the latter are
subjected to little short of direct depletion; and another is, that a very
moderate loss of blood is equally efficient with a much larger quantity,
when abstracted from any other part. The recent experience of Haspel
and others in Algeria, confirms, in a striking manner, the opinion of the
older physicians as to the beneficial results which sometimes follow the
application of blisters to the region of the liver in the treatment of hyper-
æmia and inflammation.

Except after traumatic injuries, acute inflammation of the liver rarely
terminates in suppuration. The passage of hyperæmia into _acute inflam-
mation_ is not marked by any certain signs, unless we choose to regard, as
betokening inflammation in any given case, an unusual amount of fever,
heat of skin, thirst, bilious vomiting, and short cough; and fortunately
as respects treatment, the diagnosis is immaterial. Jaundice, which occurs
sometimes in simple hyperæmia, is often wanting in true inflammation.
Oppolzer only met with it in twenty-five out of fifty-five cases, and then,
indeed, only when the inflamed part directly compressed the bile-ducts,
or when the latter were themselves obstructed by exudation. The pain
also is not usually severe, unless the peritoneum covering the liver is
involved in the inflammation, and the pulse, as long ago shown, may not
exceed the normal rapidity, and may even fall below it.

Inflammation of the Gall-bladder or of the Bile-ducts may produce a
series of symptoms similar to those arising from inflammation of the
parenchyma of the liver. _Acute idiopathic inflammation of the gall-
bladder_ is a very rare disease. Two cases, recorded by Dr. Graves in the
'Dublin Journal,' are familiar to the profession, in which local pain,
a nausea, vomiting, and fever were present, without any extended dulness
on percussion, or swelling in the region of the liver. Dr. Henech refuses
to admit, on the ground of insufficient proof, the diagnostic value of a
limitation of the tenderness to a small spot between the epigastrium and
hypochondrium; nor does he admit the possibility of a pear-shaped
tumour being formed by the accumulation of the products of inflamma-
tion within the gall-bladder, so long as the ducts are permeable. Inflammation of the common bile-duct is more common, and often arises from extension of inflammation into that canal from the mucous membrane of the duodenum; and the swelling of the membrane results in diminished calibre or occlusion of its canal. Secondary inflammation of the mucous membrane of the gall-bladder, with ulceration, however, is of no unusual occurrence. Its causes, as enumerated and discussed by our author, are—1. Mechanical irritation of the membrane from the presence of gallstones; 2. A morbid condition of the bile; and 3, as associated with the latter, a permanent closure or narrowing of the cystic duct.

Dr. Henoch attributes great importance to the natural cessation of the catamenia or their accidental arrest as a cause of hyperæmia of the liver, and believes that the hyperæmia thus induced may lay the foundation of further degeneration of the organ at some future period. In illustration of this etiological relation, he adduces a case in which the liver, greatly enlarged from a prolonged agrue, diminished in volume on the occurrence of menorrhagia; but on exposure to cold some months afterwards, the catamenia present at that time became repressed, the enlargement of the liver returned, and ultimately cancer of the liver was clearly established.

Another important cause of hyperæmia is atmospheric heat, which operates far more remarkably in tropical countries than in our own temperate latitudes.

"I believe that all the symptoms which physicians practising in the tropics, as, for instance, Annesley, refer to a functional disturbance of the liver, 'an excessive secretion of bile,' are dependent originally and principally upon an increased fullness of the liver with blood, which becomes very frequently associated with similar hyperæmia of the mucous membrane of the intestines. We know how frequently this latter hyperæmia occurs amongst ourselves in the hot months of summer, as the cause of profuse diarrhoea; and although the green colour of the evacuations by no means proves, as is too commonly supposed, their actual bilious character, yet symptoms often arise, especially in hot climates, which, in fact, demonstrate a participation of the liver in the hyperæmia." (p. 84.)

This hyperæmia, with diarrhœa or dysentery, is known to be endemic in tropical countries, and presents the characters of "bilious remittent fever." In this instance, however, the influence of miasmata must not be excluded from consideration; since, amongst other evidence, Haspel noticed that, in Oran, during the summer of 1846, when the heat was so great, as to dry up the marshes, affections of the liver were absolutely lessened in frequency.

A result of this hyperæmia when excessive, is that softening of the liver from haemorrhagic infiltration, which medical practitioners have long known as occurring in the malignant fevers of Italy and India.

But the blood is not the only liquid whose impeded flow out of the liver, or accumulation within it, may give rise to enlargement. The same phenomenon may arise from the retention of the secreted bile, and its accumulation in the ducts within the organ. Some remarks on this retention of bile, or biliary congestion, form, consequently, a natural appendix to the subjects just discussed. The time at which it occurs, as a result of impeded flow of bile from the duct, is earlier or later, according as the obstructing
cause is situated above or below the mouth of the cystic duct. If it be
below this point, the cystic duct and gall bladder become first of all dis-
tended with the accumulated secretion, and the tumour arising from the
accumulation is mostly distinguishable by palpation. The detection of
an enlarged gall-bladder, however, must not be too rashly used as positive
evidence that the obstruction is in the common duct, and not in the
hepatic; since this sign may arise not only from accumulation of bile,
but also from a collection of mucous or serous fluid, which forms the
“hydrops cystidiae felleae” of authors. In all cases, retention of bile is
sooner or later accompanied by jaundice. A very important diagnostic
feature of this affection is, that, after a time, the enlarged liver gradually
diminishes in bulk, notwithstanding that all the remaining symptoms of
the disease are unaffected, or become more marked in their character.
The pressure of the retained secretion exerts its influence upon the
nutrition of the essential elements of the organ; the capillary circulation
becomes injured, and the vessels themselves obliterated, while the cells
become fatty, and finally disappear. The necessary consequence is
atrophy of the substance of the liver, similar to that which occurs in the
kidney in consequence of obstruction of the ureter. A case is related, as
an example of this condition, in which the liver, at first distinctly
enlarged, was found, after death, reduced to one-fourth of its normal
volume.

Dr. Henoch ascribes much diagnostic importance to emaciation, which
was very remarkable in this instance—since even in cancer of the liver
it is not a very prominent symptom. It is, however, proper, before
admitting the great importance claimed for this symptom, that we should
satisfy ourselves, in the cases where emaciation has been excessive, that
the pancreatic duct has not been equally occluded with the choledic. In
a case which very lately came under our observation, in which retention
of bile was present in consequence of the encroachment of cancerous
disease about the portal vessels upon the bile ducts, there was the most
extreme emaciation; but the pancreatic duct was, in this instance, also
occluded, and the gland distended with the accumulated secretion. In
cases of this secondary atrophy of the liver, haemorrhage from the stomach
and intestines may appear, being partly due to the injury done to the
capillary circulation of the liver, and partly to a morbid condition of the
blood. The special cause of obstruction in the duct is beyond the reach
of certain diagnosis; in cases, however, where a patient has suffered at a
former period from gall-stones, the impaction of a gall-stone in the duct
may be suspected; while the occurrence of fatty matters in the stools,
when but little fat has been taken in the food, may perhaps lead to the
belief that the obstruction has arisen from the pressure of a morbidly
enlarged pancreas, or an affection of the duodenum.

The treatment of biliary congestion consists in the removal, where
possible, of the cause of obstruction. Where dependent upon inflam-
matory swelling of the mucous membrane of the duodenum or choledic
duct, this is to be attempted by the judicious use of antiphlogistic
remedies. Where, however, secondary atrophy of the liver has occurred,
no hope of cure can be reasonably entertained, and the only remedy
suggested by our author is a trial of the alkaline mineral waters of
Marienbad or Carlsbad, the use of which is especially recommended where the suspected cause of the impermeability is an impacted gall-stone.

Fatty Liver is the next condition discussed. Fat may be found in the liver constituting its sole structural change, or it may form one of a series of important alterations which the organ has undergone from inflammation, cirrhosis, cancer, &c. In the former case it is the primary, in the latter a secondary affection. Gluge, however, has included all the conditions of the liver where fat is present under one disease, which he has termed "stearosis," considering the nutmeg liver, fatty liver, lardaceous liver, and cirrhosis, as merely different degrees of development of one and the same disease. Reinhardt, on the other hand, regards the presence of fat as the result of a retrograde nutrition, which occurs with the greater facility under the influence of hyperemia or inflammation, in which case it is secondary to these affections.

The primary form of fatty liver—stearosis proper—gives rise to no symptoms of importance; even tumour is rarely ascertained, except in the last stage, and the margin of the liver, though mostly rounded, sometimes retains its natural sharpness. In the absence of symptoms, the diagnosis must be assisted by a consideration of the circumstances under which the disease is known to occur,—namely, in phthisical patients, and in indolent gourmands, especially in those who take much fatty matter in their food, and indulge in alcoholic potations. When occurring in phthisical individuals, it is more frequently observed, according to Home and Louis, in females than in males; and, according to Dr. Budd, we may assume its presence whenever, in a consumptive female, a considerable painless enlargement of the liver is observed without accompanying ascites. When arising in indolence and over-feeding, it is usually conjoined with a simultaneous increase of the subcutaneous fat. The physiological experiments of Magendie, Gluge, and Thiennesse, have shown how fatty liver may be produced artificially in animals by feeding them with fat, or by injecting it into the vessels; and Gulliver and Virchow state that the fat is always first deposited in the immediate vicinity of the branches of the portal vein. The treatment of the disease, when arising from this cause, consists in the avoidance of fatty matters in the food, and of fermented liquors, in early rising and exercise, and in the use of alkalies and alkaline mineral waters.

In that form of fatty liver, however, which complicates phthisis and other diseases, the resources of art are powerless.

Among the diseases with which it has been noticed as associated, but with too little constancy to assist in its diagnosis, may be mentioned, carcinoma, various diseases producing emaciation, chronic diarrhoea, and dysentery. Rillet and Barthez have observed it in children, quite apart from tuberculosis, after smallpox, measles, scarlet fever, and typhus; Biett and Rayer in chronic pemphigus; and Bright in a case where death had been occasioned by an extensive burn.

Hypertrophy of the Liver—meaning, by this term, an increased nutrition of the organ, or in other words, an increased deposition of the normal substance properly belonging to it—is briefly dismissed by our author: the conclusion he arrives at is one in which we completely coincide.
"I cannot regard this simple hypertrophy of the liver as an object for diagnosis by the physician, and, until convinced of the contrary by authentic observations, consider that, in all cases in which, after important symptoms during life, only simple hypertrophy of the liver has been discovered, an error has been committed either in consequence of imperfect knowledge or superficial examination."
(p. 122.)

Chronic Inflammation of the Liver is a far more important pathological condition. Its great anatomical characteristic is the occurrence of exudation as a result of hyperemia, which exudation may take place into various tissues of the organ, and undergo various subsequent changes. Hence Dr. Henoch enumerates, as the results of chronic inflammation, *induration*, where the exudation into the general parenchyma of the liver becomes converted into a connective tissue; *cirrhosis*, where the inflammatory exudation into the prolongations of the capsule of Glisson, within the liver, undergoes a similar change; *abscess of the liver*, where the exudation becomes converted into pus; and *lardaceous liver*, where it neither forms pus, nor yet becomes changed into connective tissue, but continues much in the same amorphous condition in which it was originally deposited, being only partially converted into fat. The researches of pathologists, however, are daily tending to the abridgment of the domain of "chronic inflammation," and we think that our author, by referring these alterations of the liver at all times to inflammation has made too free an use of the term. Hyperemia is essential to our idea of inflammation, and there is little doubt that it is not a necessary element in some forms of these diseases, which are consequently to be regarded rather as instances of degraded nutrition. Cirrhosis is not the only form of disease in which the *granular* character is remarked, since, although most common here, it is met with also, more or less frequently, in all chronic diseases of the organ.

Grouping together, then, induration, cirrhosis, and lardaceous liver, as only different forms of chronic inflammation or degraded nutrition, it is found that, notwithstanding the variety of the seat and subsequent changes of the exudation, the symptoms of the early stage of all, while the proper inflammatory process (I) is in operation and the exudation is being deposited, are alike. They are chiefly those known as "dyspeptic," and are not uncommonly treated as such, at first, by bitters and alcoholic stimulants. The occurrence of yellowness of the skin, or of some hepatic tenderness, however, after a time, directs attention to the liver, when the hypochondrium is found full and tender, and the liver, as ascertained by palpation and percussion, enlarged. In this stage it is possible to confound it with duodenal catarrh associated with biliary congestion, or with the early stage of cancer of the liver: from the latter it is not, at this stage, in our power to distinguish it, except by taking various concomitant circumstances into consideration; from the former it may be distinguished by the fact, that the jaundice is less marked than where the bile is retained within the canals of the liver.

The second stage is marked by obliteration of many of the blood vessels, and a consequent impediment to the flow of the portal blood through the liver, which further acts in a backward direction, producing unnatural fulness, not only of the trunk of the portal vein, but of all those veins of
the stomach, intestines, spleen, &c., from which it springs. The results of this hinderance to the portal circulation, and of a simultaneous closure of some of the bile-ducts, constitute the leading symptoms of this stage.

These symptoms may be best studied in cirrhosis, limiting the term strictly to chronic inflammation of, or organising and contractile exudation into the prolongations of the capsule of Glisson. The congestion of the portal system manifests itself first by dropsical effusion into the peritoneum; and although ascites is, as a rule, the first of the dropsical phenomena in any given case, exceptions are not wanting. But not only does the venous fulness lead to effusion, but it also prevents absorption of liquids by the mucous membrane of the alimentary canal; and hence, according to Dr. Budd, arises the dryness and roughness of the skin without fever, the thirst, and concentrated urine, noticed in this disease. The fulness of the vessels may terminate also in haemorrhage, either from the stomach or intestines. The impeded return of the blood through the liver gives rise to its seeking another course to the heart; hence enlargement of the superficial veins of the abdomen and chest, especially on the right side: this symptom, however, as shown by a case related by Dr. Budd, may be wanting even in extreme cirrhosis. Sometimes the portal fulness is indicated in addition by enlargement of the spleen, as manifested by extended percussion-dulness. When present, this is a valuable sign of cirrhosis, but its absence must not be regarded as opposed to the idea of the existence of this disease. Slight jaundice, with deficient colour in the stools, is due to the compression to which some of the smaller bile-ducts within the liver are subjected during the contraction of the exudation matter; complete jaundice is rare.

Obliteration of the Portal Vein, of its trunk, or of its branches within the liver, usually regarded as the result of adhesive inflammation, when extensive or involving the trunk or larger branches, arrests the circulation in the liver just in the same way as cirrhosis, and produces similar semeiological phenomena; the diagnosis being rendered the more difficult by the atrophy of the organ, which may result from the imperfect supply of blood.

In distinguishing between induration, lardaceous liver, and cirrhosis, which thus so closely agree in their symptoms, we must take into consideration the fact that the two former usually present considerable enlargement of the liver, which is smooth to the feel, and little, if at all, tender; while in cirrhosis, the liver is reduced in size, and not only is tumour wanting, but the diminished bulk of the liver may even sometimes be exhibited by percussion. A study of the etiological relations of these three affections may greatly assist in their diagnosis. The causes of induration of the liver are little known; it sometimes arises in previously healthy persons without any ascertainable cause. If we assume the "atrophy of the liver," described by Haspel, to be identical with the induration here referred to, it may sometimes be referred to a preceding dysentery, to a repetition of attacks of intermittent fever, and the influence of a hot and unhealthy climate. Dittrich has also described a similar disease, and shows its dependence upon the presence of syphilis. Lardaceous Liver is the result of a dyscrasia, and is most frequently met with in scrofulous subjects. Dr. Graves considers that a state of the general health resembling scrofula may follow upon syphilis and the abuse
of mercury, which may give rise, also, to a similar affection of the liver; and Dr. Henoch believes, for reasons which he assigns, that probably the abuse of mercury alone without previous syphilis, may suffice to originate it. The influence both of mercury and of syphilis in this respect, however, clearly demands further investigation. The last cause mentioned by Dr. Henoch is protracted ague, but he offers no evidence in support of the influence of this disease.

Cirrhosis is well known to be of most frequent occurrence in tipplers, the alcohol carried by the portal veins into the liver permeating their walls, and acting as a local irritant. That this is the mode in which the alcohol acts is rendered probable by the seat of the alteration being the tissue which immediately surrounds the branches of the portal vein. But since it is observed also in temperate persons, some other possible causes must be assumed, and Dr. Budd suggests that they may consist in other irritant matters carried by the portal vein to the liver, these being either some of the ingesta, or products of faulty digestion. The concurrence of disease of the heart, dwelt upon so fully by Becquerel, if not as effective as he supposes, may nevertheless be well believed to assist materially other influences in the production of cirrhosis.

The treatment of these several forms of chronic inflammation, as described by Dr. Henoch, requires but few remarks. In the first stage, it consists in the usual means of depleting the liver, such as the application of leeches to the anus, or the withdrawal of blood by leeches or cupping from the hypochondrium, blistering, derivation to the intestinal canal by small doses of calomel, rhubarb, aloes, &c., an antiphlogistic diet, and the avoidance of fatty articles of food, and of alcoholic drinks. Where syphilis is present, the remedies for this condition are demanded. In the second stage, only palliative remedies are admissible, the bowels being kept free by mild aperients, and the digestion assisted by bitters. Paracentesis for the relief of the ascites Dr. Henoch considers should only be had recourse to where the exigency is extreme, since the liquid very quickly re-accumulates, and the repeated withdrawal of so large a mass of serum may induce rapid sinking of the strength, and accelerate dissolution. Where the disease has not yet arrived at the last fatal stage, he considers that the use of the nitro-hydrochloric acid deserves a special recommendation. He regards the re-absorption of the exudation as the more likely to take place, and consequently the prognosis to be more favourable in the lardaceous liver than in induration or cirrhosis. When arising out of the aguish cachexia, quinine and the preparations of iron are to be recommended, and in scrofulous constitutions, iodide of potassium or iodide of iron, with frictions of iodine externally.

Abscess of the Liver is sometimes completely latent, none of the symptoms which ordinarily distinguish its development being present. Instances of this have been observed in our own latitude, as well as in the tropics. In other cases, the predominance of pulmonary symptoms has led to its being mistaken for phthisis, an error which, in one of Haspel’s cases, was the more readily fallen into, since pneumonia at the apex of the left lung occasioned some of the physical signs of that state. Mostly, however, symptoms are present sufficient to characterise the disease. One of these is enlargement of the organ, which, “where the abscesses are deeply seated, is dependent less upon the purulent accumu-
lation itself, than upon the surrounding hyperemia and exudation, perhaps also upon a partial retention of bile in the small ducts.” (p. 163.)

Fluctuation may be wanting throughout the whole course of the disease, when the pus lies deeply in the parenchyma, but is more likely to be perceived when an abscess seated near the surface, especially of the lower part of the convexity of the liver, is making its way outwards towards the intercostal spaces, or towards the abdominal wall below the margin of the ribs; but even under these circumstances it may be obscured by tension of the muscles. Pain, or some uneasy sensation, is almost always observed. Complete jaundice rarely occurs, and when present, it results not from the mere extent of the suppuration, but from retention of bile within the liver, occasioned either by the larger bile ducts being compressed by the abscess, or the smaller ones within the liver being similarly obstructed. The consensual symptoms, pain in the right shoulder, tension of the right rectus muscle, vomiting and cough, any of which may lead to errors of diagnosis, are little to be relied upon as characters of abscess of the liver, since they occur also in very different diseases of the organ. Abscess of the liver from chronic inflammation may pass through its entire course without fever; in most patients the pulse is small, rather slow than frequent, and only becomes rapid during the prostration which precedes the fatal termination. Hectic fever also is less common than has been supposed. M. C. Broussais, in 42 cases, only observed rigors 20 times, and night-sweats 4 times. The emaciation and exhaustion of strength, rarely wanting, are attributable not merely to the suppuration, but to the diseases which accompany it, especially to the intestinal disease.

The connexion between abscess of the liver and dysentery, as a clinical fact, is indisputable. Dr. Henoch, however, refuses his assent to the explanation of it, supported by Budd, who views it as a result of phlebitis, the pus from which, carried by the portal blood, is arrested in the liver, and becomes the focus for the formation of an abscess. Apart from the debated question of the capability of the inner membrane of veins undergoing inflammation at all, Dr. Henoch considers, as opposed to this explanation, the fact that Dr. Parkes, on the most careful examination of such cases, never found the slightest trace of inflammation in the small veins of the intestine, while no direct proof has been advanced of the mediation of the portal blood in the process.

"I believe we must give the preference to that view which regards the two diseased processes, dysentery and abscess of the liver, as without mutual relation, but as running their course together, dependent upon one and the same cause; in favour of which view is the circumstance, that in hot climates abscess of the liver also very frequently occurs associated with remittent fevers, or consecutive to them, without dissection exhibiting any ulceration of the mucous membrane of the intestine." (p. 175.)

When speaking of the different directions in which the abscess may burst, he directs attention to the fact that, after passing through the diaphragm, it may, in place of perforating the pleura, gradually separate it from its attachment to the parietes of the chest, and extend in this way even as far as the axilla, an occurrence which may give rise, on the opening of the abscess externally, to the belief of the collection having taken place within the sac of the pleura. On the bursting of the abscess
of the liver, we must not immediately look for a striking diminution or disappearance of the tumour, for the reason already assigned, namely, the dependence of much of the enlargement upon the associated hyperaemia and exudation. In abscesses with thick cartilaginous walls, the cavity, after bursting, or artificial evacuation, cannot contract so as to produce complete closure, and, consequently, the patient may be destroyed by the exhaustion resulting from the prolonged suppuration. On this ground, Haspel recommends that the abscess should be opened artificially before the induration of its circumference occurs, and as soon as we are convinced of the presence of pus, not waiting for extensive fluctuation to become apparent. The advice of Dr. Henoch, however, on account of the possibility of an erroneous diagnosis, or of an unusual position of organs, is to defer operating until a surrounding oedema and slight redness of the integument indicate adhesion of the abdominal wall with the surface of the abscess; where adhesion is absent, the operation may give rise to a fatal effusion of pus into the abdominal cavity.

An excellent account of suppurative inflammation of the portal vein is appended, of which we regret that our space will not permit an extended notice. Several instances of this affection have been observed, and in one instance it was made the subject of a correct diagnosis by Schönlein. It may arise primarily as the result of direct wounding of the vessel, a well-known instance of which is related by Lambon, where the injury was inflicted by a fish bone, or from inflammation of neighbouring structures, or of parts in immediate relation with the vein, especially abscess in the parenchyma of the liver. When occurring secondarily, it is preceded by the coagulation of the blood in the venous canal, in consequence of the admixture with it of some deleterious matters, such as products of inflammation.

Cancer of the Liver.—In order to explain the origin of the exudation from which cancer proceeds, Dr. Henoch considers the previous existence of a hyperaemia to be necessary. In this again we cannot agree with him, since, although an unusual deposition of plasma, in consequence of hyperaemia, must be admitted as aiding the rapid formation of a cancerous tumour, there is still every reason to believe that the plasma of ordinary nutrition may develop itself into cancer. Proceeding on his assumption, Dr. Henoch regards the admitted frequency of cancer of the liver as due to the readiness with which this organ becomes the subject of hyperaemia. In the early stages of cancer of the liver, nodulation of the hepatic tumour is not to be expected; the only symptoms present being those of hyperaemia or of the early stage of chronic hepatitis, which may continue for a year or longer before any unevenness of surface is exhibited by the tumour. Indeed, there may be no enlargement of the organ at all ascertainable by the touch or by percussion, or the liver may even be smaller than usual, notwithstanding that the cancerous matter is abundant, in consequence of atrophy of the unaffected parts, from their natural supply of blood being cut off by the pressure of the cancerous masses upon some of the portal branches, or by the latter being obstructed by cancerous matter within them. But sometimes atrophy of this kind is compensated by great increase in the cancerous tumour.

Hardness of a cancerous mass, as felt during life, is no evidence of its being scirrhous. Cancerous tumours of the liver, though mostly fixed,
may occasionally be moveable to a trifling extent; this occurs when, as in a case related by Dr. Henoch, the tumour is seated upon a very narrow base; and an instance has been recorded by Boismont, in which cancer affecting the lobulus Spigelii gave rise to a moveable tumour, which was consequently mistaken for a tumour of the pylorus.

Cancerous tumour of the liver often visibly expands the region which it occupies. The tenderness on pressure is more remarkable when the growths are near the surface than when deeply seated in the tissue; but even a tumour superficially tuberous and knotty may be wanting in this respect. A case is related, in illustration, of a man thirty-four years of age, in whom the tumour, felt immediately behind the abdominal wall, was not only free from spontaneous pain and tenderness, but also imparted to the hand a sense of crepitation, and to the ear the "new-leather sound," when the stethoscope was pressed upon it with an alternately greater and less degree of force. Probably, in this case, there was also some partial peritonitis, a supposition only weakened by an observation by Dr. Budd, who once perceived, on slight pressure over a cancerous tumour in the epigastrium, a distinct creaking, like that of new leather, which continued to be felt, more or less obviously, up to the time of the patient’s death: on post-mortem examination no traces of inflammation of the capsule of the liver were discoverable, but the creaking could be produced on pressing the exposed tumour. An important diagnostic feature of cancerous tumour is the great rapidity of its growth, which is unequalled in any other disease of the liver. The spontaneous pain usually present may be wanting, especially when the cancer is deeply seated in the organ; but pain may, as in abscess, be present in other parts, such as the extremities, chest, loins, and lower part of the back. The "lancinating pain" is, in Dr. Henoch’s experience, more frequently absent than present. Jaundice is not a constant symptom; and, when it does occur, it depends on compression of the ducts external to the liver, or within it, by the cancerous matter, or on cancerous disease of the ducts themselves, retaining the bile within the unaffected portions of the organ. Ascites, if present, may be due either to chronic inflammation frequently associated with cancer of the peritoneum, or to compression of the portal vein, or obstruction of its trunk or branches within the liver by cancerous matter or coagula.

Since cancer of the liver is more common as a secondary than as a primary disease, much assistance may be afforded to our diagnosis by ascertaining the existence of cancer in other organs, an aid which is especially valuable where the more marked palpable signs are deficient, or are obscured by a high degree of ascites. Dr. Henoch refuses Budd’s explanation of the secondary development of cancer within the liver, just as in the case of abscess of that organ, on the ground of its being unsupported by direct observation. He assumes, however, the existence of a "cancerous diathesis" as essential to explain the origin of cancer, particularly when it follows upon the receipt of various mechanical and chemical injuries, instances of which are not at all deficient in medical literature.

The question of curability of cancer of the liver involves the doctrine of spontaneous retrogression of cancer as maintained by Bochdalek, a change which he states to be most frequent in tuberiform cancer, and in the liver more than in other organs. It is accompanied by fatty degeneration and
shrivelling of the cancer-cells, and, when complete, is indicated on the surface of the liver by a cicatrix-like depression, on which may be mostly distinguished the pale, warty remains of the destroyed cancer. This sort of cicatrization, however, can only be regarded as curative when the peculiar diathesis leading to the further growth of cancer ceases to operate, either spontaneously or under the influence of remedies. Dr. Henoch seems to consider the possibility of this established by two cases of apparent cure of cancer of the liver related by Oppolzer, and one observed by himself, in which, however, no post-mortem examination was made.

Hydatic Disease of the Liver.—Of all the diseases of the liver, with the exception of fatty degeneration, none arises and pursues its course with so little general or local disturbance as this. It is distinguished by the signs of enlargement, the characters of the tumour, and the absence of occasional symptoms, such as pain, which cancer is apt to occasion. Even the enlargement may not be palpable below the margin of the ribs, the right cavity of the chest alone being encroached upon, and under these circumstances the symptoms that arise may be referable rather to the thoracic than the abdominal organs. The tumour, when palpable through the soft parietes of the abdomen, mostly exhibits the smooth semi-globular form of the hydatid sac, in consequence of its projection more or less above the surface of the liver. Sometimes this projection may be as hard as a cancerous tumour, from having been the seat of a calcareous deposition; but for the most part there is a peculiar tense elasticity, observed on pressing it with the finger, which is very distinctive, and in Dr. Henoch's opinion and our own, is more generally applicable to the purposes of diagnosis than the hydatic fremitus of Piorry. Dr. Henoch's assertion respecting the great rarity of the last-mentioned sign is confirmed by our own experience; its existence, however, is not to be denied, nor yet its value when it is perceived.

"But even in those cases, in which these vibrations are palpable, and furnish a valuable diagnostic criterion, I have not been able to feel them on every examination, even when I took the greatest pains to discover them; rather, out of about ten experiments which I instituted, this sign only occurred at the most two or three times quite accidentally." (p. 244.)

Hydatid disease often undergoes a natural process of cure, by the secretion of a plastery matter from the interior of the sac, which exhibits, under the microscope, not only particles of fat and plates of cholesterine, but also the characteristic hooks or other remains of the dead echinoccci. In other instances suppuration occurs, which may so completely destroy the hydatid, that only the discovery of the indestructible hooks can demonstrate the origin of the disease. This abscess may burst just in the same way as ordinary abscess of the liver, and the subsequent prognosis similarly depends upon the degree of density of the surrounding wall of the abscess, and the readiness with which it collapses.

The origin of the disease in the introduction of one or more germs into the organism is not to be questioned; but Dr. Henoch again hesitates to admit Dr. Budd's well-known hypothesis, which accounts for the simultaneous presence of hydatids in the lungs, spleen, and mesentery, believing that the number of observations on which it is advanced, is too small to support it satisfactorily. For our own part, we are more disposed to admit Dr. Budd's view in the case of the secondary formation of hydatids
in the lungs, than in the instance of their formation in the mesentery and spleen; since, as Dr. Budd himself very fairly points out, the germs would have to pass backwards from the liver to these parts, in a direction opposed to the current of the portal circulation. If, then, the formation of hydatids in the latter organs is to be attributed at all to germs derived from the liver, these may be imagined, with greater probability, to pass through the lungs and general circulation, and to become arrested and developed in the spleen or mesentery from causes similar to those which first caused their development in the liver, another organ connected with the portal system of veins.

Dr. Henoch only refers at length to two points in the treatment of hydatid disease. One of these is the fomentation of the hepatic region with a saturated solution of salt, in proof of the efficacy of which he has failed to discover one single authentic case; and the other is the artificial opening of the tumour. The dangers of the operation are similar to those which have been adverted to in the artificial opening of chronic abscesses of the liver; but though at all times hazardous, Dr. Henoch believes it may be undertaken when the bursting of the tumour appears imminent, whether the cyst be suppurred or not.

A chapter at the end of the volume is devoted to the consideration of jaundice, a symptom common to most of the diseases referred to above. When discussing the cause of this symptom, he takes the opportunity of refuting the opinion of those who maintain an origin of jaundice in suppression of secretion. He does this chiefly upon the ground that the biliary constituents are not discoverable in the blood, even the portal blood of healthy individuals, nor yet, according to the results of Müller and Kunde’s experiments, even after extirpation of the liver. On the other hand, he maintains that, in all cases, the bile being formed by the cells of the liver (a point, by the way, anything but satisfactorily established), jaundice arises from its reabsorption, as shown many years ago by Saunders, both by the veins and lymphatics of the liver. Still, cases have been sometimes met with, in which marked jaundice has been observed, yet after death the liver and biliary appendages have presented no appearances capable of explaining the occurrence. Dr. Henoch prefers leaving these unexplained to attempting their explanation by the assistance of the undemonstrated assumption of an arrest in secretive process in the liver. The amount of discolouration of the stools indicates the degree in which the passage of the bile into the duodenum is interfered with, an interference which may arise from causes within the liver or its ducts, or external to the latter. In explaining the bilious diarrhoea which sometimes accompanies jaundice, he quotes with approbation the following remarks by Henle.

"I regard even the existence of this disease (polycholia) as doubtful, and believe that, in cases where, besides jaundice, bilious vomiting and bilious diarrhoea occur, the origin of the symptoms is a temporary or incomplete retention of bile. Suppression of the excretion of bile for two or three days is amply sufficient to colour the skin yellow. When arrest of excretion lasts for this period, and then the accumulated bile flows into the intestine, it may appear as if bile were everywhere present in excess." (p. 271.)

Dr. Henoch does not deny the possibility of the occasional origin of
jaundice in spasm of the choledic duct, but calls attention to the length of time that this spasm must last in order to produce it, and to the fact that the prolonged spasmodic closure of the duct around a calculus whilst passing along it, is frequently unproductive of this symptom. He believes that the necessary duration of the spasm, and consequent retention of bile, can only occur where there is some immediate source of irritation, such as a calculus or worm in the duct itself.

The most frequent of all causes obstructing the flow of bile into the intestine, is catarrhal inflammation of the mucous membrane of the duodenum and bile ducts, which Henoeh recommends to be treated in the mode which is customary in this country, believing also, that moderate diarrhea does not offer any contra-indication to the use of purgatives. He also relates three cases, to show the benefit which may arise from the use of nitro-hydrochloric acid, administered internally and in baths, where the ordinary method of treatment has failed.

We must pass over Dr. Henoeh's remarks upon yellow fever and icterus neonatorum, in order to notice his views upon the subject of that form of jaundice which becomes fatal with cerebral symptoms, an apparent analogue to which is presented to us in some cases of Bright's disease of the kidneys. At first the jaundice may appear to be of trifling importance, the symptoms being those of ordinary duodenal catarrh; but after some days or weeks have elapsed, cerebral symptoms, headache, giddiness, somnolence, and typhous phenomena present themselves, sometimes accompanied by convulsions, and the patient dies comatose. This form of the disease may set in with active fever, and blood may be vomited or passed by the bowels. In cases of this kind, with few exceptions, the liver has been found morbidly altered, and presenting the characters, described by Rokitanski, of the "acute yellow atrophy" of that organ. A striking microscopical character of this is a diminution and destruction of the cells of the liver by fatty metamorphosis such as has already been stated to occur as the result of retention of bile within the liver. The bilious colour of the vomited matters and stools frequently noticed, forbids our assuming any obstruction to the flow of the bile into the intestine; and hence, to account for the yellow colour, Dr. Henoeh is driven to the admission of "an immoderate secretion of bile, as a result of which, all the bile-duets up to their fine divisions become excessively full, and the bloodvessels compressed, and consequently, the nutrition of the cells of the liver becomes injured in such a degree as to bring about their destruction by fatty metamorphosis." (p. 291.)

We are still at a loss to see how on this view the bile is prevented flowing from the liver by the ducts, and Dr. Henoeh admits his entire ignorance of the origin of the assumed polycholia.

In explaining the mode in which the cerebral phenomena are brought about, he rejects, as unsupported by evidence, the hypothesis which attributes them to the presence of biliary matters in the blood. He regards that which explains them by the presence of hyperæmia, to be supported by the fact, that in many cases, medicines deriving powerfully to the intestinal canal may avert the comatose condition, or, if it be already established, may remove it, and thus preserve the life of the patient. If it be assumed that there is no connexion by way of cause and effect
between the two sets of symptoms, they must, at all events, be admitted as due to the same cause, whether this be a peculiar virus, or, as some have supposed, a primary powerful depression of the nervous system, such as results from violent emotions of the mind.

It has been stated that this union of jaundice with cerebral phenomena is mostly found after death to have been connected with "acute yellow atrophy of the liver." Sometimes, however, this is not discovered; while, on the other hand, cases have been recorded, in which this diseased appearance, or one closely allied to it, has been found without any cerebral symptoms having preceded the death of the individual. A case of this kind is related, which only the extent to which this review of the volume has extended prevents us from transcribing.

The fact that we have presented our readers with a lengthened analysis of Dr. Henoch's first volume, proclaims, more than would direct eulogy, our opinion of its value; and the satisfaction with which we have perused and reviewed it, leads us to anticipate a repetition of an agreeable task, when the future volumes come under our notice.

Edward Ballard.

Review XIII.

By Dr. JoCHMANN.

In a former number of this journal* we gave a full account of the interesting researches of Dr. Traube, on "Crises and Critical Days" in acute febrile cases, as judged of by the temperature of the body. The work before us, written by a pupil of Dr. Traube, is based on thermometrical observations made several times daily, on twelve patients suffering from various chronic febrile diseases—viz., 1. Chronic pulmonary tuberculosis; 2. Chronic pulmonary induration; 3. Pulmonary tuberculosis; 4. Double pleurisy, with pulmonary tuberculosis; 5, 6, 7, 8, 9, 10. Pulmonary tuberculosis; 11. Chronic pleuro-pneumonia, with formation of cavity; 12. Chronic pleuro-pneumonia, with commencing Bright's disease.

In the first part of the book the cases are related at some length, and tables are given of the temperature compared with the other symptoms of the case.

In the second part of the book the deductions are given, and these we shall now briefly enumerate.

In these twelve chronic febrile cases the variations of the temperature of the body were very great in different cases.

First Type.—The morning and evening temperatures were entirely, or almost entirely, within the normal limits: the morning temperature being a little less than the evening. This occurred in two cases, Nos. 1 and 11.

* No. 21, January, 1853.
Second Type.—The morning temperature was normal, or below the normal; the evening temperature above the normal. Several varieties of this type can be made.

(a.) The rise of temperature in the evening was only slight.
(b.) The rise was considerable. In this case the fever had a quotidian or a tertian course—i.e., the great rise occurred every evening or every other evening. It is, of course, to be understood that these were not malarious cases.

Third Type.—The temperature, both morning and evening, was above the normal. Several varieties of this type can be made.

(a.) The evening temperature was the highest.
(b.) The morning temperature was the highest.
(c.) The midday temperature was higher than either morning or evening.

The disease seldom ran its course with the same type; on the contrary, the type was frequently altered, either from exacerbations, from accessory diseases, or from causes which remained totally obscure. The types 3 (c.), 3 (a.), and 2 (a.), were the most constant; 3 (b.) and 2 (b.) the least so.

If at any time there was an unusual height of temperature at one particular observation, at the next observation the temperature was very frequently unusually low. The reverse did not hold good; a low temperature was not followed by a high one. When the temperature had remained very high for some considerable time, a sudden sinking of it sometimes occurred, and was attended with crises or pseudo-crises—such as purging, sweating, &c., as in acute diseases. Sometimes, without previous exacerbation, the temperature sank very low.

The conditions which produced these various types, could not be ascertained, as the number of cases was so few. Some conjectures can however be made. The first type occurred in cases of early tuberculosis without softening, and of chronic non-progressing pneumonia; it occurred also in cases in which the febrile heat had been reduced by digitalis.

A high morning temperature occurred in those cases where, besides an original chronic disease (tuberculosis, for example), some other cause, such as pleurisy, or purulent formations in the lung were present.

A high evening temperature occurred during increase of the febrile action.

A moderately-high evening temperature occurs from the same cause, but also from return of the bodily strength after the fever has lessened.

After illustrating those facts by reference to the cases, Dr. Jochmann passes on to the interesting subject of

The Relation between the Temperature of the Body and the Sensation of the Patient.

It is well known that in acute febrile cases, the actual temperature of the body, as indicated by the thermometer, stands in no constant relation with the feelings of the patient. The patient may think he is extremely hot or cold when the thermometrical indication would lead to an entirely opposite conclusion. The same rule prevails in chronic febrile cases. It would appear that the sensation of heat or cold perceived by the patient
is chiefly dependent on the amount of blood in the skin: when there is hyperemia of the surface, the patient feels warm; when there is anemia, he feels cold. It is now well known that in the stage of shivering, when the patient feels excessively cold, and when, in fact, the skin, being for the time anemic, may be really cold, the temperature of the blood—i.e., of the rest of the body—is heightened. Von Baerensprung pointed this out in ague, and it has been often witnessed in other cases. We may illustrate some of these facts by reference to one of Jochmann’s cases. A patient had a temperature (indicated by the thermometer) of 99° 1/3 Fah.; he felt a sensation of unbearable heat; on the following evening the temperature was 104° Fah., and the patient was shaking with cold. A short time before the first observation, the temperature had been 95° 1/3 Fah., and the patient had felt neither hot nor cold.

Dr. Jochmann found that if between two observations there had happened to have been shivering, the temperature in the last observation was invariably increased. If the thermometer was used during the rigor, the temperature was always increased. The following table, in the case of a patient with pulmonary abscess, shows the amount of increase. The thermometer had been in the mouth about fifteen minutes, when shivering commenced, at 25 minutes past 5 o’clock.

<table>
<thead>
<tr>
<th>Time</th>
<th>Temperature</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:25</td>
<td>100° 4/5</td>
<td>Shivering</td>
</tr>
<tr>
<td>5:30</td>
<td>100° 59</td>
<td></td>
</tr>
<tr>
<td>5:35</td>
<td>101° 12</td>
<td></td>
</tr>
<tr>
<td>5:40</td>
<td>101° 66</td>
<td></td>
</tr>
<tr>
<td>5:45</td>
<td>102° 56</td>
<td></td>
</tr>
<tr>
<td>5:50</td>
<td>103° 23</td>
<td></td>
</tr>
<tr>
<td>6:45</td>
<td></td>
<td>Cessation of shivering*</td>
</tr>
<tr>
<td>7:30</td>
<td>105° 44</td>
<td>Commencing feeling of heat</td>
</tr>
</tbody>
</table>

During shivering fits, however, if the axilla be the part tested, the thermometer attains its maximum much more slowly than in the stage of heat, as the amount of blood in the skin is so much less.

Although shivering is thus attended by rise of temperature, rise of temperature, especially if gradual, does not necessarily imply shivering. Dr. Jochmann believes, however, that an abnormal quick rise of temperature of the body is the principal, perhaps the only, cause of shivering. The feeling of shivering is also very dependent on individuality and custom.

As shivering and, sometimes, subjective feeling of cold are thus coincident with rise of temperature, so subjective feelings of heat are often coincident with sinking temperature.

Relation of Changes of Temperature to Sweating.

From observations on phthisical patients, Dr. Jochmann believes that in these cases at least two varieties of perspiration can be distinguished.

1. The symptomatic sweats, viz., those which, when well marked, return every night, and the severity of which is concomitant to the severity of the disease. During these sweats there is not only no sink-

* The patient being restless, the thermometer was removed.
ing of the thermometer (except from other accidental circumstances),
but, on the contrary, the heat of the body is increased. Such sweating
does not, therefore, at all moderate the fever, but only exhausts still more
the strength of the patient.

2. Critical sweats, which come on from time to time in phthisis, and
are attended with rapid sinking of temperature; such sweats may be
replaced by diarrhea. They come on indifferently by day as well as by
night, and are analogous to the critical sweats of acute diseases.

Relation of the Changes of Temperature to Changes in the Frequency of
the Pulse.

The pulse varies in chronic febrile cases, from so many circumstances,
that a very imperfect opinion can be derived from it, as to the amount of
fever and of temperature. Sometimes, however, the pulse will point out
the existence of a fever not indicated by the temperature. This occurs only
in cases of very slight intensity, when the slight excess of heat which would
be caused by the fever is balanced by the loss of heat always produced by
the withdrawal of food (inanition). The pulse is usually high when the
temperature is high, but the relation between the two is very variable.
The frequency of the pulse is evidently not dependent on the temperature
of the body; it is influenced, the author thinks, by the condition of the
bodily strength, being quicker as this becomes exhausted; by the move-
ments and efforts of the patient, and by the time of observation. The
pulse is generally quickened in the evening, and this the author ascribes
in part to the food taken during the day.

In the last few pages of his book the author refers to the influence of
some medicines on the temperature of the body in chronic febrile cases.
Quinine was found in a single case, in which the fever had a tertian
type, to remove this type and to reduce the temperature. It was
employed in another case, but the observations are imperfect. Digitalis
produced a marked lowering of the temperature, as in the experiments
of Heise. The evening fever was especially affected; while the morning
temperature was not influenced at all, or but little so. This effect was
evident for a long time after the remedy was left off. Dr. Jochmann
believes digitalis to be indicated in those cases in which the morning
temperature is normal, and the evening temperature is high, and in which
the bodily powers are not too much weakened. Cod liver oil was used
in several cases in which the low morning temperature indicated inanition,
and in which the evening temperature was not very high. Its influence
on the temperature is not mentioned, but it appears to be very useful
in those cases in which the morning temperature sinks very low, from
inanition, while the evening temperature is very high from hectic.
PART SECOND.

Bibliographical Record.

In these two volumes, Mr. Morley has selected one of those early physicians whose career is summed up in half a page in the histories of medicine, for a most elaborate and critical biography. He has not had, we suspect, quite so congenial a theme as in the case of the simple, earnest, and truth-inspired potter: but yet the mingled singularity, superstition, and subtlety of Jerome Cardan, the celebrated physician of the sixteenth century, appear to have had some considerable attraction for him. We never remember to have read a book in which the results of no little toil and antiquarian research are communicated with so little effort, and in which the writer has performed his task in a more genial and merciful spirit.

Before we read these volumes, our knowledge of Jerome Cardan was small enough. That he was one of the early protesters against some of the Galenic doctrines (especially the dogma “contraria contraribus”); that in a brief mention by Haller, he is characterized as “vir mirifici ingenii, sed instabilis et irrequietus, bis de catalogo patriorum medicorum rejectus;” and that, after spending the early part of his life in the bitterest poverty at Milan and Sacco, he ended it after various vicissitudes in a state of insanity at Rome, comprise the facts usually recorded of a man who was celebrated throughout Europe, who had written four hundred and twelve works, who was sent for from Italy to Scotland, to cure the Archbishop of St. Andrew’s, the Regent Hamilton’s brother, who was consulted in the case of Edward VI, and for whose advice frantic admirers contended almost at sword’s point.

So unconsidered and unthought of, Jerome Cardan had probably remained, had not the genius of antiquarianism shaken the cobwebs from his multitudinous works, and with a perseverance worthy of a better theme, laid bare before the eyes of this inquisitive age, the physician of the sixteenth century, half man of sense, half man of fancy, astrologer and physician, casting horoscopes, collecting simples, diagnosing diseases by symptoms, and judging of their issue by the stars, discoursing as to the omen of a black cat mewing, and yet, at the same time, having looked deep enough into the secrets of the human frame to be able to suggest, before Harvey had discovered the circulation, the experiment of the transfusion of blood. Thanks to Mr. Morley, we are now familiarly acquainted with
this singular man, who born in ignominy, educated in contempt, and matured in poverty, was destined to shine forth at last the all-considered genius of the time.

We do not blame Mr. Morley for having kept a good deal away from medical doctrines. Writing for the public, he has attempted a history of actions, rather than one of opinions. Here and there, however, he has given some curious details of the medical doctrines of the time. The opinion given by Cardan of the nature of the disease which Hamilton, Archbishop of St. Andrew's, laboured under, is very interesting.

"Cardan had learnt, in addition to the facts mentioned by Cassanate in his letter, one or two particulars. These were, that the archbishop's periodical attacks did not agree always, but only generally with the changes of the moon; that sometimes when he took care of himself, he might get through fifteen or twenty days without them. That the duration of each attack seldom exceeded twenty-four hours, and that it sometimes remained upon him twice as long. That his Grace slept well, but that on account of the urgency of his affairs, he never took the quantity of sleep requisite to free himself from eruditio, especially since he was a great eater and drinker. That he was irascible enough, had a skin that exhaled freely, a chest of fair size, and rather a thin neck.

"Upon the case, after he had personally studied it, Cardan's opinion resembles a long clinical lecture. It is a very acutely-reasoned study of asthma, based upon principles laid down by Galen. Wonderfully absurd seems now its medical philosophy; but in the year 1574, what will be said even of our physie? Let us be modest in our treatment of the physic of Cardan. He did not believe with Cassanate, that the matter finally expectorated had remained in his Grace's brain, as it collected there during the intervals between the attacks. If so, he thought that the operation of the intellect must be impeded, and that the lord archbishop would not have, as he had, the red complexion of a healthy man; moreover, the matter so collecting, and long standing in the head, would turn corrupt. He believed that the thin fluid discharged was partly serous humour, partly condensed vapour, which descended from the brain into the lungs, not through the cavity of the windpipe, for if so, it would be coughed out during its downward passage, but through its coats, as water soaks through linen. This thin humour and vapour he supposed to be originally drawn into the brain by the increased rarity in the substance of that organ, caused by undue heat. Heat makes all things rare, and rarefaction in one part of the body, to express the idea roughly, produces suction from another. The thick expectorated matter was formed, Cardan thought, from the food." (Vol. II. pp. 113—14.)

We have not quoted this to illustrate the kind of matter in this work, for it would not do it justice: nor to show what kind of solemn nonsense wise men can talk: but because we observe in it that Cardan adheres to the Galenic doctrine of the flow of mucus from the brain to the lungs, a tenet which we imagined he had strongly combated.

In spite of his theories, Cardan's practice was good; he ordered a capital system of hygienics, including proper diet, frictions, the shower-bath, and other means; and in no long time cured the archbishop, to his own great honour and profit.

Our space will not allow us to dwell longer on this entertaining book. We will only observe, that Mr. Morley's copious antiquarian knowledge is indicated by the rapid, but happy, sketches which he gives of every person of importance whose name is brought forward by the incidents of Cardan's diversified career. The treatment of Cardan himself is very pleasantly done; the biographer has selected the most merciful, and no
doubt the truest, side from which to view his subject; and we can only hope that if, in the years to come, the great physicians of our day are to be raked up from amidst the débris of a past generation, they may meet with treatment equally kind, charitable, and sagacious, as that which has now fallen to the lot of the physician of Milan.

When a medical book has reached a fourth edition, it may fairly be considered beyond the pale of criticism. Its reputation has been made, and a reviewer need generally do little more than announce a fresh issue, and repeat the favourable judgment formerly passed. Dr. Neligan’s work may, however, fairly claim something more than this: it has been very considerably improved; its utility has been increased by the plan of giving at length the formulae of the three British Pharmacopoeias; and the latest researches have been embodied. The work has not, however, been made unwieldy by these augmentations; it still remains concise and practical. A single quotation will illustrate this.

After describing the mode of preparation of the ferruginous medicine lately come into vogue—the ‘Pulvis ferri,’ (viz., metallic iron reduced to a fine powder by means of hydrogen)—Dr. Neligan continues:

‘Adulterations.—Since the introduction of the pulvis ferri into practice, the demand for it has steadily increased, and consequently, its preparation being difficult, troublesome, and expensive, it could scarcely be expected to escape adulteration; it is, however, rather a sophistication than an adulteration which has been practised with respect to this preparation. The fraud, which has recently attracted much notice, in consequence of a dispute to which it has given rise between two rival wholesale chemists in London, consists in the substitution of the magnetic black oxide of iron for the powder of iron. The taste is at once sufficient to detect this, the latter being perfectly tasteless when placed on the tongue, while the former has the peculiar inky taste of the ferruginous preparations. Chemically, they may be distinguished by the powder of iron being completely soluble in dilute sulphuric acid with copious effervescence, while the magnetic oxide effervesces not at all, or but slightly, owing to the presence of some sulphuret of iron: the former solution also gives a green precipitate; the latter a black one, with an alkali.

‘Therapeutical Effects.—Iron, like other metals, does not exert any influence on the human system while it retains the metallic state; but as it is very readily oxidated and converted into salts, this change takes place in the stomach soon after it is swallowed, and then the effects of a tonic are produced. Iron filings were at one time much used in medicine, but in the present day they are scarcely ever employed in regular practice; the dose of them was from ten grains to half a drachm, administered in the form of electuary or bolus made with treacle or honey.

‘More recently, the employment of metallic iron, reduced to a state of minute division by means of hydrogen, as in the above formula of the Dublin Pharmacopoeia, (fer réduit, of the French), has been employed on the continent, its use having been first introduced by M.M. Quevemne and Miquelard. The chief circumstance to be attended to during the operation of preparing it is the state of the
temperature. If it be not sufficiently high, the reduction does not take place; and if it be too high, the iron is reduced, but is agglutinated into ductile plates. When well prepared it is in the form of a fine light powder, of a bright greyish slate colour, occasionally darker, in very minute division, and free from any trace of sulphur. The advantages which this preparation possesses are, first, that it is readily acted on by the weak acids—the lactic and muriatic, which are ordinarily present in the gastric juice during digestion; and secondly, that it is free from the inky taste, which the preparations of iron possess in a degree proportioned to their solubility; a property rendering it peculiarly applicable for children. I have used the *pulvis ferri* very extensively since the last edition of this book was published, and with the best results; indeed I consider it superior in most cases to any other ferruginous preparation, being especially adapted for persons in whom the digestive organs are in a feeble or debilitated state, as is so frequently the case when indications exist for the administration of iron. The dose is from one to ten grains; it may be given in powder, pill, or bolus.

"It has been of late proposed in France to administer manganese in combination with iron, from a fancied notion that it would be thus rendered more readily assimilable by the system, a notion, in my opinion, resting on no good foundation. Nevertheless, the compounds of iron and manganese have just at present acquired a sort of fashion, and various formulæ have been proposed for preparations containing them; of these probably the best is that by Dr. Speer, of Cheltenham, for a *saccharated carbonate of iron and manganese* prepared as follows:—Finely powdered sulphate of iron, \(\frac{2}{3} \) oz. \(\times 3 \); carbonate of soda, \(\frac{5}{3} \) oz.; sulphate of manganese, \(\frac{3}{5} \) oz.; white sugar, \(\frac{5}{3} \) lbs.; dissolve each of the three first-mentioned ingredients in a pint and a half of water, add the solutions, and mix them well; collect the precipitate on a cloth, filter, and immediately wash it with cold water; squeeze out as much of the water as possible, and, without delay, triturate the pulp with the sugar, previously reduced to a fine powder. Dry it at a temperature of about 120° Fahr. The dose is five grains, gradually increased up to one drachm, three times daily." (pp. 497—99.)

In reading through this work, as in the case of every other treatise on *Materia Medica*, we are forcibly reminded of the utter absurdity of our present unparalleled system of preparing different medicines for English, Scotch, and Irish patients. How long are our three Pharmacopoeias—Cerberus-like, one body and three heads and tongues—to continue disjoint, in these days of rapid travelling? Weights, remedies, formulæ, all different; and yet the diseases are the same, and the patients are fellow-subjects! Are we to wait till Medical Reform is agreed upon by the representatives of our various institutions, even for so simple an alteration as a single national Pharmacopoeia? If so, we must make up our minds to endure our three-headed progeny for many years to come,—till men grow reasonable, and think more of the rights due to their profession and to the public, than to their imperfect corporations. Till that good time shall come (and come it must), we must learn from works like the one before us what alterations we must make in our prescriptions, according to the residence of our patients.

ART. III.—The *Irish School of Medicine as it is, and as it ought to be. An Address introductory to a Course on Pathological Anatomy and Histology.* By THOMAS S. HOLLAND, M.D.—Cork, 1853. pp. 19.

Dr. Holland's object in writing this pamphlet is shown in the following quotations:
"That the period has arrived when scientific centralization should cease, is proved by the establishment of scientific instruction in the provinces: further, that the Intelligence of the country feels we are entering on a provincial era, is clear from the success of the new institutions; and this lecture cannot find a better, a higher, or more appropriate subject, than the consideration as to how a medical school, destined to raise the character of Irish medicine by imparting to it a rational, inductive, and truly scientific spirit, such as constitutes the leading feature in modern physic, can be formed in this city. . . .

"The Dublin School of Medicine owes the celebrity it has obtained to the pre-eminently successful manner in which it has carried out the system of clinical instruction derived from the Germans; but, unfortunately, the cotemporaries of the founders of the Irish School did not also imitate or acquire the highly scientific and truth searching character of the German mind; had they done so, they would never have allowed the reputation of the school to be limited to, or dependent upon, the cultivation of any one branch of medical science. Though our teachers have most accurately and successfully studied the diagnosis of the diseases of the thoracic viscera, their treatment, and that of fever, yet it must be evident, to all who are acquainted with Irish medical literature, that the affections of the abdominal viscera and nervous system have not been as carefully observed as in other schools.

"The high character of Irish medicine was for some time so evident that it became almost proverbial, and formed the subject of all introductory lectures, the boast of the senior to the junior student, but no one has hitherto ventured publicly to inquire whether structural anatomy, physiology, pathological anatomy, or organic chemistry, existed as a part of our system of medical instruction.

"Further, the belief in the immortal fame of the Irish School became so implicit and universal, that students, many of whom are now Doctors, acted on the principle, that by learning what their teachers had discovered, and reading the three or four Irish medical classics, the culminating point of medical knowledge was attainable.

"I cannot, on this occasion, forbear publicly expressing an opinion which I have repeatedly stated in private—that the Irish School of Medicine has indeed reached its culminating point, and must of necessity decline, if we continue basking in the sunlight of our teachers' names. How I revere these teachers is known to those best acquainted with me, and how I endeavour to follow their high example is felt within myself, though I cannot resist the conviction that this will not be accomplished by merely traversing the roads they have already cleared. Irish medicine must assume a new character; a truly scientific spirit must be re-instituted into our school, if we desire that it shall keep pace with the advance of science." (pp. 6, 8, 9.)

The author thinks, then, that the Irish teachers are lagging behind the wants of the age, and do not give their students an opportunity of learning how to apply the new truths discovered by the physiologist, the microscopist, or the chemist, to practical medicine.

Unacquainted, as we are, with the details of the system of tuition pursued in the Irish hospitals, and feeling nothing but respect and gratitude towards those great men who have been, or still are, connected with that distinguished school, we can yet believe that Dr. Holland's censure may be well founded. But the censure should have a wider application; the fault complained of is not simply Irish, it is national; the means for teaching histological anatomy and micro-chemistry—for laying a sound basis of experimental physiology—and for applying all these means of investigation to practice—are deficient in every medical school in the kingdom. In some schools, by the zeal of one or two individuals, the deficiency has been to a certain extent supplied; but yet how imperfectly
supplied, let those answer whose earnest endeavours, even after years of labour, seem yet scarcely to have broken the ground under their feet.

To what circumstances we are to attribute our deficiency in some branches of medical education, we can give, as far as England is concerned, a ready answer. The fault does not rest with the schools and teachers: it is caused by an imperfect medical curriculum—by a vicious system, which, like many things English, is a compromise between old habits and novel improvements, in which the old is neither altogether shaken off, nor the new altogether put on. To give the medical student the power of being educated in the way in which he could be, and ought to be, his period of study must be extended; a different system of tuition, more instructive than the routine of formal lectures, must in many cases be adopted; and a rigid system of examination must ascertain, at every step of his progress, whether he is sufficient master of one subject to be allowed to begin the next. But when shall we see such an Utopia! Most men will say it is impracticable and chimerical. Nevertheless, it has been carried out, to a certain extent, in other countries; to an extent, indeed, that leads us to believe that no real difficulty can exist in this country, if men will only agree as to what has to be done, and bring to its accomplishment the ordinary energy of Englishmen. In order to aid this result, and as our contribution to the good work, we propose to give, in some early numbers of this Journal, an account of the system of tuition pursued at several of the great continental schools: then, from their riches, we shall discover our poverty.

Dr. Holland has done good service in bringing this subject forward. He has been evidently actuated by the best motives, and nothing but a strong sense of duty could have led him to blame the great medical school which has reflected so much honour upon Ireland. His remarks should be received in the spirit in which they were written; and it would be well if all of us, and not merely the Irish physicians, would draw from them the lesson they are meant to convey.

We are happy to announce the completion of this valuable addition to Mr. Van Voorst's beautiful series of monographs on the various classes of the British Fauna; and having given our readers some account of Mr. Bell's work* whilst in progress, we need do no more than refer to some of the contents of the parts of it which have subsequently appeared. The most valuable of these is the "introduction," which includes, together with such a general account of the class as no one could write without an intimate and detailed acquaintance with its organization, an admirable and complete summary of the researches of Slabber, Vaughan Thompson, Ducane, H. Good sir, R. Couch, and others, on the extraordinary metamorphoses which many of these animals undergo. The credit of the

first discovery of these metamorphoses—whose existence, though at first questioned by some of the most eminent carcinologists, is now universally admitted—has been usually assigned to Mr. Vaughan Thompson, whose researches were made in the Cove of Cork, in the year 1823; but Mr. Bell has shown, by an extract (with figures) from a small work published by Slabber, a Dutch naturalist, in 1778, that the capital fact of the metamorphosis into a higher form, of those anomalous creatures on which Bosc afterwards founded his genus Zoea, had been discovered by him ten years previously; so that, while Mr. Thompson may justly claim the merit of having carried out this doctrine to its full development, it is evident that he derived the first suggestion from Slabber, to whose observations he refers. And it is singular that he should have imputed to his predecessor the very same deficiency in care, which those who objected to his conclusions afterwards charged against himself; namely, "that he lost his Zoea in changing the sea-water, and that the new form came with the added portion."

There is no class which supplies a more satisfactory example than does that of Crustacea, of easily recognised conformity to a general "archetype," notwithstanding very wide variations in special details; and it is on that account peculiarly worthy of study, by those who aim at making themselves acquainted with the fundamental plan of the organized creation. As Mr. Bell remarks:*

"When we consider the almost endless diversity of form under which the species composing this class of animals appear, the astonishing discrepancy which exists in the forms and relative proportions of the different regions of the body, and other parts of their organization, for the performance of offices and functions equally various, and see that all these diversities are produced only by modifications of a typical number of parts, we cannot but be struck by so remarkable and interesting an illustration of the great economical law, as it may be termed, that, the typical structure of any group being given, the different habits of its component species or minor groups are provided for, not by the creation of new organs or the destruction of others, but by the modification in form, structure, or place, of organs typically belonging to the group."

ART. V.—The West Indies, before and since Slave Emancipation; founded on Notes and Observations collected during a Three Years' Residence.

It is a sufficient reason for our notice of this work that it proceeds from a distinguished member of our profession, and that it is the product of observations and inquiries carried on during his period of service in the West Indies, in the medical charge of the army. He has endeavoured to give a faithful record of the social state in the Windward and Leeward Islands, as he witnessed it between the years 1845 and 1848; the time at which that alteration of the Sugar Duties was effected, which, next to the Emancipation of the Slaves, had the most important influence in producing that depression of their pecuniary interests under which they are now suffering. Dr. Davy passes each island under review, seriatim;
describing first its physical geography, geology, scenery, and climate; and then giving an account of the various classes of its population, the state of agriculture, commerce, education, crime,—everything, in fact, that can be considered to have a bearing upon those great social and economic problems which are still open in regard to these interesting colonies. To the accuracy of many of these descriptions we can bear our personal testimony, having ourselves visited many of these islands some years since, and retaining a very vivid recollection of several of their most interesting features. And we have no doubt, from the impartial spirit everywhere displayed by Dr. Davy, that the same accuracy will be found to prevail in the delineations of the social condition of their population, which has greatly changed since we had ourselves the opportunity of observing it in the last year of the system of slavery.

One of Dr. Davy's objects in this publication has been the vindication of the coloured races, which form so large a part of the West Indian population; "having," as he says, "the firm conviction, that the low and degraded state in which they were sunk, and from which they are but slowly emerging, has been owing, not to any inherent inferiority of nature or of mental capacity, but to the dire circumstances of their former condition in the state of slavery." To us the wonder has always been, that since they have obtained their freedom, in a condition of such little preparation for it, they have behaved as well as they have done; and we are satisfied that the difficulties which the planters encounter in inducing them to labour for hire, have arisen at least as much from the notion that labour is a degradation to a free man—a notion which everything in the system of slavery tended to encourage—as from any physical or moral disinclination to labour in itself considered. Opposed as the slaveholders were (as a body) to any measure for the amelioration of the system, and accepting emancipation, not as the removal of an incubus, but as the unjust infliction of an evil, it was not very unnatural, though it was most Improvident, that they should do little or nothing to prepare for it; and they are now reaping the bitter harvest of their neglect of those means of training the slave population to the habits of free labourers, which prudence dictated as requisite to promote the future welfare of both parties. That this is the case is no merely theoretical conclusion; for it is borne out by the fact, that in Barbadoes, where an agricultural society had been for some time exerting itself for "the improvement of plantership," this society exerted itself, on the abolition of slavery, with the aim of ameliorating the condition of the labourers as men—as thinking, responsible, moral beings; and the consequence of the generally enlightened system pursued in this island has been such, that whilst the production of sugar in the time of slavery never reached 30,000 hogsheads, it reached above 40,000 in 1851, and above 50,000 in 1852.

It is another of Dr. Davy's objects, therefore, to hold up the favourable results of the enterprise and prudence displayed by the Barbadian planters, both as an incitement to still further exertions on their own parts, and as a stimulus to the planters of other colonies; and all he asks from the Home Government is a postponement of that final equalization of the Sugar Duties which was to have taken place in the present year, but which has been since suspended in order to help to pay for our contest with Russia.
"It is an ill wind that blows no one any good;" and our West Indian colonists may feel that they owe a debt of gratitude to the Emperor of Russia for thus securing to them a little longer space for preparation. We hope, however, that they will make good use of this piece of good fortune while it remains to them: by taking advantage of all that science and experience dictate as likely to improve their system of sugar production; by the introduction of new objects of culture; and by measures adapted to act beneficially upon the moral and intellectual condition of the coloured population, and to show them that the best interests of all classes are really bound up together.

All who take any interest, whether political, commercial, or philanthropic, in these colonies, must feel greatly obliged to Dr. Davy for having so well employed his opportunities of observation, and having placed before the public such a valuable collection of materials for a right appreciation of their condition and prospects.

Several excellent treatises on the use of the microscope have been published in England and on the continent. Generally they are learned dissertations, going profoundly into the subject, and entering into most copious details. Admirably adapted for those who are well acquainted with the subject, they are, without exception, little fitted for beginners: and, with few exceptions, they have never been projected with a view especially to assist practical physicians in the use of the microscope.

Dr. Beale's work appears to us everything that could be desired to fill the space thus left vacant. His experience as a teacher has enabled him to know exactly what beginners, and especially medical students, require to be taught: and his knowledge of medicine has allowed him to give a practical character to all his illustrations which will render his treatise, we are convinced, extremely popular in the profession. The first part of the work is occupied with a description of the microscope, and of the apparatus required in using it in the examination of animal tissues; then the mode of using it, with details as to mounting preparations, putting up specimens, &c., is related; the latter part of the work is occupied with a brief but excellent account of the microscopic characters of healthy and diseased tissues, of urine, vomit, blood, pus, &c. The vast subject of micro-chemistry is touched upon, and the principal re-agents are passed in review. The chief microscopic objects are illustrated by very excellent cuts and engravings.

In the histological part of the work all the most recent facts have been brought together; the descriptions are clear, yet concise, and give a
complete outline of the whole subject of medical histology. We have no hesitation in recommending most strongly to students this work of Dr. Beale's, as containing exactly the information which learners require. To more experienced microscopists we may also observe, that there are many very practical instructions scattered throughout the work, and that various formulae are given for preservative liquids, &c., which will be found very useful.

The second work is one of greater scope; as its title implies, it is intended to include in alphabetical order a description of all microscopic objects. The attempt is Herculean: whether it will be successful we can scarcely tell at present, as only the first part has reached us. Certainly this part, as far as we have gone into it, is extremely well done, and if the same fulness and accuracy can be kept up, the 'Micrographic Dictionary' will be most valuable. The references to authorities given at the end of each article are tolerably full; we hope that the authors will endeavour to carry out this feature of the work, so as to give a complete survey of the previous literature on the subject. If they can do this, their work will have a permanent value; if they do not do so, however accurate the microscopic descriptions may be, the rapid progress of observation must of course soon supersede them. We trust also that the authors will keep to their promise of issuing the work regularly every month: and not allow, as in the case of some other serials, the first number to become obsolete, while the last shines with the latest discoveries of science.

We lately directed attention to Chausit's 'Treatise on Dermatology,' as containing a good account of Cazenave's opinions and practice. We have here, however, in our native English, Cazenave's own work, well translated and well edited for the second time by Dr. Burgess. Many notes are added by the translator, which supply the deficiencies of the author, and give additional value to the work before us. We recommend it very strongly as an excellent practical work.

The American Medical Association has issued the annual bulky volume, containing, as in former years, many most valuable papers. Besides the reports on the ordinary business of the association, and medical education and medical literature, there are ten original papers. One of these, Dr. Meig's 'Treatise on Diseases of the Neck of the Uterus,' has already reached this country in a separate form, and we shall review it in an early number. An inquiry into 'Typhoidal Fevers,' by Mr. Campbell, contains a careful and critical digest of late works on this subject, especially those of Bartlett, Jenner, and Flint. Dr. Waldo Burnett,
whose name is well-known in Europe as that of an indefatigable and conscientious observer, has contributed a most elaborate paper on 'The Physiology, Pathology, and Philosophy of the Cell, to which is added its History and Criticism.' The title is a quaint one, but expresses the scope of the article. The other principal articles are surgical and obstetrical, on the following subjects: 'On Coxalgia,' by Dr. March; 'On Morbid Growths within the Larynx, with a full table of cases,' by Dr. Buck; and 'On the Surgical Treatment of Fibrous Tumours of the Uterus.'

We may observe that a communication has been addressed to us, pointing out that in our notice of the last volume of the Association, we stated that a great part of the work was occupied with reports on the epidemics of New England and New York; besides, however, New England and New York, various other places should have been mentioned. But as we were anxious only to give an idea of what the rest of the volume contained, without occupying space by minutely specifying every place from which reports were sent, we omitted the full details.

ART. IX — Cholera Morbus. Guide du Médecin Praticien dans la Connaissance et le Traitement de cette Maladie. Par le Dr. Fabre, Rédacteur en chef de la 'Gazette des Hôpitaux.'

The active editor of the 'Gazette des Hôpitaux' has favoured the world with a work of considerable value. The first 150 pages are occupied with a brief sketch of the various epidemics, with a description of cholera, and with a short discussion as to its nature. This part is the least valuable portion; it is sketchy and imperfect; and exhibits the national fault of being almost entirely drawn from French sources, and being a résumé of French opinions. The last 200 pages, devoted to the treatment of the disease, are more useful. M. Fabre has given an account, in alphabetical order of all the remedies employed in France during the epidemics of 1832, 1849, and 1853. This section, 'Dictionnaire de Thérapeutique, appliquée au Cholera Morbus,' gives a good account of the French practice, arranged in a way that renders reference to each remedy easy. No attempt is made to determine the real value of each medicine. An extract or two will show the kind of information to be obtained from this part of the volume.

"Acid Fluoric.—M. Magendie has employed this plan in the typhoid period, at the request of Ampère, who had hoped some beneficial results from this powerfully caustic acid, which traverses and instantly corrodes the tissues. In one case he obtained, or thought he had obtained, a very favourable result in the case of a woman who, for some days, had been in a typhoid state, which had resisted all other remedies. After having applied on the forearms a layer of this acid, he saw her come to herself, regain consciousness, and lose the lugubrious aspect of typhus. But simultaneously, adds loyally the learned Professor, the supporting treatment was continued, and, I believe, even that run was given her, on my advice, after the employment of the fluoric acid. On another occasion, M. Magendie has made use of this acid without success." (p. 199.)

"Croton Oil.—Croton oil, recommended by the Indian physicians, has succeeded once in the hands of Mr. Bally.

"M. Cauviere, of Marseilles, has given to four patients, a dose of two drops.
Three died the day of their admission, without any evacuation being produced by the remedy. He has repeated the dose in the fourth case of the patient, who lived two days. The stools were numerous, but they were so before the administration of the oil. "Probably the remedy was not absorbed." (p. 241.)

These extracts must suffice, and we have only further to remark that, as usual, most of the authorities named are French, and but few are German, English, or American.

Art. X. — Summary of New Publications.

In addition to the works reviewed or noticed in previous pages, we have received several others, which we propose shortly to enumerate.

Several works on *Medicine* have reached us from Germany; a *Medical and Surgical Encyclopædia for Practitioners* has been commenced, and is to be finished in six volumes; it appears to be a good work. Dr. Henoch has published the second volume of his treatise on *Abdominal Diseases,* a review of the first volume appears in our present number. In the second volume, the diseases of the spleen and the stomach are considered at considerable length.

Leubuscher has commenced a work on *Diseases of the Brain.* Only the general pathology and therapeutics are as yet touched upon; but it is evident that the work, when completed, will be a most valuable one. A fourth edition of Zehetmayer’s admirable *Lehrbuch der Perkussion und Auscultation,* edited by Oppolzer, has been published. It does not call for any remark. A little pamphlet on the *Development of Air in the Blood* is valuable as containing references to all the cases hitherto published. We shall review it at length in an early number.

From France we have received a bulky treatise on *Diseases of the Skin,* by Devergie, which we reserve for review. A work on *Medical Electricity* also demands an extended notice. A treatise on *Medical Chemistry,* guaranteed by the familiar names of Becquerel and Rodier, will be welcomed in England; though, after reading it, we must confess that we felt some disappointment. It is scarcely what we expected, nor what we should have thought French science would have required. Still there are numerous important facts in it.

From America we have received, in addition to the works previously noticed, a work on *Malaria and Pneumonia,* by Dr. de la Roche, and a pamphlet on the *Yellow Fever of New Orleans, in 1853.*

In our own country an important work on *Epilepsy,* by Dr. Radcliffe, and an extremely interesting treatise on *Vertigo,* by Dr. Russell Reynolds,
demand future review. Dr. Hamilton Bell has published a work on the 'Circulation and Nervous System in Reference to Disease.' It is apparently intended to explain the action of the tincture of the sesquichloride of iron in erysipelas; but we must confess that we cannot appreciate Dr. Bell's hypotheses and explanations, as much as, out of respect to the author, we could have wished. His facts, however, make out a good case for the treatment of erysipelas by iron.

A second edition of Dr. Walshe's excellent treatise on the 'Diseases of the Lungs and Heart' has been issued. So much new matter has been introduced, that we look upon it almost as a new work, and shall, as soon as the demand on our space permit, consider some portions of it at length.

In Surgery, the only new work of importance is one by Dr. Yvaren on the 'Metamorphoses of Syphilis.'* Properly speaking, the title should have been 'Concealed or Latent Syphilis.' The work is founded on 125 cases, collected from different authors or from personal observations. In 67 of the cases, the real syphilitic origin of the disease was not at first recognised. In 40 of the whole number of cases, the affection was of the nervous system—viz., cephalalgia, odontalgia, convulsions, epilepsy, insanity, paralysis, &c. In 29 cases, the membranous tissues (mucous membranes, conjunctiva, &c.); and in 42 cases, the parenchymatous organs (lungs, liver, &c.) were the seats of concealed syphilis. In 13 other cases, the syphilitic alterations of organs assumed a completely cancerous character. The diagnoses of these affections is discussed at great length and is founded, partly on the existing symptoms, and partly on the previous history. In four-fifths of the whole number of cases, other unequivocal syphilitic symptoms, such as cutaneous disease, nocturnal pains, caries of bones, &c. were present. In discussing these points, the author alludes to all the most difficult questions connected with syphilis, its origin, its connexion with mercurial cachexia, &c. We have, however, said enough to give a general idea of the work, and shall defer a more complete analysis for the present.

Mr. Macdise continues the publication of his beautiful plates, and Mr. Toyne has issued a second edition of his paper on the 'Artificial Membrana Tympani.' A third edition of Mr. Lizar's work on 'Stricture of the Urethra' has been published.

In Midwifery, Dr. Meigs has reprinted, from the American 'Transactions,' his paper on 'Diseases of the Os Uteri.' Dr. Winn has edited, with notes, Dr. Conquest's 'Midwifery.' Dr. West has published the excellent 'Lectures delivered at the College of Physicians on Ulceration of the Os Uteri;' and a second part of their 'Clinical Treatise on Midwifery' has been issued by Drs. Chiari, Braun, and Spaeth.† Most of these treatises require special notice.

In Physiology, Mr. Gray's work on the 'Spleen' (Astley Cooper Prize) is by far the most valuable contribution to Physiology which the English school has produced for many years. The wonderful industry and ingenuity with which the inquiry has been carried out, have led to brilliant

results. But we must defer all comment till our next number. Another valuable work is one by Eckhard on the ‘Nervous System.’* We have already given the pith of this work in our abstract of Eckhard’s paper in the ‘Archiv des Vereins für wissenschaft: Heilkunde,’ but of course the author now discusses every point at much greater length, and follows out its bearings with greater care. It is an admirable treatise, and well merits translation. A short work on ‘Diet,’ by Donders,† expresses the latest doctrines of the Dutch school. It is of course somewhat anti-Liebigian in its tone, as might be expected from a countryman of Mülder and Moleschott.

In minute Anatomy, we have received the second volume of Mr. Quckett’s admirable lectures on ‘Histology.’ Professor Gerlach, of Erlangen, has published a second edition of his treatise on the ‘Anatomy of the Tissues.’‡ It is not so long as Kolliker’s ‘Handbuch,’ and does not contain so many original observations. It is, however, written with extreme clearness, and its brevity will not render it less acceptable to students and busy men. The woodcuts are numerous, and illustrate the text sufficiently, though they are not distinguished by any great artistic merit.

In Materia Medica, besides Dr. Neligan’s work, nothing has reached us except the first number of a serial, edited by M. Bouchardat.§ It is entirely occupied with the ‘Memoir on Digitaline,’ by MM. Homolle and Zueverme, which is, in great part, familiar to us as having been already published in other channels. The ‘Archives’ are to appear every four months.

In Medical Jurisprudence, we have received a treatise on the ‘Signs of Death,’|| one on ‘Insanity,’¶ and one on ‘Criminal Lunatics,’ by Dr. Hood.

Under the head of Miscellaneous Subjects, we may refer to a very interesting work, assigned, by rumour, to a most distinguished professional man, and which is entitled ‘Psychological Inquiries.’ As this work touches on many of the subjects which most deeply interest and agitate the minds of men, and as it is written with an amount of clearness and definition, to borrow a phrase from the language of microscopy, unusual in works of a like kind, our readers will perhaps thank us for entering into some discussion on its contents in an early number.

Two important Parliamentary papers have appeared—viz., the ‘Report on the Health of the Navy’ (Part II.), and an ‘Account of the State of Disease in Ireland,’ compiled from the documents collected at the census. These works will also be reviewed as soon as possible.

Dr. Seegen has written an interesting work on ‘Mineral Springs.’**

† Die Nahrungstoffe. Von F. C. Donders, Professor in Utrecht (aus dem Hollandischen übersetzt, von Dr. P. B. Bergroth). Crefeld, 1853.
‡ Handbuch der Allgemeinen und Speziellen Gewebelehre des Menschlichen Körpers, von Dr. Jas. Gerlach, Professor der Anatomie zu Erlangen. Mainz, 1854.
|| De la Mort et de ses Caractères. Par le Dr. Joset. Paris, 1854.
PART THIRD.

Original Communications.

ART. I.

(To the Editor of the British and Foreign Medico-Chirurgical Review.)

University College, London, Nov. 1st, 1853.

Dear Sir,—The accompanying letter is from Mr. Crichton, the eminent surgeon, of Dundee, whose great success in operating for stone in the bladder is well known. It contains practical reflections on the operation of lithotomy, suggested by an experience of more than sixty years, and coming, therefore, with a weight of authority which, I should think, cannot fail to render them acceptable to your readers.

I am, dear sir, yours very truly,

W. Sharpey.

Dundee, Oct. 6th, 1853.

My dear Sir,—Two years ago, when, at your request, I forwarded to you the numerous urinary calculi you saw here which I had extracted from the bladder of patients suffering under calculus vesica, for the purpose of being analyzed, sawn across, the halves of each to be deposited in the museum of the London University College, and the other halves returned to me with the analysis of each, you will recollect I mentioned to you that I might very likely trouble you at some future period with such observations as might occur to me on the subject, in like manner as I had done some thirty years before upon forwarding about an equal number of calculi to Professor John Thomson, to be treated in a similar manner, and the halves deposited in the museum of the Royal College of Surgeons of Edinburgh. Other avocations, however, or rather, perhaps, my natural indolence of disposition, have hitherto stood in the way of performance. I am happy, however, to take this opportunity of again acknowledging how much I am indebted for the care and attention you bestowed upon the commission. The section of the calculi, by the application of steam power, through the kindness of Mr. Tomes, was most successful, and several of them are so variegated in their colours, and so beautifully polished, that if set in gold they might be used as personal ornaments.

The observations alluded to as being forwarded along with the calculi
to Professor Thomson, made their appearance in the 'Edinburgh Medical
and Surgical Journal' for the year 1828, and a sequel to them in the
same journal for the year 1837.

'Tis now upwards of threescore years since I first operated for stone
in the bladder. A period so long in the prospect, so short to look back!
How vivid and distinct every event which then occurred appears to my
mind at this time. My marrying the object of my choice whilst I was
a stripling at school, considered by my friends an act of extreme folly, but
by me then, and ever since, the perfection of happiness and the perfection
of wisdom. My anxieties and cares at first settling in business. My
being called to see a young boy, John Chalmers, suffering under calculus
vesica, whose parents were kind enough to say that, having made them-
selves acquainted with the successful result of various serious surgical
operations I had been engaged in, they had made up their minds to place
their boy under my charge instead of taking him over to Edinburgh to
be operated on, as at first it had been their intention, and which was the
universal custom at that period. My hesitating at first to take upon me
the responsibility of a case at that time considered by every one of so
mighty serious a nature (for though married and father of a family, I
was still not out of my teens), through fear that if the operation should
not happen to be accompanied with perfect success, I might be blamed
as rash and inconsiderate, and so injure the little reputation I had already
acquired. My having recourse to Benjamin Bell’s ‘System of Surgery;’
the standard work at that period. My being much puzzled to unravel
the meaning of that passage in the section on lithotomy wherein he says,
“When by a continuation of the incision the erector penis and accelerato
urinae muscles are also to be divided.” My subsequently perusing with
care every writer on the subject I could lay my hands on, and finding so
many conflicting opinions and directions, and so much apprehension of
danger to life from haemorrhage, abdominal inflammation, and other
casualties. My having at length recourse to the skeleton, and taking the
bones of the pelvis in my pocket, examining, measuring, and comparing
its boundaries as fixed by the rami of the pubes and ischium with its
appearance in the boy himself laid upon a table in the position for opera-
tion, and with the sound in his bladder, definitively settling in my mind
the direction of the incision, so as to avoid the bulb of the urethra and
the rectum on the one side, and the pudic artery on the other; giving
directions withal to the cutler to grind off to the extent of some lines
from the breadth of the gorget to lessen any risk of its coming in contact
with the pudic artery, and also to take away its round bulging shoulder,
then in use, in order to give the cutting part more slope, so as to facili-
tate its entrance into the bladder. My proceeding to operate, on the
16th February, 1792, with my mind quite calm and confident, unap-
palled by the terror and screaming of the boy, and unconcerned as to
what those around might be thinking. My delight in daily witnessing
the rapid recovery of the boy, who, before the end of three weeks, was
running about in great spirits and perfect health. My being then called
upon to operate on James Valentine, utatis 41, who had previously in-
tended to go over to Edinburgh for that purpose, but had delayed his
journey until the result of the case of the boy Chalmers should be ascer-
Practical Observations on the Operation of Lithotomy.

The extraction from his bladder, on the 7th March, 1792, of a large rough calculus, weighing upwards of six ounces, and his subsequent recovery. All these circumstances, those days of happiness as well as of cares and anxieties, are so imprinted on my mind as to appear to me occurrences of yesterday, and never to be obliterated.

Without further detaining you, I now proceed to the promised observations, confining myself to what has actually occurred in my own practice, and under my eyes.

First, in regard to circumstances rendering an operation advisable or otherwise. The time has long passed since the operation was only considered admissible at certain seasons of the year, and upon patients under a certain age; but writers upon the subject, and of the highest repute, still object to submitting a patient to the operation unless the general state of his health is favourable to its success.

Sir Astley Cooper says in his lectures: “If the bladder is ulcerated, do not perform the operation on any account, for it will not be successful. But especially never submit a patient to the operation for stone if there be the slightest affection of the chest—the least difficulty of breathing—any sign of asthma, or any irregularity of circulation. No person who has any regard for the safety of his patient or his own reputation as a surgeon, will ever operate for a stone unless the chest be free from all complaint. You hear of one surgeon being exceedingly successful in the operation for stone, and of another less so. The cause of it is this: the one is careful to select his cases; he puts aside all those who have any other affection, and tells them to wait, and only submits those to the operation who are free from any other disease.”

Many practitioners are too ready to be swayed by such dicta, and, through fear of an unsuccessful result, allow their patient to remain unrelieved. But what is to become of patients suffering under stone, who happen at the same time to have these objectionable affections? Are they to be allowed to linger out a miserable existence in torture, without hope of relief, crying for death to put an end to their sufferings? For my own part, I have never been able to reconcile such doctrines with humanity or professional duty, but from the first have always operated upon every case that presented, whether considered by others favourable or not. Neither have I found my professional reputation suffer thereby. On the contrary, I have, in various cases, experienced the satisfaction of seeing affections which were considered insuperable objections to an operation gradually give way after the pain and irritation occasioned by the stone was removed. A few instances, from amongst a number of others, will serve to illustrate this.

Case I.—Joseph Cairns, a child three years of age, brought to me in the month of April, 1800, by his mother, on her way from the Edinburgh Infirmary to her residence at Forfar, from whence she had conveyed him some days before to that place to be operated upon for stone in the bladder. After staying a few days in the infirmary, she was desired to take her child home again with her, as he was not considered a fit subject for operation. I took a room for them here, and removed the calculus in the usual manner. The urine was evacuated through the urethra from the first, the divided portion of the prostate adhering by the first intention without suppurating, and the child was taken home by his mother.
to Forfar that day three weeks after the operation, free of complaint, and in good health and spirits.

Case II.—R. M., seven years of age, of a sickly, worn-out, emaciated appearance, residing at Crescent, a little way from town, who had some time before been sent into the infirmary here, suffering under symptoms of calculus vesice, but was dismissed by the surgeon then in attendance as not being in a state favourable for operation. His sufferings, however, becoming more and more urgent every day, I was requested by his parents to relieve him, if possible, at all hazards. A room was taken for him and his mother in town, that he might be more at hand, where I operated and removed the calculus. He made an excellent recovery, and returned home free of complaint and much improved in general health and strength.

Case III.—Mr. Peter Bruce, aged 45, residing at Errol, was brought, in the month of May, 1817, to a lodging prepared for him, wrapped up in blankets, and lying on a bed suspended by its four corners fastened to the posts of a cart. His countenance was ghastly in the extreme, and his flesh wasted away to a skeleton. He had been suffering for many years under symptoms of calculus vesice, and had been visited by several medical practitioners from this town as well as from Perth, who all agreed in opinion that no good could result from an operation, as the urinary organs, particularly the prostate gland, were all in a diseased state. Issues in the perineum and verge of the anus, and medicines of various sorts, were prescribed, but without benefit, and his friends were ultimately informed that his case was utterly hopeless, and could only be palliated by opiates. For the last six months he had, in a great measure, been confined to bed, being unable to sit upright, constantly straining to void his urine in great agony, and, to all appearance, was fast sinking. Hearing, from various quarters, that I had been very successful in the treatment of similar disorders, he became exceedingly anxious to put himself under my charge, and had himself conveyed into town in the manner mentioned. Upon examination the following day, besides detecting a stone, I observed a great bulging of the bladder, compressing the rectum in such a manner as hardly to admit the passing up of the finger. After soothing and cheering him as much as possible by the hope of a speedy relief to his sufferings, I, a few days afterwards, extracted a large rough stone, weighing upwards of six ounces, which he bore with great composure. He passed the remainder of the day and following night quite easy and free of pain, the urine coming freely and plentifully by the wound without straining, and on the morning he took his food with a relish and lightness of heart he had long been a stranger to, and went on so well as to find himself able, on the eighth day after the operation, to be removed in a sedan chair to a friend’s house in the suburbs, where he enjoyed superior accommodation, and a green to saunter about in, until he found himself sufficiently strong to return to Errol and attend to business. About a twelvemonth afterwards, happening to be in that neighbourhood, I called at his house, and found him looking so stout as hardly to recognise him. Both he and his wife received me with the kindest expressions of gratitude, withal setting before me a large dish of rich clotted cream, which they had heard I so much delighted in, and to which I certainly did all manner of justice.

Case IV.—William Powrie, aged 45, was conveyed from the parish of Liff to the infirmary here, having been for many years affected with dyspnea, palpitation of the heart, frequent attacks of asthma preventing his lying down in bed, cold extremities, &c., at same time suffering severely under symptoms of calculus vesice. He was detained in the infirmary two months, to ascertain if his sufferings could be any way removed by proper treatment, but the pain from the stone becoming still more urgent, and his other affections continuing unabated, it was decided to write to his friends to get him conveyed home as incurable. The poor man pleaded hard to be first relieved from the stone, whatever might be the consequence, but the surgeon then in attendance still refusing to operate under such
unfavourable circumstances, I offered to take the responsibility, which being
assented to, I, on the 7th July, 1824, extracted a mushroom-shaped calculus with
great ease by the lateral operation. He made a rapid recovery, and, what was
particularly remarkable, after removal of the stone the objectionable affections
gradually abated, and four weeks after the operation he walked home without
assistance, a distance of five miles, in perfect health and spirits.

Case V.—James Richardson, æt. 45, was brought down from his residence in
Perth by the steam-boat, bearing a letter from several benevolent persons there,
recommending him to my care, and stating that they would be answerable for any
expenses incurred. I went down with the messenger to the boat, and found a
poor, emaciated, ghastly-looking object straining, with agonizing pain, to void his
urine. I desired he should immediately be conveyed up to the infirmary; and
learned from him that, eleven years ago, in consequence of a fall from a height, he
had been affected with severe pain of the back and left side, accompanied with
bloody urine, which confined him to the house for several weeks; since which
period, he had several attacks of the same complaints, with the addition of passing
quantities of sand and small stones to the amount of two hundred and seventy-five,
many of them the size of large peas. He had also inguinal hernia of both sides,
with cough, expectoration of muco-purulent matter, and dyspnoea, to such an
extent as often to prevent his lying down in bed; and for the last twelve months
had been suffering under symptoms of calculus vesicae, which of late had been be-
yond endurance. Notwithstanding all these unfavourable accompaniments, I con-
sidered it my duty to operate, and on the 24th July, 1824, I easily extracted a
rough flat stone, weighing 9 drachms, by the lateral operation, and two months
afterwards he went home in great spirits, quite cured of all his calculous complaints,
and nearly free of the affections of his chest. The following year, happening to be
on a professional visit to Perth, he recognised me in the street, and told me, that
soon after leaving the infirmary he felt himself able to resume his occupation, and
had never been a day off work since.

Case VI.—James Wilson, æt. 74, brought to me from the parish of Cortachy,
for the purpose of being operated upon for stone. Had been for the last five or
six years subject to retention of urine, requiring the aid of the catheter. Twelve
months ago, began to suffer under symptoms of calculus vesicae, which for some
time past had become extreme, straining every few minutes to void his urine,
which came off intermixed with bloody muco-purulent matter, highly offensive to
the smell. Is exceedingly emaciated, his countenance wohgone and sunken, his
speech incoherent, and he is sometimes highly delirious. Pulse frequent and irreg-
ular. His case being somewhat uncommon, I delayed operating for some time;
but as he was getting day by day more and more feeble, and becoming more and more
unmanageable, his friends who came along with him became impatient; and, on the
25th August, 1830, I extracted a calculus weighing two ounces, with great ease.*
The cure went on well, although the incoherence of speech, occasional delirium,
and foetid muco-purulent urine, continued for some time. By and by, however,
matters began to improve, his urine coming off clear, and his incoherence of speech
leaving him; and his appetite for food gradually improving, he was enabled to
return home free of complaint, although somewhat feeble.

Case VII.—Andrew Davidson, æt. 56, had suffered long under symptoms of
stone in the bladder, accompanied by dyspnoea to such a degree as to prevent him
sleeping in a horizontal posture. On the 10th December, 1831, I removed two
calculi, weighing together one ounce;† He made an excellent recovery, and was
able for his work within a few weeks.

* Fusible calculus.
† Nucleus, oxalate of lime; succeeding layers, ditto; next, neutral phosphate of lime; then
phosphate of lime, with traces of triple phosphate.
CASE VIII.—Mr. Robert Ferguson, nat. 54. I was requested to intimate, by return of post, the first day I could make it possible to proceed to Muirhouse-Law, in Roxburghshire, to see Mr. Ferguson, and advise with his medical attendants and friends how far it might be practicable and justifiable to submit him to an operation for the removal of stone in the bladder, in his worn-out and apparently dying state. I met with them all there towards noon, on the 6th July, 1843, and found Mr. Ferguson in a most pitiable condition indeed; his countenance was sunken and his looks ghastly, his body emaciated in a remarkable degree, his mind in some degree unconscious, and at times delirious, straining every now and then to void his urine in great agony, his stomach generally rejecting everything he was made to take except tincture of opium, which he swallowed in great quantity. I said, if anything was to be done it must be so immediately, as he was evidently fast sinking. Preparation was accordingly made, and, that same evening, I extracted, with some management, requisite on account of the thickened and enlarged state of the prostate gland, a rough stone, weighing two ounces. He appeared quite unconscious during the operation, and for several hours afterwards spoke incoherently. About ten o'clock he fell quiet, and slept till next morning; he awoke much refreshed with his long sleep, and took some food, which remained on his stomach. Throughout the day he was quite calm, taking frequently a little biscuit soaked in wine, with a relish and in good spirits, the urine flowing plentifully by the wound. On the following morning, finding he had passed a very calm and pleasant night, and everything going on well, I left him under the care of his medical attendants, and was happy afterwards to learn that he passed his urine altogether by the urethra on the tenth day, and upon the twenty-first was walking about in the open air, rapidly recovering his strength and flesh. Every Christmas since, he has not failed to keep me in remembrance of him by forwarding a small box filled with game and fat ducks of his own rearing, the latter of which he had learned I was peculiarly fond of.

CASE IX.—John Simpson, nat. 38, a poor, emaciated, ghastly-looking object. I was informed that he had been suffering more or less for seven years under the usual symptoms of calculus vesice; that latterly his sufferings had become so urgent as to disable him for work; and for some time past he had been unable to leave his bed—that he had been seen and examined by several medical practitioners, who could not detect any appearance of stone, and had all given their opinion that the urinary organs were all in a diseased state, for which there was no cure, and which could only be palliated by opiates and other sedatives. I sounded him, and, after some little search, distinctly struck a stone towards the right side of the bladder. Upon afterwards repeatedly sounding him, along with other professional gentlemen, the calculus was invariably found at the same place, fixed and immovable, which led to the conclusion that it must certainly be partially encysted. Having previously met with cases of a similar nature, and experienced much difficulty and delay in getting the encysted portion disentangled, it became a matter for consideration how far, in his worn-out and almost moribund state, an operation should be had recourse to, lest he should die amongst our hands. Upon the matter being explained to him and his wife, he faintly replied, by all means relieve him, if possible, of his unendurable sufferings, whatever might be the consequence. Accordingly, on the 16th May, 1844, an opening was made into the bladder in the usual manner, and the presenting part of the stone quickly grasped and extracted by the forceps, broken off at its slender neck; but it was not without much difficulty and perseverance that the encysted portion was disentangled from its pouch, which was at length, however, safely accomplished, chiefly by cautiously introducing a female grooved staff through the narrow aperture, and gently and gradually making it find its way by the side of the encysted portion till it reached its base, supporting the poor man from sinking during the while by frequent sips of brandy and water. He made an excellent recovery; and by means of nourishing diet, with a moderate supply of wine and ale, he soon regained his strength and flesh. *

* Fusible calculus, with uric acid.
The above few cases, taken indiscriminately from amongst many similar ones, may be sufficient to show that neither the safety of the patient nor the reputation of the surgeon has been compromised by listening to the dictates of humanity and professional duty. In justice, however, to Sir Astley Cooper and others who maintain that only select cases should be submitted to an operation, I shall now instance a few cases wherein the operation, although successful in itself, failed in also removing the accompanying objectionable affections.

Case I.—James Donaldson, 5th. When first called to see this child, towards the commencement of the year 1812, I found him of a delicate scrofulous habit, with tumid belly, painful upon pressure, and other symptoms denoting affection of the mesenteric glands; and, at the same time, labouring under symptoms of calculus vesicae. I advised the removal of the stone in the first place, which, by relieving the pain and irritation therefrom, would afford a better chance of restoration to general health. The parents, particularly the mother, would not give ear upon any account to the proposal, and I lost sight of the case till about six or eight months afterwards, when I was again called upon to visit him. His sufferings from the stone had become latterly much more urgent; the mother was worn out by constant watching and witnessing the incessant agony of her child, and both parents were now as importunate to have him operated upon as they had formerly been adverse; but the great emaciation, the tumid and tympanitic abdomen, rapid pulse, &c., showed evidently the child was fast sinking under tabes mesenterica. Nevertheless, I could not resist their importunities, and accordingly, on the 9th October, 1812, the calculus was removed safely and expeditiously, and everything went on well as regards the operation, but the tabes still progressed, and he soon afterwards sunk under it.

Case II.—Charles Duncan, 66th, was conveyed here from the parish of Corrachy, to be operated upon for stone, under symptoms of which he had been labouring for five years. He was much emaciated; his appearance, woe-begone, sunken, and ghastly. No appetite for food, and rejecting anything he did take; and so feeble, as to be unable to sit upright. Of late his sufferings had become unbearable; and hearing that many from his part of the country, under similar complaints, had returned from Dundee quite cured and well, he became exceedingly urgent to get there, and set off in a cart stuffed in the softest manner, accompanied by his wife and one of his friends; but they were frequently under the necessity of halting by the way, fearing he would not be able to accomplish the journey. For eight or ten days he was kept quiet, and every means used to palliate his sufferings and improve his digestive powers, but without effect; he was getting more and more feeble and worn out every day. To reconvey him home alive was out of the question; and without removing the immediate cause, nothing could be effected. Accordingly, on the 13th July, 1812, a large rough stone was easily enough extracted; but his powers of life were too far gone to be restored, and he sunk without pain within three weeks afterwards.

Case III.—Mr. David Small, 66th, had been for many years labouring under symptoms of calculus vesicae; but instead of submitting to an operation for relief, he tried to palliate his sufferings by means of opium, which he made use of to a great extent. He was subject to frequent fainting-fits, out of some of which it was not expected he could recover. Latterly losing all appetite for food, with much thirst, his pulse frequent and irregular, and his strength every day falling off more and more, whilst his sufferings were becoming more intense, he at length made up his mind to submit to an operation, and in March, 1815, two calculi were with much ease extracted. About two hours afterwards, he was seized with an apoplectic stroke, accompanied with stertorous breathing for eighteen hours,
after which he revived a little, and became somewhat conscious; but soon after relapsed, and died comatose.

Case IV.—Mr. Finlay, æt. 69, was conveyed here from beyond Perth, for the purpose of being operated upon for stone, under symptoms of which he had been suffering for five years. His case altogether was most discouraging. His pulse was frequent, irregular, and intermitting. He was subject to frequent fainting-fits, threatening his life; constant dyspncea towards evening, rendering it necessary for him to be supported in an arm-chair during the night, instead of lying down in bed. He had much thirst, and no appetite for food; constantly straining, with great pain, to void his urine; swallowing laudanum in great quantities, out of a quart bottle he brought along with him, to afford a little temporary relief, &c. It was explained to both himself and friends, that there was great risk of his going off in one of his fainting-fits during the operation, if he still persisted in undergoing it; but he replied, his mind was perfectly determined to have the stone, which was occasioning him so much torture, removed at all hazards. Accordingly, on the 1st October, 1816, while he was supported on the table in nearly an erect position, a large rough stone was extracted with great ease, although the prostate gland was considerably enlarged. He bore the operation with the greatest composure; and when I saw him in the evening, I found him quite happy in being relieved from his agonizing straining, the urine coming off by the wound freely and abundantly, and he had taken some little refreshment; but the dyspncea returning, as usual, about that time, he found it necessary to get out of his lying posture, and support himself in his arm-chair beside the fire. In the morning, I found he had enjoyed a fine easy night, accompanied by much refreshing sleep; had taken his breakfast with a relish, and had walked across the room, supported on the nurse’s arm, before lying down in bed. He continued to improve rapidly, taking food with a relish, and in great spirits, lying in bed during the day, and supported in his arm-chair during the night; till one day, walking across the room, leaning on the nurse’s arm, he fell down in one of his fainting-fits, and instantly expired.

Case V.—James Barney, æt. 60, had been labouring under symptoms of calculus vesicae for ten years, and about that period had made up his mind to submit to an operation; but after being laid upon the table, his resolution failed him, and he took to the use of alcohol and opium for relief. During the last four months, his sufferings had become intense; his urine was loaded with foetid, bloody, purulent matter, and he was subjected to frequent attacks of epilepsy. Becoming desperate from the intensity of his sufferings, and death staring him in the face, he peremptorily insisted upon the removal of the stone, whatever might be the consequence. I accordingly operated in the month of September, 1819, and the stone appearing to be of immense size, I made use of a very strong pair of forceps, with which I succeeded in breaking it into several pieces; the whole, when put together, weighing nine ounces, the largest portion weighing six ounces. He passed that day and night pretty composed; but the following evening, after some sort of strangling and screaming, he became comatose, and died under symptoms of oppressed brain.

Case VI.—Henry Whyte, æt. 62, was conveyed from Fife to the Infirmary here, for the purpose of being operated upon for the stone. Nine years ago had a severe attack of pneumonia. The continuance of cough and dyspncea had disabled him for work during the following three years; and for the last twelve months, he had been under the necessity of confining himself to the house, any exposure to the air aggravating his dyspncea and cough. He had also a large hernial tumour hanging half-way down his right thigh, and behind that the scrotum was tremendously enlarged by hydrocele, containing upwards of two pounds of serum, as appeared when afterwards drawn off. The surgeon then in attendance, understanding that the poor man’s friends had expressed their anxiety that I
should operate, he consigned him over to my charge; and although the case was far from favourable, yet as his sufferings from the stone had latterly been agonizing beyond endurance, I proceeded to operate on the 5th October, 1838. Upon introducing the forceps and grasping the stone, I at once perceived, by the immense separation of the handles, that the extraction in that position would be quite impossible. I accordingly withdrew them, and by means of my finger and a scoop, succeeded in altering its position, so that, in the next grasp, the handles were much less separated, and with some little management, the removal was safely accomplished. The stone was very large, being $3\frac{3}{4}$ inches in its largest diameter, and $2\frac{1}{2}$ in its shortest; $8\frac{3}{4}$ inches in its largest circumference, and 6 inches in its shortest. In regard to the operation itself, everything went on perfectly well; the urine flowed freely and plentifully by the wound; he suffered neither pain nor uneasiness in the pelvis or abdomen, affording every appearance of a rapid recovery; but the cough and dyspnea still continued, accompanied with pain, tightness and oppression of the chest, all which hourly increasing, he breathed his last on the fourth day afterwards.

Without making any comment on the foregoing cases, I now proceed to remark,

Secondly, upon the Operation. At the period of my commencing practice, in the year 1791, the methods previously practised in operating for the stone, as fully detailed, and modestly commented on, by M. Deschamps, in his excellent 'Traité Historique et Dogmatique de la Taille,' had all, in a great measure, given way to Cheselden's, under the designation of the lateral method, the cutting gorget of Sir Caesar Hawkins being used in dividing the prostate.

This instrument, modified, as I before mentioned, by narrowing the breadth, and giving greater slope to the cutting part, I made use of from the first, and continued to do so for a period of years, and with perfect success, notwithstanding the rampant denunciation of it by Mr. John Bell, in his elaborate quarto volume on lithotomy, designating it "A murderous weapon," and adding, "the gorget slips! and all the surgeons of Europe confess it! It slips in the hands of the most skilful surgeons, and no one can be responsible for the consequences of a thrust so desperate, and requiring so much force. It slips so frequently, and is avowedly so little under the control of the operator, that no man ventures to blame his brother for a misfortune which may happen under his own hand. I have myself seen it driven, God knows where, deep out of sight, up to the hilt, without one drop of urine issuing, without the operator ever reaching the stone." And so on in the same style throughout several pages of his fourth volume.

When I first perused all this, is it possible, thought I, that I should have been making use of this murderous weapon for so many years without being in the least aware of its murderous propensities? If the beak of the instrument slips out of the deep groove of the staff, in the hands of the most skilful surgeons of Europe, how is it that I have never, for one, found it to do so? But I soon perceived it was only his usual exaggerated manner of expressing himself, and that he might, in like manner, have proscribed the use of the knife, as he, without doubt, must have witnessed a dozen of cuttings made with it to get into the groove

* Nucleus and body of the calculus, uric acid and urate of ammonia; external crust, oxalate of lime and uric acid.
of the staff, instead of one; or the use of the forceps, as he must also have witnessed an hour and more occupied in fruitless attempts with them to grasp and remove the stone.

In a correspondence with Mr. Martineau, of Norwich, some time before his death—who, it would appear, along with many others, had been frightened out of his propriety at the denunciations of Mr. John Bell—I was not a little amused at the naïveté of his statement, that he had been very unsuccessful in his operations whilst he used the cutting gorget, but was successful when he gave it up.

Certainly, there were objectionable points in the original form of the cutting gorget, which I caused to be remedied before making use of it; and, with these alterations, I have never found it requiring the smallest force for its introduction into the bladder, never slipping out of the groove of the staff, or in the least endangering the pudic artery.

Latterly, however, in boys, and those who do not appear to have a deep pelvis, or enlargement of the prostate, I have dispensed with the use of it, carrying the same knife, after penetrating the urethra at the apex of the prostate, straight onwards, directed and supported by the index finger of the left hand, thus rendering the operation more simple in the saving of time by lessening the number of instruments, and enabling me often to have the stone in my hand within the minute.

But, in those having a deep pelvis, with much hypertrophy of the prostate gland, rendering the bladder inaccessible to the finger, I think it most prudent to revert to the use of the gorget, or probe-pointed bistoury.

Notwithstanding the numerous and contending directions of writers on the subject, as to the finding and grasping the stone, as if it were a most serious and difficult matter to accomplish, yet, excepting in partially encysted calculi, or in very small ones perhaps enveloped in some of the folds of the mucous membrane, I have always found the stone where, from the previous contraction of the bladder, it most naturally should be found, close by or behind the opening, and easily laid hold of and extracted; but, in the partially encysted, I have had my patience and perseverance sorely tried in getting the encysted portion safely dislodged without injury to the bladder; and, in very large ones, every one knows the difficulty and management required in the extraction. It has only been in two cases, however, that I have been under the necessity of breaking the stone previously to extraction—viz., James Barney, whose case has been already stated; and the other, a patient of Dr. Mudie, in Arbroath, during the summer of 1793, who had requested my assistance, wherein the widely expanded handles of the forceps, in grasping the stone, showed to us both the impossibility of extracting without first breaking it. Accordingly, applying my whole strength to the handles, the stone fortunately gave way, splitting into two nearly equal halves, which were immediately extracted separately, and, when put together, weighed fully ten ounces. The patient made a perfect recovery, without the smallest interruption to the cure.

But, however easy I have always found the grasping and extracting calculi, of moderate size, from the bladder, yet I have, upon various occasions, witnessed surgeons, of long standing and high repute in their
profession, unaccountably lose their self-possession in this simple stage of the operation, of which I shall give an instance or two.

In the winter of 1790–91, a middle-aged man, in the Edinburgh Infirmary, had to be operated on by Mr. ——, one of the most eminent surgeons of Edinburgh during the last century. Being a dresser in the surgical ward, I had the privilege of being beside the patient during the operation, and, as far as could be observed, the operator went through the first stages with composure, but after introducing the forceps, and turning them in every direction—opening them and shutting them, shutting and opening, for a great length of time—without grasping anything, he was observed becoming very much agitated, and no way bettered by the half-suppressed hissing and other marks of impatience amongst the students in the gallery, when old Mr. Wood, one of the most princely and kindly-hearted gentlemen of the profession, as gently and unobservably as possible, took hold of the forceps, grasped the stone, and placed them again in Mr. ——'s hands, who immediately lost hold of it, and returned to his searching—opening and shutting, until Mr. Wood, seeing that the operator's self-possession and presence of mind had quite forsaken him, a second time took hold of the forceps, and withdrew them, with the stone in their grasp, to the external part of the wound. The patient died within an hour or two after being put to bed.

Another case, of a later date, took place in our infirmary here, in which the surgeon then in attendance, after a long time groping with the forceps in the bladder—opening and shutting them again and again without being able to grasp anything—the sweat rolling down his face in big drops—in his great agitation at length requested me to ascertain, if possible, the cause. Not feeling any calculus, either by my finger or a female sound, and judging that, if a small one, it might possibly be enveloped and concealed in a fold of the mucous membrane, I filled a large syringe with tepid water, and injected the fluid through the wound into the bladder; by the distension of which the small stone was disentangled, and forced, by the returning gush, towards the neck, where it was immediately grasped and extracted. The patient made a good recovery.

I have also witnessed much unpleasant cutting, in the endeavours of the operator to get the knife inserted into the groove of the staff, perhaps from his thoughts being occupied in what those present might be thinking of him, or from the want of clearness of conception in his mind in regard to the situation of the parts to be divided; and, oftener than once, I have even been requested to assist in the accomplishing it.

Third. Haemorrhage.—Notwithstanding the many instances recorded of death arising from haemorrhage, and the great apprehensions formerly, and even still entertained, by writers on the subject, yet in operating upon about 200 cases, during a period of upwards of threescore years, I have never once experienced such a distressing occurrence, and am rather inclined to think that, except in some anomalous distribution of the vessels of the perineum, such an event cannot possibly occur when the incisions are properly conducted.

Fourth. Abdominal Inflammation and Urinary Infiltration.—These have likewise been held forth as a frequent cause of death, arising from
the operation; but I have never experienced any such casualties in my own practice, excepting in the case of one patient in our infirmary here, who died from peritonitis after I had operated on him, but who had been a sufferer from some supposed organic affection in the pelvis for many years previously to his having become affected with the symptoms of calculus.

I have heard, however, of such occurrences, especially urinary infiltrations; and in one case, where I was a spectator of the operation, and had occasion to see the patient some days afterwards, I observed the wound full of a gangrenous cellular substance, and the testicles quite bare, from the sloughing off of the scrotum in consequence of urinary infiltration.

Fifth. Healing by the first intention.—Amidst the numberless writings upon the subject, it is not a little remarkable that adhesion, union, or healing by the first intention, of the divided portion of the urethra and prostate gland, has hardly ever been alluded to; yet, in my own practice alone, twenty-three instances of its taking place have occurred, most of them particularly stated in the Edinburgh Medical and Surgical Journal for the year 1837, whereby annoying and vexatious scaldings and festerings of the surrounding integuments, from the incessant dribbling of urine by the wound, have been avoided, and the cure itself so remarkably accelerated, that in patients from under two years of age to upwards of seventy, I have seen the former crawling about upon hands and knees, and the latter walking about the room, within a few days after the operation.

It is only, however, in patients of good habit of body, the stone of moderate size and easily extracted—where the urethra and prostate have been recognised at the first incision, and where repeated ineffectual cuttings have not been found necessary to get the beak of the gorget or other instruments fitted into the groove of the staff—that such a happy occurrence may reasonably be looked for.

Upon various occasions I have been asked whether I employed any particular method or instrument in operating, which might account for the continued successful results; and if so, why not make it public? I could never say I had any particular method. But perhaps a short statement of the last case that occurred, and which is fresh in my recollection, may best serve as an answer. This took place on the 7th of May, this present year, in a delicate boy, eight years of age, who had been affected, more or less, with symptoms of calculus from his earliest infancy, but latterly his sufferings had become so extreme as to induce his parents to submit him to an operation for relief. After introducing the staff—which I must say, was held most steadily in the proper situation by your friend Dr. Arrott—I commenced the incision deep in the perineum, by the side of the raphé, eight or ten lines in front of the anus, gradually lessening its depth as it passed between the anus and tuber ischiī on wards to its termination; then introducing the forefinger of my left hand into the deep superior part of the wound, and pressing its point in front of the apex of the prostate, I pierced the urethra with the knife, and carried it onwards in the groove of the staff, directed and supported by the finger, so as to divide the prostate obliquely outwards, and downwards nearly in the direction of the external wound. Next, feeling the stone with my finger, I withdrew the knife, and introducing the forceps, I
withdrew the staff—all which was the work of a few seconds. But a
difficulty now occurred, for after grasping the stone, and attempting its
removal, it slipped from between the blades. The same occurrence taking
place after two or three seizures, I judged there must be something
uncommon, and, withdrawing the forceps, I introduced my finger in
order to ascertain the cause, and found the stone, as before, close under
the opening, but extending further backwards than my finger could well
reach. Instead, therefore, of reintroducing the forceps, I made use of
the scoop, passing it onwards till it reached the further extremity of the
stone; then insinuating my finger gently underneath the fore-end, I
raised it up to the opening, and, with the bent end of the scoop behind,
drew it easily forward, and in a moment the stone was in my hand.

The boy made a rapid recovery, and soon acquired flesh and strength.
Upon examination the stone was of an unusual shape, measuring four
inches in its longest circumference, and one and three-fourths in its
shortest. The two or three minutes occupied in manipulation with the
finger and scoop was abundantly recompensed by the easy and safe
removal of the stone, which, on account of its position and great length,
could hardly have been accomplished by the forceps without breaking it
or injuring the bladder.

Although the operation as here described appears the most simple, easy,
and least painful of any surgical operation, requiring only two cuts with a
sharp smooth blade to make an entrance into the bladder—and if the
position and length of the stone had not stood in the way, would have
been easily and safely accomplished within half a minute, for I have often
before accomplished the same within the minute—yet, when we hear of,
or witness, a surgeon, even in quite a favourable case, losing his self-pos-
session and presence of mind, from the occurrence of some real or
imaginary difficulty, his thoughts perhaps more occupied in what those
around him are thinking, than in calmly and coolly exercising his judgment in what manner he may best overcome the difficulty, at length, in
desperation, using whatever instrument he may have in his hand in such
a manner as to occasion serious and lasting injury to the parts, so as even
to endanger life, we are ready to conclude that Sir Astley Cooper's
'Selection of Cases,' or Sir Charles Bell and his brother John's injunctions that no one should operate on the living without previous and
frequent dissections of the dead, are not the sole requisites to render
the surgeon a successful operator. But in an operation such as this,
unaided by the eye, and dependant upon a deep and just conception of
the whole of the concomitant circumstances, more previous intentness
of thought and abstraction of mind, leading to calmness and self-possession
during the operation, are necessary for a continued successful result, than
the generality of surgeons engaged in the routine of a lucrative practice
are able or willing to bestow.

In regard to myself—as before mentioned, previously to making up my
mind to undertake the responsibility of operating upon the boy Chalmers—
after bringing to my recollection the nature and situation of the parts
considered as observed in the dissecting-room, as well as the operations I had
witnessed in the Edinburgh Infirmary, and perusing every work upon the
subject I could lay my hands on, till at length by minutely examining the
perineum of the boy with the sound in his bladder in the position for operation, I got my mind disentangled from the conflicting opinions and directions of writers on the subject and formed my own opinion. I fixed and settled upon the only way of conducting the incisions so as to obtain a sure and safe entrance into the bladder, and proceeded to operate with my mind cool and collected, intent only on the object in view. And finding the result consonant with my previously formed conception, the boy making a rapid cure, without the smallest symptom of an unfavourable nature, I gained additional confidence; and, during threescore years' practice, operating upon about two hundred patients from two to eighty-five years of age, it is now a cheering reflection, and for which I cannot be sufficiently grateful, that with the exception of the six cases already made particular mention of, who died at shorter or longer periods afterwards, in consequence of concomitant organic disorders of the head, thorax, or pelvis; and eight other cases, accompanied with similar organic affections, not considered necessary to particularise here, every one else of the whole number, many of them too of a very unfavourable character, made excellent cures.

In regard to lithotrity, at first so much vaunted of as altogether superseding the use of the knife, I have little to say, beyond some remarks which made their appearance in the 'Edinburgh Medical and Surgical Journal' for 1837.

I shall relate now two or three cases which rather tend to corroborate the opinion I had then formed. Captain ——, of the royal navy, who had come in August, 1824, from Alnwick in Northumberland, to put himself under my care, had been for twelve years affected with dyspnoea and frequent attacks of nephralgia, followed by the passing of small calculous concretions, and for eight months previously to his coming here had also been suffering under calculus vesice, which latterly had become so urgent as led him to make up his mind to go up to London to be operated upon by Sir Astley Cooper, but he departed from his first intention, and came down here. Upon sounding him after his arrival, a stone was distinctly felt, but rather unfortunately one of the medical gentlemen present said in his hearing, that as the calculus would likely be small in consequence of the shortness of the period since the symptoms had made their appearance, it might readily be extracted without cutting, by means of Weiss's newly-invented forceps. We met next day for that purpose, and after introducing the forceps, and commencing gradually to open the blades by means of the screw attached to the handle, he groaned in agony, and got sick and about to faint; the screw was instantly unturned, and after some interval the attempt to expand the blades was again cautiously made, when the same expressions of extreme agony, accompanied by rigors, again took place, upon which it was agreed that no further attempts should be persevered in. The rigors continued for some hours, succeeded by sharp fever, and it was not till eight days afterwards that he was in a state to be operated on, when a rough stone, weighing six drachms, was easily extracted by the lateral method. He bore the operation with great composure, and when he got into bed said, that if the same should ever again be found necessary, he would submit without the smallest hesitation, but preserve him from Weiss's instrument of
torture. He made an excellent recovery, and soon afterwards embarked
in a government yacht for Alnwick. Some years afterwards, upon a
visit here, he told me, that with the exception of occasional slight returns
of dyspnoea, he had enjoyed perfect health since the operation, having
never experienced the slightest return of nephralgia, or the passing of
calculous concretions.

Some time afterwards, I learned that a respectable gentleman in this
place lost his life within a day or two, in consequence of the practitioner
persevering in his attempts to crush and extract the stone in his bladder
without cutting. And subsequently to this, I was requested to attend
at the extraction of a stone from the bladder of a female by distension
of the urethra, and witnessed a scene of suffering of an hour's continuance
such as I can never think of without horror, considering that the whole
might have been easily and safely accomplished within a few seconds by
merely making a slit in the urethra.

Thus, my dear sir, I have now fulfilled my promise of giving you in
writing such observations and recollections on the subject of lithotomy
as have occurred to me during a practice of upwards of sixty years, and
in as condensed a form as I possibly could: and if you should consider
the matter therein contained to be in any measure worthy of the attention
of the profession, particularly of the younger portion, you are at liberty
to use your own discretion as to the publication of this letter.

Permit me to conclude in the words of the celebrated Cheselden, at the
end of his short historical account of cutting for the stone:—"If I have
any reputation in this way, I have earned it dearly, for no one ever
endured more anxiety and sickness before an operation: yet from the
time I began to operate, all uneasiness ceased; and if I have had better
success than some others, I do not impute it to more knowledge, but to
the happiness of a mind that was never ruffled or disconcerted, and a
hand that never trembled during any operation."

I am, with much respect, my dear sir, yours very truly,

John Crichton.

Dr. Sharpey, 35, Gloucester Crescent, London.
ART. II.

Scarlatinal Dropsy. By John W. Tripe, M.D.

(Continued from No. 25, p. 248.)

In the previous article, we have considered our subject in its general details, including the various circumstances which modify the invasion, progress, and fatality of scarlatinal dropsy; the alterations effected in the blood and urine, and also the set of symptoms classed together under the name of uremia. In the present article, we propose to investigate, as fully as our limited space will admit, the special peculiarities, diagnosis, prognosis, and treatment of scarlatinal anasarca. As before mentioned, I have included under the head of scarlatinal dropsy all cases of effusion into the cellular tissue, or into any of the cavities, and also all cases of uremia which were registered in connexion with scarlet fever. It may be considered, in the present state of our knowledge, that I am taking a retrograde course in adopting the title of dropsy, and thus elevating a symptom to the rank of a disease; but as any other name would have expressed some theory, I have preferred using a well-known and time-honoured name. It may also be objected that I should not have included, under the name of dropsy, cases of uremia in which there was no effusion; but as the uremic symptoms supervened after an attack of scarlatina, I consider myself justified in adopting this course: and an examination of the returns of the registrar general shows that these cases are of far greater frequency than is usually supposed, for death from convulsions, at a late period of the fever, is by no means uncommon. There were many cases registered in the year 1848, in which no secondary disease was mentioned save convulsions, although the duration of the disease was stated at a fortnight or three weeks. I have seen several cases of the kind myself, and must acknowledge, if the patient be then first seen, that the diagnosis is attended with much difficulty; but in all my cases, an examination of the urine asserted, in language too plain to be misunderstood, that the patients were suffering from renal disease.

The fluid effused into the cellular tissue and cavities has been shown to vary considerably in its chemical composition. This variety depends not only on the seat of the effusion, but also, apparently, on difference of constitution, or other individual peculiarity, as the fluid differs in the corresponding cavities of different individuals. It also frequently shifts its place of deposit, leaving one part to be effused into another, but most frequently invades the eyelids first, and departing last from the feet or ankles; sometimes, however, it lingers longest in one of the cavities.

The day of invasion varies considerably, occurring sometimes during the eruptive period of the primary disease, and in others not until after the lapse of six weeks or more from its outbreak. Most authors consider either the twentieth, twenty-first, or twenty-second day from the commencement of the disease to be that on which the effusion usually first manifests itself, but an examination of my own cases, and of the returns of the registrar-general, shows this opinion to be incorrect; for both point to the fourteenth day from the commencement of the febrile stage as that on which the dropsy most frequently occurs. To elucidate this point, I
have analyzed 41 cases which occurred in my own practice, and the returns for the year 1848:

Table XVI. — *Scarlatinal Anasarca. Day of Invasion, for the Year 1848.*

<table>
<thead>
<tr>
<th>Reports of Registrar-General. 1st Class.</th>
<th>Case Book. 2nd Class.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day of Scarlatina.</td>
<td>Total No. of cases.</td>
</tr>
<tr>
<td>1st</td>
<td>2</td>
</tr>
<tr>
<td>2nd</td>
<td>2</td>
</tr>
<tr>
<td>3rd</td>
<td>2</td>
</tr>
<tr>
<td>4th</td>
<td>1</td>
</tr>
<tr>
<td>5th</td>
<td>2</td>
</tr>
<tr>
<td>6th</td>
<td>4</td>
</tr>
<tr>
<td>7th</td>
<td>18</td>
</tr>
<tr>
<td>8th</td>
<td>2</td>
</tr>
<tr>
<td>9th</td>
<td>3</td>
</tr>
<tr>
<td>10th</td>
<td>9</td>
</tr>
<tr>
<td>11th</td>
<td>10</td>
</tr>
<tr>
<td>12th</td>
<td>10</td>
</tr>
<tr>
<td>13th</td>
<td>19</td>
</tr>
<tr>
<td>14th</td>
<td>70</td>
</tr>
<tr>
<td>15th</td>
<td>16</td>
</tr>
<tr>
<td>16th</td>
<td>4</td>
</tr>
<tr>
<td>17th</td>
<td>12</td>
</tr>
<tr>
<td>18th</td>
<td>17</td>
</tr>
<tr>
<td>19th</td>
<td>5</td>
</tr>
<tr>
<td>20th</td>
<td>18</td>
</tr>
<tr>
<td>21st</td>
<td>40</td>
</tr>
<tr>
<td>22nd</td>
<td>6</td>
</tr>
<tr>
<td>23rd</td>
<td>3</td>
</tr>
<tr>
<td>24th</td>
<td>6</td>
</tr>
<tr>
<td>25th</td>
<td>4</td>
</tr>
<tr>
<td>26th</td>
<td>2</td>
</tr>
<tr>
<td>27th</td>
<td>13</td>
</tr>
<tr>
<td>28th</td>
<td>—</td>
</tr>
</tbody>
</table>

An examination of this table shows that the fourteenth was the day on which the dropsy most frequently came on, and that, therefore, the
opinion entertained by Dr. Copland and others, that the twenty-second, twenty-third, and twenty-fourth days are those on which, after the twenty-first, it most commonly happens, is erroneous. On contrasting, however, the results obtained by an examination of 41 attacks with 323 deaths registered in the returns of the registrar-general, we find rather opposite results: 17.1 per cent. of the former came on within seven days after the commencement of the scarlet fever, and only 9.59 per cent. of the latter series of cases. (This difference may be accidental, as these 41 cases include all those which I ever remember to have had at so early a period of the disease, and exclude very many which supervened at a later period, as I have not kept a record of all my cases; these having chiefly occurred during the year 1848.) A larger number of cases also — 46.4 per cent. — occurred in the second class during the second week, to 38.08 per cent. in the first class. There is also a variation of an opposite character during the third week, when 29.3 per cent. occurred in the second class to 34.16 per cent. in the first; and only 4.8 per cent. in the second class during the fourth week to 11.47 per cent. in the first. But these discrepancies may arise from the small number included in the second class, in which each case represents 2.4 per cent. of the whole, whilst in the first it represents only 31 per cent. It is therefore evident, that an accidental occurrence of a few cases at a particular period in the second class would vitiate all the conclusions. Still the results drawn from these two opposite and independent sources lead to certain uniform conclusions, which will be presently stated.

On proceeding to a more accurate examination of the first class, we find it indicates that less than 1.0 per cent. of the dropsy occurs on any given day during the first five days of the parent disease, 1.24 per cent. on the sixth day, and 5.56 per cent. on the seventh; making a total of 9.59 per cent. during the first week. We find the proportion again to fall during the eighth and ninth days, to rise gradually to the thirteenth, when it reached 5.87 per cent., and then, suddenly, on the fourteenth, to 21.67 per cent. (which was by far the highest), making a total, during the second week, of 38.08 per cent.; or of 47.67 per cent. during the first fortnight from the commencement of the fever. It also indicates that 34.66 per cent. of attacks happened during the third week, and 12.38 per cent. on the twenty-first day; that 11.47 per cent. supervened during the fourth week, 4.03 occurring on the twenty-eighth day; that 4.34 per cent. came on during the fifth week, 3.93 per cent. during the sixth week, 62 per cent. during the seventh week, and 31 per cent. during the ninth week. The cases in the second class indicate the seventh, ninth, twelfth, fourteenth, and twenty-first days, as those on which the disease most frequently shows itself; and those of the first class, the seventh, thirteenth, fourteenth, eighteenth, twentieth, and twenty-first days. Of the 323 deaths, 59.41 per cent. took place on the seventh, twelfth, thirteenth, fourteenth, eighteenth, twentieth, and twenty-first days; and 56.3 per cent. of the attacks also happened on the same days. We may therefore state that the fourteenth day from the commencement of the fever is that on which the invasion of scarlatinal dropsy most frequently happens; and that the other days on which the invasion most frequently occurs, are the twenty-first, twelfth, and seventh, the order of frequency being as they are here placed; and then the thirteenth, eighteenth,
and twentieth respectively; these latter presenting but slight variations as to frequency.

The duration of the dropsy, although a point of some importance as regards prognosis, is one which has not been hitherto statistically considered. The disease is usually looked on as one of rather a chronic character than otherwise, unless it prove fatal in the first stage. The following table places this point on a certain basis.

Table XVII.—Scarlatinal Anasarca. Duration before Death.

<table>
<thead>
<tr>
<th>Duration</th>
<th>Total No. of deaths</th>
<th>Per cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 days</td>
<td>5</td>
<td>1.1</td>
</tr>
<tr>
<td>2 "</td>
<td>9</td>
<td>2.0</td>
</tr>
<tr>
<td>3 "</td>
<td>14</td>
<td>3.1</td>
</tr>
<tr>
<td>4 "</td>
<td>16</td>
<td>3.5</td>
</tr>
<tr>
<td>5 "</td>
<td>18</td>
<td>4.0</td>
</tr>
<tr>
<td>6 "</td>
<td>24</td>
<td>4.3</td>
</tr>
<tr>
<td>7 "</td>
<td>54</td>
<td>12.0</td>
</tr>
<tr>
<td>8 "</td>
<td>21</td>
<td>4.4</td>
</tr>
<tr>
<td>9 "</td>
<td>8</td>
<td>1.8</td>
</tr>
<tr>
<td>10 "</td>
<td>28</td>
<td>6.2</td>
</tr>
<tr>
<td>11 "</td>
<td>149</td>
<td>0.4</td>
</tr>
<tr>
<td>12 "</td>
<td>12</td>
<td>2.6</td>
</tr>
<tr>
<td>13 "</td>
<td>13</td>
<td>2.9</td>
</tr>
<tr>
<td>14 "</td>
<td>66</td>
<td>14.6</td>
</tr>
<tr>
<td>2 to 3 weeks</td>
<td>93</td>
<td>20.7</td>
</tr>
<tr>
<td>3 to 4 weeks</td>
<td>32</td>
<td>7.1</td>
</tr>
<tr>
<td>4 to 5 weeks</td>
<td>19</td>
<td>4.2</td>
</tr>
<tr>
<td>5 to 6 weeks</td>
<td>8</td>
<td>1.8</td>
</tr>
<tr>
<td>6 to 7 weeks</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>7 to 8 weeks</td>
<td>5</td>
<td>1.1</td>
</tr>
<tr>
<td>2 to 3 months</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>3 to 4 months</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>4 to 5 months</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>5 to 6 months</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>Exceeding 6 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>452</td>
<td>100.0</td>
</tr>
</tbody>
</table>

This table shows, that out of 452 fatal cases, 28, or 6.2 per cent., deaths happened during the first three days, 16 on the fourth, and 18 on the fifth; making a total of 62, or 13.7 per cent., during the first five days; 24 on the sixth day, and 54 on the seventh; being an aggregate of 140, or 31.0 per cent., during the first week. During the second week, 149 deaths, or 32.9 per cent., occurred, in the following proportions on the different days—viz., 4.4 per cent. on the eighth, 1.8 per cent. on the ninth, 6.2 per cent. on the tenth, 0.4 per cent. on the eleventh, 2.6 per cent. on the twelfth, 2.9 per cent. on the thirteenth, and 14.6 per cent. on the fourteenth day. We thus see, that of these 452 cases, 63.9 per cent. died during the first fortnight. Of the remaining 36.1 per cent., 20.7 were fatal during the third week, making the sum of 81.6 deaths per cent. in the course of the first three weeks. It also shows that 7.1 per cent. deaths happened in the fourth week, 4.2 per cent. in the fifth week, 1.8 per cent. in the sixth week, 0.2 per cent. in the seventh week, 1.1 per cent. in the eighth week, and only 1.0 per cent. subsequently. The table also affords the elements for calculating the average duration of the disease. Thus by multiplying the duration in days by
the number of deaths which occurred on each day, and then dividing the sum by the total number of deaths, taking the average for the second and third, and third and fourth weeks, &c., on the eighteenth and twenty-fifth days, we arrive at the conclusion, that the average duration of the disease in 447 cases of the total 452 cases, in which death happened before the expiration of two months, was 13.9 days; and of the total 452, allowing a duration of seven months each for the two cases whose duration exceeded six months, was 15.3 days.

These tables may be of much use in forming a prognosis: thus, if a child have survived a fortnight, it is more likely to recover than it was on the first day, in the proportion of more than two to one; if three weeks, of more than four to five, &c.

From the foregoing investigation, we are entitled to draw the following inferences: (a) that nearly one-third of all the fatal cases of scarlatalial dropsy may be expected to die within the first week of the disease; (b) that considerably above one-half (say 63 per cent.) may be expected not to survive the first fortnight; (c) that the average duration of acute cases (i.e., those which are fatal in less than a month) is 12.0 days; and of all cases, 15.3 days; and lastly (d), that the particular days on which the disease is most fatal are the seventh and fourteenth, no less than 54 cases, out of 452, having been registered as fatal in the former, and 66 out of the same number on the latter day.

The next subject for our consideration is the duration of the disease in males and females, and in the different seasons of the year.

It having been already shown (Article I., pages 234-6), that the mortality from scarlatalial dropsy is much greater in males than in females, and also, that it is in excess in the quarters ending September 30th and December 31st respectively, I have compiled the following tables to ascertain the influence of sex, and the seasons of the year, if any, on the duration of the disease.

<table>
<thead>
<tr>
<th>Duration</th>
<th>No. of deaths: Males</th>
<th>No. of deaths: Females</th>
<th>Deaths: Males and Females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Per cent.</td>
<td>Total</td>
</tr>
<tr>
<td>1 to 2 days</td>
<td>8</td>
<td>3.5</td>
<td>4</td>
</tr>
<tr>
<td>3 to 4</td>
<td>17</td>
<td>6.7</td>
<td>7</td>
</tr>
<tr>
<td>5 to 6</td>
<td>23</td>
<td>9.1</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>31</td>
<td>12.3</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>79</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>8 to 9</td>
<td>16</td>
<td>6.3</td>
<td>11</td>
</tr>
<tr>
<td>10 to 11</td>
<td>23</td>
<td>9.1</td>
<td>4</td>
</tr>
<tr>
<td>12 to 13</td>
<td>11</td>
<td>4.4</td>
<td>9</td>
</tr>
<tr>
<td>14</td>
<td>33</td>
<td>13.1</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>83</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>2 to 3 weeks</td>
<td>54</td>
<td>21.4</td>
<td>38</td>
</tr>
<tr>
<td>3 to 4</td>
<td>13</td>
<td>5.1</td>
<td>11</td>
</tr>
<tr>
<td>4 to 5</td>
<td>10</td>
<td>3.9</td>
<td>5</td>
</tr>
<tr>
<td>Exceeding 5</td>
<td>13</td>
<td>5.1</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>252</td>
<td>100.0</td>
<td>147</td>
</tr>
</tbody>
</table>
Before proceeding to consider this table, I would observe, that it is formed from a smaller number of cases than the preceding, in consequence of my having omitted to register the sex in conjunction with the duration, in the early extracts made from the returns. But it serves to show that the results are to be depended on, as the variations are comparatively small, although this table was compiled from the returns for the three last quarters of the year 1848, whilst the other was formed from the returns for the whole year. But there is also another reason for the variations in the number of deaths in the different tables—viz., that many of the returns were incomplete, some containing only the duration of the original disease, others the duration of the complications only; and in very many, it was altogether omitted.

The total number of males was 252, and of females, 147; being in the proportion of 63.1 per cent. males to 36.9 per cent. females. Of these respective numbers—viz., 252 males, and 147 females, 3.5 per cent. of the males, and 2.7 per cent. of the females, died on the first and second days of the attack; 6.7 per cent. males, to 4.8 per cent. females, on the third and fourth days; 9.1 per cent. males, to 8.8 per cent. females, on the fifth and sixth days; and 12.3 per cent. males, to 11.6 per cent. females, on the seventh day; making an aggregate of 31.6 deaths per cent. of the males, to 27.9 per cent. of the females, during the first week of the disease. During the second week, these proportions are, with one exception, reversed; for we find that 6.3 per cent. of the males died on the eighth and ninth days, to 7.5 per cent. of the females; 9.1* per cent. of males, to 2.7 per cent. of females, on the tenth and eleventh days; 4.4 per cent. of males, to 6.1 per cent. of females, on the twelfth and thirteenth days; and 13.1 per cent. males, to 17.0 per cent. of the females, on the fourteenth day. During the next fortnight, the proportion of deaths of females exceeded that of the males; thus, during the third week of the disease, 21.4 per cent. of the males died, to 25.8 per cent. of the females; and during the fourth week, 5.1 per cent. of the males, to 7.5 per cent. of the females. Subsequently to the fourth week, the proportion of deaths of males was in excess to that of females, in the ratio of 9.0 per cent. to 6.5 per cent. A comparison of the per centages of the males and the females respectively, with those of both conjointly, lead to similar results.

The conclusions which we draw from these considerations are, (a) that, as before stated, a considerably larger number of males die from scarlatinal dropsey than of females; (b) that the second is the most fatal weekly period both for males and females; (c) that in proportion to the total number of deaths of each sex, a far larger number of males die on each day of the first week than of females; (d) that with the exception of the tenth and eleventh days, a large per centage of the females die during the second, third, and fourth weeks, than of the males; and (e) lastly, that of those who survive the fourth week, a greater ratio of males die than of females.

I will present these conclusions in a tabular form, showing the per centage of deaths of 100 males and 100 females at these periods.

* I suspect some accidental circumstances produced this great difference.
If, however, these proportions are multiplied by the number of males and of females respectively who die from the disease, we should have a different, but an erroneous, conclusion, as the object of this was to show, not the absolute, but the proportionate, number of males or of females who die in each day.

The practical results to be drawn from these considerations are (a), that during the first week, we should expect the death of our male patients in a greater ratio than the female, and vice versa in the second; (b) that if the patient survived the second week of the dropsy, he would have more than twice as good a chance of recovery as on the day of outbreak; and lastly, these tables teach that we should take especial care during the second week of scarlatina, to prevent exposure to cold air, or to any other agent likely to cause suppression of the cutaneous functions: and we ought always to have before us the fact, that nearly 64 per cent. of these deaths happened during the first fortnight of the dropsy. These tables also prove the disease to be of a far more acute character than is usually believed; and it is further to be remembered that the disease not only attacks males more frequently than females, and is more fatal to them, but that more males die during the first week than females. I am unable to offer any explanation of these peculiarities; indeed, until these tables were formed, I was not aware of their existence, although I have for years paid especial attention to this disease.

It having been shown that certain, and probably appreciable, atmospheric changes act unfavourably on the mortality from scarlatinal dropsy, it is important to ascertain whether this influence extends also to the duration of the disease; in other words, whether the intensity, as well as the frequency of the disease varies in the different seasons of the year. It has been already proved that the mortality from scarlatinal dropsy is in excess during the last six months of the year, August excepted, not only in proportion to the increase of scarlet fever, but also in a greater ratio. From these facts we should infer the intensity of the disease to be increased, and its duration to be proportionally diminished. The following table will elucidate these points:
Table XIX.—Scarlatinal Anaemia. Duration of the Disease in each Season.

<table>
<thead>
<tr>
<th>Duration</th>
<th>1st Quarter.</th>
<th>2nd Quarter.</th>
<th>3rd Quarter.</th>
<th>4th Quarter.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Per cent.</td>
<td>Total</td>
<td>Per cent.</td>
</tr>
<tr>
<td>Weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>81·4</td>
<td>20</td>
<td>39·2</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>27·4</td>
<td>13</td>
<td>25·5</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>15·7</td>
<td>11</td>
<td>21·5</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>13·7</td>
<td>2</td>
<td>3·9</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2·0</td>
<td>1</td>
<td>2·0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2·0</td>
<td>1</td>
<td>2·0</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>7·8</td>
<td>1</td>
<td>2·0</td>
</tr>
<tr>
<td>Total</td>
<td>51</td>
<td>100·0</td>
<td>51</td>
<td>100·0</td>
</tr>
</tbody>
</table>

An examination of these data shows that the largest proportion of these 439 cases died in the second quarter during the first week of the disease; that the next largest number died in the third quarter; the third largest in the first quarter; and the smallest proportion in the fourth. During the second week of the disease, these proportions were much altered, the per-cent age being greatest in the third quarter, and smallest in the second; the fourth and first having an intermediate mortality. The percentage of deaths in the first fortnight was as follows: 71·7 per cent. in the third quarter, 64·7 per cent. in the second quarter, 62·9 per cent. in the fourth quarter, and only 58·8 per cent. in the first quarter. The ratio of deaths for each quarter during the third and fourth weeks of the disease was—29·6 per cent. in the fourth, 29·4 per cent. in the first, 25·4 per cent. in the second, and 20·3 per cent. in the third quarter. And of those deaths which occurred at a period later than the fourth week, the ratios were—11·8 per cent. in the first quarter, 9·9 per cent. in the second, 8·0 per cent. in the third quarter, and 7·5 per cent. in the last.

The proportion of cases whose duration exceeded four weeks was greater in the first quarter than it would have been, from many of those who contracted the parent disease in September and October, when it is most prevalent, living through the quarter in which the dropsy first made its appearance.

Taking the duration of a fortnight as our standard, the above indicates the disease to be most rapidly fatal in the quarter ending September 30, and least so in that ending March 31, which, taken in connexion with the mortality during the first four weeks of the disease, in the second and fourth quarters, will justify us in assuming that the disease is not only more prevalent during the last six months of the year, but also rages with increased intensity, and that it is least fatal in the first quarter: but we must also remember that, whilst the mortality reaches its maximum in the quarter ending December 31, the intensity (as evidenced by diminished duration) reaches its culminating point in that ending September 30. In drawing these conclusions, I would observe, that they must be considered as approximative only, for they are deduced from an examination of four quarters only, and therefore subject to trifling errors. But to render a table of this kind absolutely certain, the data should extend over a series of years, which
would involve a work of very great magnitude, as there are no data ready at hand at Somerset House, and they would have to be obtained, as these were, by a separate examination of each return for the years examined. To form the table just considered, 57,771 returns were examined.

The proportion of deaths from scarlatinal anasarca in males to females has been already fully discussed, and need not be reinvestigated.* In the last half of the year 1848, 478 cases of anasarca occurred, of which 290 were males and 188 females, or in the ratio of 60.7 per cent. males to 39.3 per cent. females, being almost in the same proportion with the deaths from scarlatinal dropsy of all kinds.

The ages at which scarlatinal anasarca is most fatal are the same as those from scarlatinal dropsy of all kinds; and the same statement applies to the two sexes. A comparison of the following table with Table XVIII. conclusively shows this:

Table XX.—Scarlatinal Anasarca. Mortality. Second half-year 1848.

<table>
<thead>
<tr>
<th>Age</th>
<th>Males</th>
<th>Females</th>
<th>Total</th>
<th>Per cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1%</td>
</tr>
<tr>
<td>1</td>
<td>33</td>
<td>9</td>
<td>32</td>
<td>6.7%</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
<td>23</td>
<td>51</td>
<td>13.8%</td>
</tr>
<tr>
<td>3</td>
<td>55</td>
<td>30</td>
<td>85</td>
<td>17.8%</td>
</tr>
<tr>
<td>4</td>
<td>49</td>
<td>22</td>
<td>71</td>
<td>14.9%</td>
</tr>
<tr>
<td>5</td>
<td>33</td>
<td>21</td>
<td>54</td>
<td>12.3%</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>22</td>
<td>47</td>
<td>9.8%</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>20</td>
<td>44</td>
<td>9.2%</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>13</td>
<td>27</td>
<td>5.7%</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>7</td>
<td>17</td>
<td>3.6%</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>6</td>
<td>11</td>
<td>2.3%</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>0.8%</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.4%</td>
</tr>
<tr>
<td>13</td>
<td>...</td>
<td>1</td>
<td>1</td>
<td>0.2%</td>
</tr>
<tr>
<td>14</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>15 to 20</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0.6%</td>
</tr>
<tr>
<td>20 to 30</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0.6%</td>
</tr>
</tbody>
</table>
| 30 to 40 | ... | ... | ... | ...

Total 290 188 478 100.0

We here see, that of the 478 deaths from scarlatinal anasarca which were registered in the metropolis during the last half of the year 1848, 6 or 1.3 per cent. were of children under one year of age; 32 or 6.7 per cent. of children in the second year of their age; 66 or 13.8 per cent. in the third year; 85 or 17.8 per cent. in the fourth year; 71 or 14.9 per cent. in the fifth year; making a total of 206 or of 54.5 per cent. in children under five years of age. Fifty-nine cases or 12.3 were fatal during the sixth year of age; 47 or 9.8 per cent. during the seventh year; 44 or 9.2 per cent. during the eighth year; 27 or 5.7 per cent. during the ninth

* See Art. I., pp. 234—6.
year; and 17 or 3.6 per cent. during the tenth year; making an aggregate of 454 cases of the 478, or 95.1 per cent. in children under ten years of age. The remaining 4.9 per cent. occurred in persons above the age of ten years, and of these 4.9 per cent., 3.7 happened between the ages of ten and fifteen, leaving only 1.2 per cent. of deaths above this age. But we must not take these numbers for those who died above ten years as an average, for Table XIV., already so fully considered, and which extends over a period of five years, shows these to be somewhat erroneous, as being founded on too limited a number, and for too limited a period; but this table affords evidence of the truth, or a near approximation thereto, of the results for the ages under ten years. On comparing the deaths at the different ages from scarlatinal anasarca with those from scarlet fever itself, we shall find that the parent disease is most fatal by far in the first quinquennial period, both absolutely and comparatively; whilst the deaths from the anasarca are larger, in proportion to the fever, during the second quinquennial period. These results may be presented at a glance:

<table>
<thead>
<tr>
<th>Table XXI.</th>
<th>Under 5 years.</th>
<th>Between 5 and 10 years.</th>
<th>Above 10 years.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deaths from scarlatina</td>
<td>60.0</td>
<td>23.6</td>
<td>7.4</td>
</tr>
<tr>
<td>" scarlatinal anasarca</td>
<td>54.5</td>
<td>40.6</td>
<td>4.9</td>
</tr>
<tr>
<td>" scarlatinal dropsey of all kinds</td>
<td>53.1</td>
<td>40.1</td>
<td>6.8</td>
</tr>
</tbody>
</table>

As this statistical part has extended over so large a space, and involved a consideration of so many points, it will perhaps be useful to present the most important results as a whole, in as few words as possible.

(a) That the dropsey varies in fatality in the different quarters of the year, being most fatal in the fourth quarter, and, when compared with scarlatina, least fatal in the third, and most fatal in the fourth, quarter; (b) that the mortality in the third quarter varies greatly, one month—September—being that in which it is very fatal, whilst another—August—is the one in which it is least fatal in the whole year; (c) that the temperature between 42° and 52° corresponds with the most fatal period; (d) that the electrical state of the air modifies its progress more than any other atmospheric agent—as, when it was passive, the comparative mortality averaged 10.1, and when it was active, only 7.1; and (e) that the average of deaths was less in the wet than in the dry months. (f) That sex is one of the most powerful of all the modifying circumstances—for, of 946 deaths from the dropsey, 60.3 per cent. were males to 39.7 per cent. of females; (g) and that these proportions vary in the different quarters, the largest number of males dying in the fourth quarter, and the smallest in the second; and the largest number of females in the second, and the smallest in the fourth. (h) That age also modifies it to a very great extent, the largest number of deaths from the dropsey occurring during the fourth year, (i) that in proportion to scarlet fever, the dropsey is most fatal in the period between five and ten years of age; and (j), that in proportion to deaths from all causes, it is also most fatal in the same period. (k) That the causes influencing the fatality of scarlet fever affect that of the dropsey in a different ratio. (l) That the dropsey sets in most commonly on the fourteenth day; next in order, on the twenty-first; next, on the twelfth; next, on the seventh; and, lastly, on the thirteenth, eighteenth, twentieth,
and remaining days. (m) That the largest number die on the fourteenth day, the next largest on the seventh, and the next on the tenth; (n) and that of the weekly periods, the second after its invasion is that in which it is most fatal, next the first, then the third, then the fourth, and (o) that only 36·1 per cent. of the fatal cases survived the first fortnight, only 15·4 per cent. the first three weeks, and only 8·3 per cent. the first month; and that the average duration of the disease in the year 1848 was 15·3 days; and (p) that, therefore, the malady must be classed amongst the acute diseases. (q) That, proportionately to the females, most males die on each day of the first week; (r) that, on the other hand, except on the tenth and eleventh days, most females died on each day of the second, third, and fourth weeks, and (s) most males subsequently. And (t), that the duration varies in the different quarters, the disease being most rapidly fatal in the third quarter, and least so in the first; and, lastly (u), that the disease rages with greatest intensity during the last six months of the year, August perhaps excepted.

The great amount of space occupied by the statistical part of the paper, renders brevity in the remainder most necessary; wherefore a mere outline will be given of those divisions of the subject which have recently been most ably discussed in the previous volumes of this review. We refer especially to the articles on the works of Freerichs and Johnson. We shall, therefore, proceed at once to a very brief consideration of the morbid anatomy of the kidney. The extent and kind of the morbid changes vary according to the duration of the disease, and are those usually described as the first or second stages of Bright's disease. In the early stage the gland is heavy, large, and gorged to a greater or less extent with venous blood; its surface is usually smooth and of a dark colour, and intermixed with a greater or less number of points of a darker colour, and its capsule is easily removed. These dark spots, which are not always present, are caused by extravasation of blood into the tubules of the kidneys from rupture of the Malpighian vessels. On incising the organ, a greater or less quantity of a sanious fluid exudes, which contains blood corpuscles, epithelial cells, and fibrinous casts of the renal tubules. On examining the cut surfaces, we find the cortical substance much thicker than usual, of a dark colour, dotted over here and there with bright or dusky-red spots; the pyramidal portions are also congested, and often of a purplish colour, either entirely, or only of those parts adjacent to the cortical. The glands are also sometimes, even within a few weeks after the commencement of the dropsy, enlarged, and of a yellowish or mottled appearance externally, and present, when cut, the well known characters of the second stage of Bright's disease. On carefully examining those organs which are dark coloured, we sometimes find clots in their substance, caused by rupture of the intertubular plexus of veins. The mucous membrane lining the calices and pelvis is often congested, but sometimes unaltered. On making a microscopic examination, we find the outline of the renal tubules somewhat obscure and irregular, and themselves more or less filled with detached epithelium, either loose, or bound together by fibrine, forming the casts of Simon, or, as they are called by Johnson, epithelial casts. The quantity of epithe-
Scarlational Dropsy.

lium contained in the tubes varies very greatly, being sometimes so great as completely to fill its free canal, and thus press on the adjacent inter-tubular plexus of veins and impede the circulation. As before mentioned, we often find blood corpuscles in large numbers in the renal tubules, either free, or entangled in diffused fibrine; indeed, in a bad case we almost always find blood corpuscles in the casts. The bright red spots seen on the incised surface are found, on microscopic examination, to be the congested vessels of the Malpighian bodies seen through the capsule, which is rendered opaque by the diffused fibrine; or they may appear red without any change in the capsule, from the blood in the vessels being red instead of purplish. The epithelium normally lining the inner wall of the tubules, when present, appears of its ordinary shape, but is "sometimes unnaturally opaque and granular in texture" (Johnson), and is frequently more or less deficient; and in the advanced stage is, in many tubules, entirely wanting. When the course of the disease is favourable, the organs gradually assume their normal character, and but few, if any, of these morbid changes or deposits remain; whilst in severe cases, as in those which have become chronic, some of the renal tubules remain permanently deprived of their epithelium, and are consequently unable to perform their proper secretory function.

It may not be out of place here to mention that some doubts have been expressed, in an admirable article by Dr. Johnson's reviewer, as to the existence of a disease to which the name of "desquamative nephritis" is applicable. Friche also denies its existence. The reviewer admits that there is a disease in which "large quantities of renal epithelium are detached from the basement membrane of the tubules, and that from the loss of this epithelium evils of a serious nature result;" but he denies that sufficient proof has been afforded that this action is set up by the presence in the blood of a materies morbi. He does not consider it proved that this desquamation differs from what is observed in other organs, in which epithelium is detached from the basement membrane by fluid thrown out from the vessels subjacent to it. He adduces the desquamation of the bronchial mucous membrane in cases of bronchitis, in which no materies morbi is received into the blood, but in which the epithelium is detached by fluid loosening the "adhesion between the membrane and its scales." It seems, however, a matter of very little consequence whether the renal epithelial cells are detached from the membrane, by an affinity existing between them and a materies morbi circulating in the blood, or from fluid thrown out under the influence of this materies morbi from the adjacent vessels, by which their attachment to the basement membrane is loosened. For in either case, the desquamation appears to be, as regards scarlet fever, the result of the reception of the morbid poison into the blood, and its subsequent action on the kidney.

As our available space will not admit of discussing this point, we shall only submit the following for the consideration of our readers:—(a) That the peculiar phenomena grouped together under the term "scarlet fever," are induced by the absorption of a peculiar morbid poison into the system. (b) That in nearly all cases of scarlet fever, we can detect at some period or other of the disease, greater or lesser indications of a disordered func-
tion or diseased action of the kidneys. (c) That the evidences of disordered function or diseased action are, the presence in the urine, for an uncertain duration, of albumen and renal epithelium; and in some cases of blood corpuscles and other abnormal constituents. (d) That abnormalities of the urine, similar to those present for a short period, and in small quantity, in most cases of scarlatina, exist in a greatly increased amount; and for a longer period in most cases of scarlatinal anasarca. (e) That renal epithelial cells cannot be detected in healthy urine; but (f) that they may be detected either entire or in fragments, whenever any substance which acts on the kidneys is exhibited for a few days consecutively. (g) That large quantities of renal epithelium are, in some cases, present in the urine during the whole course of the disease, whilst fibrinous casts, blood-corpuscles, and other abnormal constituents are almost or entirely absent. This is most commonly met with in the convalescent stage of scarlet fever; but sometimes in scarlatinal dropsy. (h) That several renal epithelial cells may be thrown off united together, and be found in the urine unaltered. (I have seen this in very many instances, but never unless associated, in the same specimen of urine, with blood-corpuscles and fibrinous casts.) (i) That in many cases of scarlatina, the post-mortem appearances of the kidneys resemble those discovered in cases of scarlatinal dropsy.

As I shall have no other opportunity of alluding to the pathology of the disease, I will state my opinion, that the renal disease is the result of a specific action of the scarlatinal poison. I believe that the poison acts on the kidney in the same way as it acts on the skin and throat; and that the amount of its action varies in different epidemics, being slight in some, and intense in others. We have an analogous instance in its varying actions on the faucial mucous membrane. This opinion is the result of many years' experience, and of great opportunity of studying the disease; and I may mention that, during and since the year 1848, I have examined the urine of above 200 persons suffering from scarlatina and scarlatinal dropsy, and have almost invariably detected albumen, and evidences of desquamation of the renal epithelium at some period or other of both diseases. The exceptional cases have not amounted to five per cent. This theory also receives some support from the fact so well known to the profession, that scarlatinal dropsy occurs chiefly in those who have had the cutaneous and throat affection in but a slight degree.

(To be continued.)

Art. III.

(Concluded from No. 26, p. 533.)

Relation of Supra-condylloid Process to Muscles and Region.—The anatomy of the soft parts in the neighbourhood of a supra-condylloid process appears to be the same, whether the nerve is accompanied by the artery or not. Proceeding from the tip of the process is a ligament or fibrous band, which arches downwards and inwards, and, blending with the intermuscular
septum, is inserted into the ridge a short distance above the condyle. The true intermuscular septum dips down to be attached to the internal condylar ridge of the humerus, and between this on the inside and the brachialh
antisec and supra-condylar process externally, is a grooved space, in which the deviating nerve and artery are placed. This hollow is bounded behind by the humerus, on which there is a more or less marked groove, the artery or nerve not lying actually in this groove, but in front of it. The inner boundary of the groove is the internal condylar ridge; the outer gives origin to the most internal fibres of the brachialis anticus muscle.

The nerve and artery begin to deviate at the tendon of the coraco-brachialis muscle, and pass down in this grooved space in front of the intermuscular septum, the nerve internal to the artery, and bound down by an aponeurosis from it to the brachialis anticus. They now lie between the intermuscular septum and the process, and passing underneath the concavity of the latter, are covered by it and protected from pressure. Their direction is now changed, and they pass obliquely outwards to gain their normal position at the elbow. From the point where they enter underneath the arch they may be covered by a high pronator teres, or by a strong aponeurosis passing inwards from a raised portion of the brachialis anticus. A high origin to the pronator teres, which may at first form a separate muscle, appears to be frequently if not generally present in cases of supra-condylar process.

* * Internal intermuscular septum. It appears to me that the normal anatomy of the part so named is not usually fully described. Reaching down on the inside of the arm, and connected with the aponeurosis, is a white cord-like band, but this is not the intermuscular septum. The true intermuscular septum lies some distance in front of this, and is not so evident on the surface of the muscles. The true septum dips down as a strong fibrous membrane, to be attached to the internal condylar ridge, and is fully half an inch in depth, forming a fibrous partition between the brachialis anticus in front, and the inner head of the triceps behind, to both of which it gives origin. Below, it passes to the internal condyle, having before been joined by the posterior ligamentous band; and above, it is continued along the internal border of the humerus, as far as the insertion of teres major, having again been joined by the posterior liga-
mentous cord. The latter separates from the true septum at or above the insertion of the coraco-brachialis muscle, and passes down on the surface of the internal head of the triceps, lying posterior to the true septum, at a distance varying from three-fourths to a fourth of an inch, and again it joins the true septum about an inch, more or less, above the condyle. It is connected in front to the true septum by an aponeurosis, through which the muscular fibres are visible; and behind it is continued into the aponeurosis of the posterior brachial region. Close behind it is the ulnar nerve and inferior profunda artery. I have seen the nerve lie some distance behind it, and uncovered by it; but, usually, the nerve will be exposed by an incision along the posterior edge of this fibrous cord. It appears to have reference to the position of the nerve, and, forming a tolerably resisting band over or along the hollow on the inside of the humerus in the lower half of the arm, may serve to protect the ulnar nerve from any pressure against the inside of the arm. It is united above to the true intermuscular sep-
tum, the two together forming a fibrous cord, running up along, and attached to, the internal border of the humerus, and passing behind the tendon of the coraco-brachialis. The latter is usually said to be intimately connected at its insertion with the intermuscular septum. It appears so, and on one or two occasions, I have found some fibres of the tendon continued into the septum; but usually, they may be easily separated down to the bone; and it is evident that the septum passes up behind the tendon, as far up as the teres major, or as high as the highest point of origin of the internal head of the triceps, of which it appears almost like a tendon of origin in its whole length. I have repeatedly examined these points with care, dissecting down to the bone, and the above will be found almost invariably to be the precise arrangement. I shall again refer to the deceptive feeling, as if the true intermuscular septum was attached not to, but in front of, the internal condylar line. We must, therefore, distin-
guish the true intermuscular septum, dipping down to the bone, the edge of which is not very apparent at first on the surface, from the very evident ligamentous cord behind it, which usually bears a close relation to the ulnar nerve, and might be called the internal brachial liga-
ment, as a means of distinguishing it from the true septum.

27-xiv.
Relation of Supra-Condyloid Process to Humerus.—It has been already mentioned that the supra-condyloid process is situated, with very little variation, at the distance of two inches above the upper edge of the internal condyle. Its relation to the surface and borders of the humerus is also constant. It is always placed on the internal surface, either midway between the internal and anterior borders of the bone, or a little nearer to the latter; and the ligament which completes the arch has to pass downwards and inwards to join the intermuscular septum above the condyle. This constancy of the position of the process, both as regards the distance above the elbow and the surface of the bone, is remarkable and interesting; and, both in position and direction, the process will be found to correspond closely to the arch of bone by which the foramen is completed in the lower animals.

I must here remark upon a method of describing the shaft of the humerus to be found in several of our best text-books of anatomy, by which this bone is represented as presenting two surfaces only, an anterior and posterior. But the humerus, like the other long bones of the limbs, has distinctly three surfaces and three borders. The error as regards the humerus, has no doubt arisen from the circumstance that two of the surfaces may be seen on the anterior aspect, but these two are no less distinct from each other than they are from the posterior. It is only in the lower fourth of the shaft that it becomes flattened from before backwards, and from this part up to the surgical neck, the shaft is at least as thick on a side view as when seen in front; and transverse sections of the bone are at all parts of the shaft more or less triangular. The lateral borders are continued up from the condyloid lines, the outer ending at the back part of the greater tuberosity, whilst the inner is lost at the surgical neck, after passing up, faintly, a short distance behind the inner edge of the bicipital groove. The anterior border is the most distinct of the three, except in the lower fourth, where, however, it is still quite distinct, though not sharp or rough. It is formed in the upper third by the external bicipital ridge, and is continued down from it to within half an inch of the coronoid fossa, which it bifurcates to enclose, and separates the external from the internal surface, the former in the lower half being the broader of the two, owing to the prominence of the external condyloid ridge.

The internal surface is that which I desire more particularly to notice. It supports the supra-condyloid process in the situation already defined; and behind the process, or in this situation, there is a groove. This groove has been mentioned by Dr. Knox in his papers already referred to, as existing in many arm bones. This part of the internal surface of the humerus is generally somewhat concave, though sometimes it is flat or even a little convex, and I certainly have found this groove present in the majority of a large number of arm bones that I have examined on purpose. In some this groove is altogether wanting, in a considerable proportion it is well marked, and in the majority it is present. It is seen in some young and adolescent bones, and appears to be at least equally distinct in those bones, the smoothness and straightness of which indicate them in all probability to have belonged to female skeletons.* This

* There is no separate bone in which the difference between the male and female (or at least the muscular and less muscular) is usually more striking than the humerus. In articu-
supra-condylloid groove is bounded posteriorly by the internal border or condylloid ridge, and in front by a special ridge, which marks off the posterior half or third of the internal surface as the groove. It reaches for about an inch down from the situation which a supra-condylloid process would occupy, and from one to two inches upwards from it, to near the usual situation of the principal nutritious foramen.

Taken along with the existence of a supra-condylloid process, this groove is naturally supposed to correspond to the position of the deviating nerve or artery; but in two of my specimens with this process, the groove is not so distinct as in the opposite bone, where there is no process and when there was no deviation of the nerve or artery; and in case No. 3, the process existing on both sides with deviation of both nerve and artery, the groove cannot be said to exist. Besides, the occurrence of the deviation of the nerve and artery, or of a supra-condylloid process proper, is comparatively rare—whilst I have said this groove exists in the majority of arm bones; and farther, since the artery or nerve does not properly occupy or lie in it, but only in front of it, even when the deviation exists, we must conclude, that the groove is not there for the purpose of lodging a vessel or a nerve. Being much puzzled to explain the meaning of this groove, I have lately carefully examined, in a great many arms, the exact relation of the soft parts to the humerus at this part, and the following will be found to be almost invariably the exact arrangement.

The true intermuscular septum gives attachment by its posterior surface to fleshy fibres of the inner head of the triceps. On dissecting these fibres off down to the bone, the septum is felt to be attached to a sharp ridge, and a little distance behind this ridge, a prominent but somewhat rounded edge of bone is felt, as if it was the internal border of the humerus. It appears as if the septum were not attached to the border, but to a ridge one sixth or one-fifth of an inch in front of it; but this, however, plainly felt by the finger in the dissection, is deceptive. The bone is at this time partially rotated outwards, so as to turn its posterior surface a little forwards. On careful examination of the macerated bones, the condylloid ridge is seen to be the true internal border when the humerus is fairly looked at in front, but if turned a little outwards, the part of the bone behind the condylloid line now projects. The true intermuscular septum, then, is really attached to the internal condylloid ridge or true internal border. On now dissecting on the outer or anterior aspect of the septum, it is seen to give origin to fleshy fibres of the brachialis anticus, down to the bone. The brachialis is now seen to arise directly from the surface or floor of the groove, also by fleshy fibres, and on separating these the outer edge of the groove is usually very distinctly felt by the finger, and is often especially rough at about two inches above the condyle. From this ridge, and especially at this rough part, the brachialis anticus arises usually by distinct tendinous bundles or fibres, whilst its origin is again fleshy to the outside of the ridge. The groove is usually very distinct to the touch when we have dissected down to it.

Lating four pairs of these humeri to each other, I noticed the curious fact, in three of them, that the right is longer than the left. In one pair, male, the difference is a quarter of an inch; in the other two, female, it is as much as half an inch. It would be interesting to ascertain whether the right humerus is generally thus longer than the left.
in this way, the distinct and sharp inner boundary giving attachment to the intermuscular septum, while the sometimes still more distinct outer boundary, at the part mentioned, is seen to give origin to the tendinous bundles for the brachialis anlicus. This groove, then, generally existing on the humerus, has no relation to the position of a nerve or artery. It appears not to be constructed to serve any purpose, as a groove, but to result from the development of the two ridges, the internal giving attachment to the intermuscular septum, whilst the meaning of the outer and shorter one remains to be noticed. Considering its position on the internal surface of the humerus, considering that its roughest part is just two inches above the condyle, that a small point or ridge-like tubercle may exist on it here, and that this is precisely the point from which the supra-condyloid process in its various stages grows, it appears legitimate to draw the conclusion that this short rough ridge is a rudimentary condition of the supra-condyloid process, the base of which grows out from such a ridge running vertically on the bone at this part. This development into a process, however, but rarely occurs, and the rudimentary ridge is employed for the specific purpose of giving origin to tendinous fibres for the brachialis anlicus. We have seen that, in every case in which a process existed, the median nerve, when its position was noted, deviated and passed round it, but we have other cases still to record in which the nerve and artery deviated, but in which there was no process beyond the existence of the short rough ridge. The correct view to take, perhaps, is this—that the median nerve, accompanied or not by the artery, occasionally deviates, and that, when it does so, we occasionally or usually find a protective arch thrown over it, formed by a supra-condyloid process above, and a ligament below, being an arrangement analogous to that which occurs in the most highly formed condition of this part of the mammalian humerus.

Comparative Anatomy.—Although there is no doubt that the foramen in the humerus affords protection to the parts which it transmits, it is not understood precisely in what manner it does so in the animals in which it exists, nor why they, more than some others, require such an arrangement for the protection of the vessel and nerve. The arrangement is found among the Quadruped, Rodentia, Edentata, Marsupialia, and more frequently among the Carnivora. The cat presents the most familiar example, and the following description is taken from my dissections of the part in that animal.

Bone.—The humerus is three inches and a quarter in length, and the situation of the upper end of the arch which completes the foramen, is half an inch above the internal condyle. The supra-condyloid process in man occupies the same proportional situation, being two inches above the condyle, whilst the humerus is, on an average, twelve inches in length; that is to say, the distance of the foramen in the cat, and the process in man, from the lower end, or internal condyle of the humerus, is about one-sixth of the length of that bone. The supra-condyloid foramen is a short oblique passage, directed downwards and forwards. The space is oval, measuring one-fifth of an inch in depth, and one-twelfth of an inch in breadth. It is formed on the internal aspect, by an arch of bone leaving and again joining the shaft. This arch, however, does not project
abruptly outwards, like the process in man, but only slightly bulges outwards the natural sweep from the condyle to the inner border of the humerus, and, in the adult bone, forms a lesser projection than that of the condyloid ridge on the outside. The foramen, therefore, is not, as some have supposed, merely a space left to hold and protect the artery in consequence of the great development of this part of the bone, and by which the artery would otherwise have been thrown out of its course; and the development of the foramen farther shows that it is originally formed as a specific provision.

Development of the Foramen.—I find that the arch, by which the foramen is at length completed, grows, as a process, from above downwards. It is developed from the shaft, and again unites with the shaft below, and is completed altogether independent of the epiphyses of the lower end of the bone. This will be better understood by reference to the illustrations, figs. 4, 5, and 6, in which the bone is reduced one-third from the natural size. Figs. 4 and 5 are from the new-born kitten, the cartilaginous ends being preserved in the second. Besides a number of previous observa-

Fig. 3. Anterior extremity of cat, reduced one-half. a. Brachial artery.
 m. n. Median nerve.
Figs. 4 & 5. Humerus of kitten at birth, without and with the cartilaginous extremities.
Fig. 6. The same at the fifth week after birth; also showing the development of the supra-condyloid foramen.

* Introduction to the Natural History of Mammiferous Animals. By W. C. Linnaeus Martin, p. 89.
tions, I recently examined both limbs in three new-born kittens of the same birth. In some the lower end of the process is not yet united to the shaft; in others it is just about to unite with it, so as to complete the bony foramen.

Fig. 6 is from the kitten, five weeks after birth. The foramen is seen to be completed as part of the shaft, and independent of the epiphyses, which are now ossifying.

The arch by which the foramen is completed, thus resembles, during the early stage of its development, the supra-condyloid process on the human arm; and were the latter prolonged in the direction of the ligament, it would correspond exactly to the arrangement in the cat, with this difference, however, that in man it starts more abruptly away from the humerus, although, on the other hand, its direction is not greater in this respect than is necessary to leave a sufficient space for the nerve and bloodvessels. Seeing this to be the mode of its development in animals, we are not surprised to find it, when it is present in man, to occur in the very young subject and female, as well as in the adult and muscular. It is not unlikely that the arch may be liable to variety in the extent of its development, leaving the foramen unfinished, in animals which normally have it completed. In one arm of an adult cat, I found the arch represented by a ligament only, which, both above and below, joined a short spiculum of bone. On the other side, the arch was bony and well formed, as seen in fig. 3, which is sketched from the preparation made from it, and now in my collection. In the adult bone, the arch is directed downwards and backwards towards the internal condyle, is flattened, measuring one-tenth to one-twelfth of an inch in breadth, is somewhat concave towards the foramen, and convex and smooth superficially. There is a distinct groove on the humerus behind the foramen, both above, where the nerve and artery lie, and below, where no nerve or vessel is near, but almost no groove, or a very short one, in front of the opening, which corresponds to the abrupt departure of the artery and nerve after they have traversed the foramen.

Nerve and Bloodvessels.—The brachial artery does not lie as in man, along the course of the humerus, but as it crosses the subscapularis muscle, is removed considerably to the inside of that bone. It now reaches obliquely downwards and outwards, supported behind by the internal head of the triceps, approaches and touches the humerus just before entering the foramen, through which it now passes along with the median nerve. It then leaves the humerus, lies at a considerable distance in front of the elbow, and, after a course of an inch and a quarter after leaving the foramen, it divides into the radial and ulnar arteries. The median nerve accompanies the brachial artery in the arm, through the foramen, and below it, always lying to its outside, so that the nerve lies highest as they traverse the opening. I have not noticed any veins passing through the opening with the artery, and in one dissection in which the veins were injected, they did not pass through, but those accompanying the arteries in the forearm, joined the superficial veins below the foramen, and, passing with them over the arch, reached up the arm superficial to the artery.

Muscles.—There is no deep muscle by which the nerve and artery would apparently be directly or unavoidably compressed against the bone,
unless by the muscle corresponding to the biceps of man, the inner edge of which somewhat overlaps them. This muscle will press back against the protective arch, but it is not evident that the nerve and artery might not simply have been pushed aside by its action; and in animals in which the foramen does not exist, as in the dog, this muscle has the same relation to them. In the cat, there is a superficial muscular expansion covering the whole of the internal brachial region, and of considerable thickness over the foramen; but, in the lion, this expansion has become aponeurotic before it reaches over the foramen. In the lion, I found the veins did not pass through the foramen; and in an ichneumon which I dissected lately, the nerve alone passed through on both sides, the artery and veins passing in front of the arch.

It may be inferred from this, that the foramen is primarily intended for the nerve, and this agrees with what we have seen from the cases of the variety in man, that, when the process exists, the nerve always deviates, whilst the artery may or may not. It may be compared in this respect to the supra-scapular notch in man, which always transmits the nerve, while the artery passes over the ligament and only occasionally under it, with the nerve. It is not unlikely that the nerve only may pass through in many of the animals, the skeletons of which present the supra-condyloid foramen; and also it is not unlikely that a process may occasionally be found as a variety on the humerus of animals which, like man, do not possess it as a regular character.

III. ON THE VARIETIES OF THE ARTERIES OF THE ARM.

The varieties affecting the arteries in the arm may be arranged in three classes:—1. Varieties in the muscular relations; 2. Deviation of the artery from its usual course; and, 3. An early division of the artery by which two or more arteries exist, instead of one.

1. The first of these classes of varieties I have above considered and furnished examples of, in the cases of the artery being covered by a slip from the latissimus dorsi, by an expansion from the coraco-brachialis, by a broad third head to the biceps, by an aponeurosis from the brachialis anticus, or by a thin portion of the muscle itself, and by a high origin of the pronator teres.

2. The second class is made up nearly altogether by the variety in connexion with a supra-condyloid process. In this, the condyloid deviation, the position of the artery is changed in the lower two-thirds of the arm. Accompanied, as usual, by its venæ comitantes and the median nerve, it is covered only by the aponeurosis and a sheath of fascia, derived from the outer edge of the intermuscular septum, along which it runs. But below the process, the artery, besides being directed obliquely outwards, is generally more deeply covered than usual, either by an aponeurosis from the brachialis anticus, or a high origin of the pronator teres.

As the artery, at the process, lies three-fourths of an inch from the inner edge of the biceps, the ordinary incision along the edge of that muscle could scarcely enable the surgeon to reach the artery, but an examination of the arm before the operation was begun would probably indicate the deviation of the artery by the unusual situation of the pulsation, and in the cases where the process is well formed it is easily felt from the surface.
But the artery may deviate in this manner independent of the existence of a supra-condyloid process; as in four cases described and figured by Mr. Quain. In these, the median nerve continued in the course of the intermuscular septum,—accompanied, in two of the cases, by the undivided brachial artery, and in the other two by one of two trunks into which the brachial had divided,—and crossed or perforated the intermuscular septum, two or three inches above the internal condyle, and then inclined outwards to the usual position, under cover of a high origin to the pronator teres muscle.

I have met this winter with a well-marked case of this condyloid deviation, without the co-existence of a developed supra-condyloid process. The median nerve and undivided brachial artery deviate and pass down in front of the intermuscular septum to within 1/4 inch of the condyle, and now pass beneath a fibrous arch and a high pronator teres, and are directed downwards and outwards to the bend of the elbow. As the nerve passes down with the artery and its vasa comitantes, the nerve lying internal, they are sunk in a depression between the septum and the brachialis anticus. On dissecting aside the fibres of the brachialis anticus which lie behind and support the nerve and artery, a groove is distinctly felt in the humerus. The outer edge of the groove is a ridge, giving origin to fibres of the brachialis, and presenting a more elevated portion, like a rudimentary supra-condyloid process, exactly two inches above the condyle, and situated nearer the anterior than the internal border of the humerus. From this more prominent point arises the fibrous arch, which then stretches down to join the intermuscular septum. In this case, then, there is a true condyloid deviation, exactly as in the cases of a developed process, but here the process could scarcely be said to exist.

As above related, in thirteen of the cases in which an artery deviated, in connexion with a supra-condyloid process, it was the entire brachial artery in nine, and one of two large vessels in the remaining four. In the latter case the surgeon would be very apt to overlook one of the arteries, and I suspect it must have been the occurrence of some such variety which has led to the common observation, that the inferior profunda branch is liable to be mistaken for the brachial artery in an operation.

3. Regarding the high division of the brachial artery, the relative frequency of it, and the various nature of the early branches, little remains to be done after the careful and extended observations of Mr. Quain, as recorded in his beautiful and valuable work on the anatomy of the arteries. From the observation of 481 arms, he has shown that the proportion of cases in which two arteries exist in the arm is one in 5 3/4. The previous estimate of Harrison, given in his valuable treatise on the arteries, from the observation of 82 cases, gave a proportion of about one in four. Adding together the observations of Harrison and Quain, the proportion will stand about, though rather less than, one in five. The early vessel is well known generally to be the radial, sometimes the ulnar, and occasionally a high intersosseous; or, by a short union or cross branch below, a condition equivalent to a double brachial artery, with the two divisions either equal or with one of the vessels much smaller than the other.

* Op. Cit., p. 259. † Plate xxxvi. fig. 4; and Plate xxxvii. fig. 1. ‡ The Surgical Anatomy of the Arteries. Dublin, 1849.
But, although these details are of much interest to the anatomist, they in reality are of little importance to the surgeon, who is concerned with this fact only, that frequently there are two arteries instead of one, and that it may be so in the case in which he is about to operate. The important practical question then comes to be, supposing a second artery to be present, how is its existence to be ascertained, and how can it be reached?

My attention has been directed to observing the exact relative position of the two trunks, more than to ascertaining the relative frequency of the different varieties; and, although this opportunity is very apt to be lost in the ordinary dissections in the anatomical rooms, I have been able to note the exact position of the two vessels in twenty arms, eighteen of these presenting instances of the high radial, and the remaining two, of the high ulnar artery; and ten of these occurred in sixty subjects dissected during the earlier part of the present session. It would be tedious to give the details in each case from the notes now before me, and will suffice if I state the conclusions to which I have come. In nearly all of the cases the division occurred in the axilla or high in the arm, thus presenting two arteries throughout the whole or greater part of the brachial region. It is necessary to consider the upper and lower parts separately, taking the insertion of the coraco-brachialis, or where the artery normally crosses the lower end of that muscle, as the termination and commencement of the two portions.

In the first portion of their course, the two arteries lay, in all the cases, very near to each other, separated only by the median nerve and a layer of deep fascia or sheath. One of the trunks lies superficial to the other. It is the high radial or ulnar as the case may be, and is usually, more or less, the smaller of the two; the other and deeper trunk represents more the position of the brachial, the median nerve being related to it as it is normally to the single brachial artery. The high radial, I have said, is somewhat superficial in position to the other, but it may, at the same time, lie to either side, or directly over the deeper trunk. In most of the cases it lay external and superficial, but in some it arose on the inner or anterior aspects, and then crossed over the deeper trunk to get to its outside. This will be found to be the exact position of the two arteries in the upper part of the arm, one lies immediately below the aponeurosis, and superficial, or on a plane anterior to the other. Close either on its inner or outer side, and behind, or on a plane posterior to it, is the other trunk, the median nerve crossing very obliquely between the two, and a layer of sheath also intervening.

The deeper trunk, if the division is as high as the subscapularis muscle, furnishes the circumflex and subscapular, and then the profunda branches, while the more superficial trunk, keeping down by the edge of the biceps, furnishes the external muscular branches.

In the lower half of the arm there is considerable variety in the relative position of the two trunks, and they seldom lie so close together as above described in the upper half. It is necessary here to distinguish between high radial and high ulnar. As Mr. Quain has remarked, the high ulnar has a tendency to pass to the inner or ulnar side away from the edge of the biceps. In both of my cases, the high ulnar was, below, removed half an inch from the inner margin of the biceps, the deeper trunk in one of the cases being external to it, in the other internal,
having the position of the condyloid deviation. In both, the high ulnar
passed over the muscles of the forearm, although not superficial to the
aponeurosis. In the more numerous and common cases of high radial,
I have observed, that the more superficial of the two, or high radial,
courses down along the inner edge of the biceps, covered by the aponeu-
rosis and, it may be, slightly overlapped by the edge of the biceps, whilst
the other trunk occupies a position internal to it and deeper, to a vary-
ing extent. The median nerve is at first still crossing obliquely between
the two arteries, but, in the lower third, has now gained the inside of the
deeper trunk and descends parallel to its inside, in the situation where
the two arteries are most separated from each other. The deeper trunk
is generally, if not always, covered by a second aponeurosis. It is very
frequently, if not generally, lodged or sunk in a groove in the brachialis
anticus muscle, and from the raised or projecting fibres on the outside of
the artery, an aponeurosis is sent inwards over the artery and nerve,
binding them down upon the surface of the brachialis muscle, or into a
groove in it. Frequently also, the fleshy fibres themselves pass across or
partly across, and bind down or overlap the artery and nerve, as already
described to be a position not uncommonly occupied by the undivided
brachial artery.

The deeper trunk is thus so placed, that, to expose it, requires the
division of a deeper layer of aponeurosis, or the division or displacement
of some muscular fibres, but a more important point is the frequent
removal of the deeper trunk more or less to the inner side, gradually
approaching the intermuscular septum, until it constitutes a condyloid
development of the deeper of the two trunks.

In some of the cases the deeper artery lies close to the inside of the
high radial, but deeper, in some it was a quarter of an inch to the inside,
in some half, and in several three-fourths, of an inch; in either case
bound down by the deeper layer of aponeurosis. In five of the cases,
this inward separation went as far as to constitute the condyloid devia-
tion. Two of these five were on opposite arms of the same subject, and
in one of the subjects the non-deviating artery was the high ulnar. In
the two occurring in the same subject, the anatomy was the same on both
sides. The deviating trunk was three times as large as the non-deviating
high radial. The deviation commenced at the insertion of the coraco-
brachialis. The larger artery, with the median nerve lying in this case
still to its outer side, passed down in front of the septum, sunk into a
depression between it and a portion of the brachialis anticus muscle, to
within 2½ inches of the condyle, when they inclined outwards to pass
below a fibrous arch and a high pronator teres. Higher up the arm than
the high pronator and fibrous arch, the deviating artery is bound down
by some overlapping fibres of the brachialis anticus, and an aponeurosis
is prolonged from these to join the intermuscular septum. Here the
artery lies half an inch inwards from the high radial. At the bend of
the elbow they are separated by the high pronator, over which, but under-
neath the semilunar tendon of the biceps, the high radial artery lies.

In the other three subjects, the anatomy of the deviating vessel was
so exactly the same that one description will suffice. There was no high
pronator teres, or fibrous arch proper. The artery left the high radial,
or ulnar, at the insertion of the coraco-brachialis, and passed down in
front of the intermuscular septum, sunk into a deep depression between it and part of the brachialis anticus, supported behind by the fibres of the brachialis which arise from the septum. The median nerve has crossed over the deeper artery at the middle of the arm, and now passes down parallel to its inner side. Arrived at within 1\(\frac{1}{4}\) inch from the condyle, the nerve and artery now turn gradually and incline outwards and downwards to the elbow. Before the artery thus begins to incline outwards, it is placed \(\frac{1}{3}\) to \(\frac{2}{3}\) inch to the inside of the high radial, which lay along the edge of the biceps, but, in one of the three, the other artery, being the high ulnar, was nearer to it, having itself inclined inwards half an inch from the inner edge of the biceps. From the middle of the arm downward, in these, as in all cases of condyloid deviation, the artery and nerve, lying in the deep groove in front of the intermuscular septum, were bound down by a strong aponeurosis passing between the septum and raised fibres of the brachialis anticus, and, especially below, for two or three inches, also partially concealed by some of the fleshy fibres of that muscle.

The practical conclusions from these observations regarding the relative position of the two arteries, may be easily drawn. In a preliminary examination of the arm, the existence of two arteries may be ascertained by the pulsation, or it may be visible, as I have seen in an emaciated person. If no such preliminary information can be obtained, and if the artery first met with is not unusually small, and the ligature of it arrests the pulsation or bleeding below, there is no necessity or warrant for making a farther search. If it is otherwise, another vessel must be sought for. The artery first met with will, in all probability, be the more superficial. If it is in the upper half of the arm, the other artery will, if indeed the pulsation has not already indicated its position, be readily found a little deeper, separated only by the median nerve and a layer of fascia or sheath, either directly behind, or close to one side of, the one first found. The mere appearance of the artery being small, does not necessarily indicate that it is only one of two vessels, as, in some female subjects especially, the arteries look very small, and are, in all persons, considerably smaller than the distended arteries seen in the dissecting room and in museums; and, besides, it is not easy to judge of the true size of an artery in an operation, owing to the very limited extent to which it is exposed. It has been recommended, in the case of two arteries being met with, to secure that one only which is connected with the aneurism or bleeding vessel, but it is evident that there can be no greater danger to the vitality of the fingers from tying two arteries in a high division, than in tying the one artery when it is single, and various good reasons might be assigned for the rule to secure both. This rule may be departed from in the cases of false aneurism, and wound, when it is enough to place two ligatures on the artery concerned, one on each side of the aneurism or wound. These being the chief conditions requiring an operation in the lower part of the arm, it may not be necessary to search for the other artery, although the one first secured should evidently be only one of two. But if it is desired, the above anatomical details show that it will not usually be so easily found as in the upper half of the arm. It is often concealed by fleshy fibres from the brachialis anticus, and generally, either with or without this, bound
down upon that muscle by a deeper aponeurosis. The median nerve is
not now over it, but to its inner side, and the artery and nerve are often
more or less removed towards the intermuscular septum, sometimes for
three quarters of an inch; so that the artery will be found, not only
deeper, beneath muscular or aponeurotic fibres, but in some part of the
space between the inner edge of the biceps and the intermuscular septum.

ART. IV.

Notice of some Eudiometric Researches. By Dr. G. Valentin, Professor
of Physiology in the University of Bern. (Communicated by
William Brinton, M.D., Joint Lecturer on Physiology at St.
Thomas’s Hospital.)

In a letter lately received from Professor Valentin, some important facts
are mentioned respecting the influence which the prepared frog exerts on
the atmospheric air surrounding it, while its excitability still continues,
and it has disappeared, either from putrefaction or from an artificial agency.

"1. In order that the irritability of a prepared frog, which remains enclosed in a
space filled with atmospheric air, and saturated with watery vapour, should be
preserved for days together, the skin ought not to be removed. The denuded
muscles lose their excitability so soon, that many of these points cannot be accur-
ately determined.

"2. Such preparations, clothed with their skin, consume oxygen, and give off
carbonic acid, whether they are still irritable or not.

"3. On losing their excitability, they give off more carbonic acid in proportion to the
oxygen absorbed. If the preparation be allowed to take on the ordinary process
of putrefaction, we get in its first periods less carbonic acid and more oxygen, and
subsequently, when all irritability has disappeared, a larger proportion of carbonic
acid. But when a fresh preparation is deadened by cold or mechanical injury, this
larger proportion of carbonic acid appears at once. An example may illustrate
what I have been telling you: (a) Two irritable preparations, which had remained
315 minutes in about 1'41 cubic inches of atmospheric air, gave off during this
time 1'06 per cent. of this volume of carbonic acid, and consumed 3'97 per cent.
of oxygen; (b) After being deprived of their irritability through cold, they gave
off, in 296 minutes' sojourn in about 1'436 cubic inches of air, 1'02 per cent. of
carbonic acid, and consumed 2'72 per cent. of oxygen. So that we get the pro-
portion of carbonic acid given off to the oxygen taken up, during the state of ex-
citability, = 1:3:74; after its removal by cold, = 1:1:68.

"4. One mode of destroying irritability leads to a different result. When the
preparation has been rendered unexcitable by exposure to a temperature of 122°
—212° Fahr., it afterwards consumes much oxygen, but forms very little carbonic
acid, so that the relative amount of carbonic acid becomes even less than in the
irritable state.

"5. The proportions of the nitrogen which most impede the process of analysis,
lead to just as decisive results. As long as the preparation retains its irritability,
the nitrogen probably remains unchanged. I say probably, because the only dif-
fferences in the calculation lie within the limits of errors of observation. While, on
the other hand, when the irritability has been suppressed in any way, nitrogen is
given off in quantities which exceed these limits of error.

"The more we follow these phenomena, the more shall we convince ourselves
that the eudiometric changes are very delicate indications of the material inter-
change of the animal tissues. But these eudiometric analyses must be made with
the greatest possible precision, and not carried out in the usual superficial manner."
PART FOURTH.

Chronicle of Medical Science.

REPORT ON MATERIA MEDICA.

By Edward Ballard, M.D.,
Physician to the Farrington General Dispensary.

1. The acidity was determined by means of a standard solution of caustic soda. The quantity of liquid neutralized was equal in bulk to 1000 grains of water at 60° Fahr. The acidity is represented as follows:—In sheries it varied from 1·95 to 2·85 grains of caustic soda; Madeira, from 2·70 to 3·60; port, from 2·10 to 2·55; claret, from 2·55 to 3·45; Burgundy, from 2·55 to 4·05; Champagne, from 2·40 to 3·15; Rhine wine, from 3·15 to 3·60; Moselle, from 2·85 to 4·50; brandy, from 0·15 to 0·60; rum, from 0·15 to 0·30; Geneva, 0·07; whisky, 0·07; bitter

* The Reports included in the Chronicle are not intended as complete summaries of the subject. Still it is hoped that no important paper will escape notice. In the present number, the Medical Report and the Therapeutical Record have been omitted for want of room. Care will be taken, however, in future numbers to insert all the Reports with regularity.

During the months of March, April, and May, the following foreign journals were received:

GERMAN.
7. Zeitschrift (Henke's) für die Staatsarzneikunde, von Behrend. 1854, Heft 2.

FRENCH.
11. Archives Générales de Médecine. 1854, Mars, Avril, Mai.
16. L'Union Médicale. Mars, Avril, Mai.

ITALIAN.

NORWEGIAN.

AMERICAN.
238 Chronicle of Medical Science. [July,

ale, from 0·90 to 1·65; porter, from 1·80 to 2·10; stout, from 1·35 to 2·25; and cider, from 1·85 to 3·90.

2. The sugar was determined by Soleil's saccharometer. In sheries it varied from 4 to 18 grains in the ounce; Madeira, from 6 to 20 grains; Champagne, from 6 to 28 grains; port, from 16 to 34 grains; malmsy, from 56 to 66 grains; Tokay, 74 grains; Samos, 88 grains; Paxarette, 94 grains.

3. The alcohol was determined by the alcoholometer of M. Geisler of Bonn. The strength of the different samples of port varied from 20·7 per cent. to 23·2 per cent. by measure; sherry, from 15·4 to 24·7; Madeira, from 19·0 to 19·7; Marsala, from 19·9 to 21·1; claret, from 9·1 to 11·1; Burgundy, from 10·1 to 13·2; Rhine wine, from 9·5 to 13·0; Moselle, from 8·7 to 9·4; Champagne, from 14·1 to 14·8; brandy, from 50·4 to 53·8; rum, from 72·0 to 77·1; Geneva, 49·4; whisky, 59·3; cider, from 5·4 to 7·5; bitter ale, from 6·6 to 12·3; porter, from 6·5 to 7·0; stout, from 6·5 to 7·9.

II. Upon a new Combination of Iodine.—Formulae for a Syrup and for Solutions of Iodo-tannin. (Bull. Gén. de Thér., April, 1854, p. 309.)

MM. Socquet and Guillermond having studied the combination of iodine and tannin, and its therapeutical effects, propose the following formulae as those which they have found best adapted for use.

For internal use they propose a syrup of iodo-tannin, prepared as follows:—

Iodine, 2 grammes; extract of rhatany, 8 grammes; water and sugar, of each enough to make a syrup, 1 kilogramme. The extract of rhatany employed should be prepared in vacuo, so as to be completely soluble. The iodine is first to be dissolved in a very small quantity of alcohol, and then mixed with the extract of rhatany, dissolved in the water; the whole is introduced into a glass matras, and left for some hours; a brown powder deposits, which is to be separated by filtration, and washed with water; the strained liquors to be mixed and concentrated by a vapour bath; and lastly, the sugar is to be added. Thus prepared, the syrup contains 6 centigrammes of iodine in every 30 grammes of vehicle, and may be preserved almost indefinitely without change.

For external use they propose—1. A normal solution of iodo-tannin, which is made by triturating together 5 grammes of iodine, 45 grammes of tannin, and 1000 grammes of water, filtering and concentrating the solution to 100 grammes. This preparation answers well as an injection into mucous canals, such as the vagina and urethra. 2. An iodurrited solution of iodo-tannin, prepared by triturating together 10 grammes of tannin, 5 grammes of iodine, and 90 grammes of water, favouring the solution by a gentle heat. This solution contains an excess of iodine, and is proposed to replace the several solutions of iodine made with alcohol or potash. They consider it adapted for application to ulcers of the neck of the uterus, &c.; to surfaces denuded by blistering, with a view to the absorption of the iodine; to the knee in hydrarthrosis; and, largely diluted with water, they propose that it be used for injecting serous sacs, as in hydrocele, &c.

This paper is deserving of an extended notice. It furnishes the results of a series of careful experiments made to test the truth of the conjecture, that the purgative salts introduced into the intestinal canal are but slowly absorbed in accordance with their small diffusion-power, and that, arriving with a considerable quantity of water at the lower bowel, which itself usually contains consistent faces, the peristaltic movements are accelerated by the quantity of foreign matter, and the contents of the bowels are consequently quickly expelled. * This view of

* On this subject, vide a paper by Aubert, noticed in No. 21, p. 297.
their operation does away with the necessity of assuming that they accelerate the peristaltic movements by a peculiar operation on the intestinal nerves. Glauber's salt and common salt were selected for experiment, the subjects being two young men, designated under the initials B. and W.

Preliminary experiments were made to determine the normal amount of excretion of sulphuric acid and chlorine in each person, by the urine and feces.

grams.*

B., on a mean, passed in his urine daily 1·741 sulphuric acid.
W., (who ate more animal food) 2·105.
B., on a mean, passed in his urine daily 6·837 chlorine = 11·300 gr. common salt.
W., 6·842 = 11·309.
W.'s fresh feces contained about 0·229 grammes of sulphuric acid, and only 0·0016 grammes of chlorine = 0·0025 grammes common salt.

The relative quantities of sulphuric acid and chlorine excreted at different periods were determined by examining the urine every three hours during the day. The sulphuric acid, tolerably uniform in quantity in the morning, increased after dinner, and was most abundant about six hours after that meal. The chlorine, small in quantity in the morning, subsequently increased, but fell immediately after food: it was most abundant three to six hours after food; but at a later period it again fell, and in the night was only one-third of the usual quantity.

Glauber's Salt.—B. and W. each took, in the morning, an ounce of this salt in three or four ounces of water. In less than an hour, active borborygmi set in; in about two hours, a watery evacuation occurred; and in the course of the day, two more of a similar character. The next day, the stools were softer than usual, and had an odour of sulphuretted hydrogen. In B., the excess of sulphuric acid in the urine, over the average, was 1·042 grammes, = 4·198 grammes of Glauber's salt. In W., on the first day, it was 0·111 grammes, = 0·447 grammes of Glauber's salt; and on the second day, 0·223 grammes, = 0·898 grammes of Glauber's salt.

In a second experiment, 15 grammes were taken, which, in about three hours, produced a watery stool. The excess of sulphuric acid

In B.'s urine on 1st day was 1·540 grms. = 6·205 grms. Glauber's salt.

In W.'s
2nd 0·518 = 2·087
1st 0·796 = 3·207

2nd none.

When 20 grammes were taken, the excess of sulphuric acid was as follows:

In B.'s urine, 1st day, 1·290 grammes = 5·197 grammes Glauber's salt.
2nd 0·345 = 1·390

In W.'s urine, 1st 1·150 = 4·633
2nd 0·120 = 0·458
1st 1·752 = 7·059
2nd — —
1st 1·850 = 7·574
2nd — —

When 10 grammes were taken, lively borborygmi likewise occurred very soon, and it was with some difficulty that the urgency to stool could be repressed; both lessened, however, in three hours, and disappeared in about seven hours. On the following morning, a pappy motion occurred, smelling strongly of sulphuretted hydrogen. The excess of sulphuric acid in the urine, over the average, was as follows:

* The gramme is equal to 15 444 English grains.
From the above numbers it appears that the urine, on the day the dose was taken, and on the following day, was richer in sulphuric acid, the less the evacuations produced by the Glauber's salt, and the longer the stools could be repressed.

The experiment was now made of preventing the action of 20 grammes of Glauber's salt as soon as lively borborygmi came on, by means, in one instance, of five-eighths of a grain of acetate of morphia, and in another, by means of 20 grains of tannic acid. In the two days, the urine excreted 16 to 17 grammes of Glauber's salt; whereas, if the excretion of the bowels had been permitted, only 6.5 grammes would have been passed by the urine. In the instance in which the opiate was taken, a pappy stool occurred the following morning, which contained an excess of sulphuric acid, over the average, of 0.452 grammes, = 1.821 grammes of Glauber's salt; while in a stool the next day, no excess was discoverable. In the experiment with tannic acid, a liquid evacuation on the second morning contained 0.817 grammes of excess of sulphuric acid, = 3.292 grammes of Glauber's salt; and the total quantity evacuated by urine and feces in the two days, was 19.939 grammes.

The next series of experiments were undertaken with a view to determine whether the degree of concentration of the salt had any influence over the result. W. took 10 grammes of Glauber's salt in 1½ ounces of water, and during the succeeding twelve hours took no liquid, and only solid food. The customary effect was produced, and the excess of sulphuric acid in the urine was,

On the 1st day, 2.097 grammes, = 8.449 grammes Glauber's salt.
 2nd , 0.217 , = 0.874

He now took 10 grammes without any water at all, and though much thirst was present, took no liquid for twelve hours. The borborygmi and disposition to stool were less than usual, and ceased in four hours without an evacuation; and the stool next morning was not so soft as after other experiments. The excess of sulphuric acid in the urine was,

On the 1st day, 2.124 grammes, = 8.558 grammes Glauber's salt.
 2nd , 0.027 , = 0.109

Next he took 4.417 grains of anhydrous sulphate of soda, = 10 grammes of crystallized Glauber's salt. A little of it was lost during the act of taking it, in consequence of coughing. It produced burning pain in the throat, and severe thirst. The borborygmi occurred as usual, and the stool next morning was pappy. The excess of sulphuric acid in the urine was,

On the 1st day, 1.376 grammes, = 2.449 grammes Anhydrous salt.
 2nd , 0.372 , = 0.662

He now went to the opposite extreme, taking 10 grammes of crystallized salt in six ounces of water, and drinking a great deal of water during the day. The borborygmi, &c., occurred as usual, and lasted longer than before. Next morning, the faces were not more watery than on former occasions. The excess of sulphuric acid contained in the urine was,

On the 1st day, 2.140 grammes, = 8.632 grammes Glauber's salt.
 2nd , 0.270 , = 1.088
The result was, therefore, unaffected by the quantity of water taken with the salt: a conclusion similar to that arrived at by Aubert, in respect to the operation of sulphate of magnesia.

In order to show more distinctly that Glauber's salt has no purgative operation after it has left the intestinal canal and entered the blood, 15 grammes, in two ounces of water, were injected into the jugular veins of two dogs, but no effect was produced, with the exception of the feces being rather drier than before; whereas, when given by the mouth, this dose in both animals acted freely as a purgative. Even when 20 grammes were injected, only some fever was produced. In both dogs, the sulphate was expelled by the urine, no increased quantity of sulphuric acid being discoverable in the feces. These experiments show that the opinion, that Glauber's salt taken up into the blood, operates on the intestinal nerves, producing accelerated peristaltic movements, is incorrect.

In order to show the influence which difference of diffusion-power exerts on the rate of absorption, and thus to afford positive proof of the opinion of the author, 10 grammes of Glauber's salt were taken with 5 grammes of common salt, and the same symptoms followed as when the former was taken alone; but it was found that these salts did not appear at the same time in the urine. The common salt, which has a greater diffusion-power than Glauber's salt, was met with in the urine in proportionally large quantity in the first three hours. In the second three hours, in which the excretion of common salt lessened considerably, the quantity of Glauber's salt in the urine (which was trickling during the first three hours) increased, and reached its maximum about nine hours after injection, when the elimination of common salt had nearly ceased. The feces passed on the day following one of the experiments, contained an excess of sulphuric acid equivalent to a quantity of Glauber's salt, sufficient, with the excess in the urine, to make up 9·847 grammes out of the 10 grammes taken; but there was no excess of common salt.

Common Salt.—Fifteen grammes of salt were taken in three ounces of water; considerable thirst was produced, borborygmi, and disposition to stool, all of which lessened in three hours; and the stools which followed at the customary time, had the usual consistence. In twenty-four hours, 9·782 grammes of salt, in excess, had passed by the urine, and a similar result followed a second experiment: the feces next morning contained 0·0116 gramme of salt in excess. The conclusion is, that the greater part of the salt, after a short time, passes into the blood, and a part of it, in about six hours, is thrown out by the kidneys. There is this difference also between Glauber's salt and common salt, that whereas the whole of the former is discoverable in the urine and feces, this is not the case with the latter, a fact probably due to the numerous purposes to which it may be applied in the body. The disposition of common salt to pass quickly into the blood is in accordance with its great power of diffusion; and it is those salts whose diffusion-power is least which prove useful as purgatives.

On account of the purgative salts remaining in the intestinal canal, their apparent operation can be attained by means of small doses, repeated at intervals too short to allow of their absorption into the blood. In order to ascertain the behaviour of Glauber's salt in this respect, four doses of 5 grammes each were taken every three hours, and almost all drink was avoided. Three hours after the last dose a liquid evacuation occurred, and again on the following morning. The urine contained an excess of sulphuric acid,

\[
\begin{align*}
\text{On the 1st day, } & 3\cdot038 \text{ grammes, } = 12\cdot240 \text{ grammes Glauber's salt.} \\
\text{2nd } & 0\cdot230 \quad = 0\cdot927 \\
\end{align*}
\]

The excess of sulphuric acid in the feces was,

\[
\begin{align*}
\text{On the 1st day, } & 0\cdot022 \text{ gramme, } = 0\cdot089 \text{ gramme Glauber's salt.} \\
\text{2nd } & 0\cdot886 \quad = 3\cdot570 \\
\end{align*}
\]

In a second experiment, three doses of 5 grammes were taken with a quantity...
of water. An hour and a half after the third dose, an abundant fluid evacuation occurred, and on the following morning another of pappy consistence. The excess of sulphuric acid in the urine of the twenty-four hours was,

On the 1st day, 1.505 gramme, = 6.064 grammes Glauber's salt.
 2nd , 1.034 , = 4.166

The feaces contained sulphuric acid in excess,

On the 1st day, 0.969 gramme, = 3.904 grammes Glauber's salt.
 2nd , 0.225 , = 0.906

In the first of the above experiments, during the first nine hours, not much more than 4 grammes of Glauber's salt passed into the urine, whilst in this time, 15 grammes were taken, so that about 10 grammes were contained in the canal—a quantity which experiment had shown to be insufficient for a purgative operation. The first stool occurred after the fourth dose, when the quantity of salt in the canal exceeded 10 grammes.

Assuming, now, that it is established, that the acceleration of the peristaltic movements, and the small diffusion-power of Glauber's salt are two principal factors in the operation of the latter, the question arises as to what part the mucous membrane of the intestine plays in the proceeding. Dr. Buckheim explains the watery character of the feaces, by the salt holding back a quantity of water, with which it is combined in the intestines; and he thinks that the cessation of purging with the evacuation of the salt, and the entrance of common salt into the blood as usual, are opposed to the idea of any great affection of the mucous membrane, without which, increased secretion is not to be imagined. With a view, however, to establish his opinions by experiment, and assuming that phosphate of soda or Seignette's salt acted in a similar manner to Glauber's salt, he injected some Glauber's salt into the veins of a dog, and administered one of the former salts by the mouth; no excess of sulphuric acid was found in the feaces.

The operation of Glauber's salt being now established, Dr. Buckheim made use of this knowledge to aid in determining the operation of remedies used to check diarrhoea. The experimenters took 20 grammes of Glauber's salt, and managed to repress the evacuations by repeated doses of opium and morphia; but on the second or third day colicky pains occurred, and a mucous diarrhoea with much tenesmus; all this lasting several days, in spite of opium and other remedies. The experiments undertaken showed that opium and acetate of morphia were equally effective in restraining the stools. The opium did not impede the absorption of the Glauber's salt, a fact which corresponds with results previously obtained in respect of common salt. Five grains of powdered nux vomica did not affect the operation of Glauber's salt.

Lastly, four doses of 5 grains of tannic acid were taken after a dose of 20 grammes of Glauber's salt. The borborygmi and disposition to stool were less than customary, and the evacuations were delayed. The conclusion arrived at was, that the alteration which the mucous membrane suffers from the tannic acid is accompanied by a diminution of the peristaltic movements, but less considerable than when morphia is taken.

IV. Notice of the Leech-morass at Clairefontaine. By M. G. SOUBEIRAN.
(Jour. de Pharmacie et de Chimie, Jan. 1854, p. 1.)

M. BORNE having studied, on a small scale, the habits of this animal, has succeeded, at Clairefontaine, in rearing leeches for the market. The paper, whose title is given above, consists in an account of the arrangements of M. Borne for this purpose, and of the method he adopts of preserving, feeding, and propagating the leeches. The leech-morass is formed in a valley, with a peaty soil, in which a number of small ponds, furnished with aquatic plants, have been made, each six
metres* long, three metres wide, and one metre in depth, which he finds more convenient than ponds of a larger size.

Feeding.—M. Borne feeds the leeches with the fresh blood of oxen, sheep, or calves from the butchers, which is immediately beaten for the removal of the fibrine, and kept warm during its transit to the morass. All leeches are well fed before being introduced into the ponds, and those in the ponds are fed three times in a year,—namely, in the spring, in the middle of summer, and in the autumn, just before they bury themselves in the soil to pass the winter. By adopting this last precaution, as soon as the warm weather returns, they come out and copulate, and the cocoons have the fine time of the year for hatching; whereas, if not fed till the spring, they bury themselves in the soil during digestion of the meal, copulate late in the season, and the cocoons run the risk of perishing. To feed them they are removed from the pond, put into little flannel bags, and immersed in the beat blood, and left there for an interval of from six minutes to a quarter of an hour, or half an hour in the case of the very youngest leeches. They are then taken out, washed with tepid water, then placed in fresh water, and transported again to the ponds.

Propagation.—It has been noticed that leeches make their cocoons in the soft and moist earth, at a little distance above the level of the water, and the safety of the cocoons depends on the earth remaining moist; they are destroyed, however, if the earth becomes dry, or if the level of the water rises, so as to immerse them before the exit of the young leeches. In M. Borne's ponds, therefore, the water is always kept at a constant level. It is also known that the leech hollows out in the soft soil little conduits, in which the cocoons are deposited. Accordingly, M. Borne prepares little subterranean galleries in the edges of the ponds, into which the leeches may go, and where they deposit their cocoons. In order to avoid the mingling of the young leeches with the adult ones, which would throw obstacles in the way of future management, he removes the cocoons to the border of a new pond, where arrangements are made for their shelter, and passage into the water as soon as they are born. For the details of this arrangement, of the feeding process, and of the precautions necessary to preserve the ponds from the depredations of the enemies of the leeches, we must refer the reader to the original memoir.

V. Opium and its Adulterations. (Lancet, Feb. 11, 1854.)

On analysis of 23 samples of gum opium as imported, 19 were found to be adulterated, 4 only being genuine; the prevailing adulteration consisting of poppy-capsule and wheat-flour; many of the samples being adulterated to a very large extent; but in 2 cases, sand, in 1, sugar, and in another, gum were discovered.

On analysis of 32 samples of powdered opium, obtained from various wholesale and retail druggists in the metropolis, only one was found to be genuine, the principal adulteration, as in the previous case, being with poppy-capsule and wheat-flour. Four of the samples were further adulterated by the addition of powdered wood, introduced, no doubt, in the process of grinding.

According to the analysis of gum opium, as imported, the amount of alkaloids was found to vary from 2·7 to 14·0 per cent.; that is, in the proportion nearly of one to five. It is probable, however, that the specimen of Egyptian opium, which furnished only 2·7 per cent. of alkaloids, had been deprived of its morphia; and it was also adulterated with an enormous quantity of some gummy substance. The two gum opiums which furnished the next lowest amounts, were another sample of Egyptian opium, which contained only 3·7 per cent., and a sample of Turkey opium, which yielded but 4·2 per cent. of alkaloids.

The amount of alkaloids in the samples of powdered opium varied from 2·3 up to 12·2 per cent., or in the proportion of nearly one to six. The lowest amounts of alkaloids furnished by the powdered opium were 2·3 and 3·2 per cent.; these were, in all probability, exhausted opiums, which had been previously employed in the preparation of tincture.

* The metre = 1·0936 English yards.
VI. *The Application of Histology, or the Science of Tissues, to Pharmacy.* By Mr. Henry Sugden Evans. (Pharm. Jour., vol. xiii. pp. 309 and 408.)

We only regret that it is out of our power to do more than refer our readers to two valuable papers which have appeared in recent numbers of the 'Pharmaceutical Journal,' on a subject at once novel and interesting. The result of such inquiries as these cannot fail to be of importance both to the physician and to the druggist, in the detection of those sophistications of which powdered drugs especially are known to be the subject. The drugs whose microscopic characters are described, are rhubarb, ipecacuanha, white hellebore, turmeric, ginger, and jalap.

VII. *Essay on the Preparations of Squill.* By Dr. Chateau.

(Archives Générales, Jan. 1854, p. 53.)

The object of the experiments of Dr. Chateau was a reply to a question proposed by the Faculty of Medicine of Paris—"Determine by clinical observations what are the effects of the preparations of squill." In a résumé of the memoir presented to the Academy, M. Chateau states the powder, wine, vinegar, and oxymel of squills were employed; but the powder most frequently, on account of its action not being interfered with by any other constituent of the medicine.

His first experiments were made upon seven dogs, to whom he administered quantities of the squill varying from 40 grammes of the powder to 1 gramme, or their equivalent, of the wine of squill. In one of these experiments, 1 gramme of soft extract of squill was injected into the subcutaneous cellular tissue; in all the other experiments, the drug was introduced into the stomach. The effects produced were the following: The animals became dull, and this was followed by increase of the buccal secretions, nausea, efforts at vomiting, and by semi-liquid stools passed in small quantities; when the dose was sufficiently large, tremblings supervened, and paralysis of the posterior limbs, which soon extended to the anterior. After this, the animals appeared to regain their equilibrium, and then suddenly a convulsive attack occurred; they fell upon their side; there were some movements of deglutition, a little orthotonos, and death in from thirty-five minutes to one hour and fifty-five minutes after administration of the drug. When the dose was small, the same series of phenomena was exhibited, but more tardily; and death was delayed for twelve or fifteen hours. In all the experiments there was a remarkable diminution of the temperature of the body, as taken in the rectum, believed to be due to the hyposthenic action of the squill upon the nervous system. On examination of the bodies after death, the viscera were found congested, the blood black and thick, the bladder empty, or containing but little urine, the ganglia of the great sympathetic reddened, the cerebrum little altered, but the cerebellum and spinal cord softened sometimes even to diffuseness.

M. Chateau next relates the results of his observations on the human subject in disease, which had reference principally to the diuretic and laxative operation of the drug. He administered it in 4 cases of pulmonary emphysema, in 3 cases of albuminuria, 3 cases of abdominal dropsy, 1 of which was ovarian, 2 cases of pleurisy, 2 cases of pneumonia, 2 cases of phthisis, and several cases of rheumatism, only 1 of which is related in the original memoir. In these 17 cases, the operation of the squill was as follows:—In 7, it proved diuretic and purgative; in 2, simply diuretic; in 2, simply purgative; in 4, expectorant; in 1, diuretic and expectorant; and in 1 no effect was observed.

He noticed that when either the purgative or diuretic operation became excessive, the other immediately ceased.

The number of cases of each disease in which the squill was administered was too small to warrant the general therapeutical conclusions drawn by Dr. Chateau; we shall therefore content ourselves with noticing two points of interest con-
nected with the operation in the cases described. Of the cases of albuminuria, 2 were purged by the powdered squill without any increase in the secretion of urine; in the third case, where the wine of squill was employed, a diuretic effect followed; but in all three cases, the albumen in the urine was unaffected. In one of the cases of abdominal dropsy, where the powder proved diuretic and laxative, the dropsy was removed in less than two months.

The reply of Dr. Chateau to the question of the Academy is, "That squill has a direct hyposthenic action upon the ganglionic and cerebro-spinal systems, and that this action is exhibited at first by an increase of the urinary and intestinal secretions, and at last, if the dose of the drug be large, by paralysis and death."

Dr. Chateau prefers the powder for internal administration, next to this the wine of squill, and as an expectorant, the oxymel. He considers 10 to 15 centigrammes (from 1½ to 2½ grains) a good dose to commence with, and that it may be increased, after some days, to 35 or 40 centigrammes (5½ to 6 grains).

VIII. Influence of Digitalin upon the Excretion of Urea. By G. Siegmund.

The experiments related in this paper were made upon rabbits. The author, in each instance, first ascertained the quantity of urine and of urea normally secreted by the animal, and subsequently the quantity under the influence of the digitalin. The results are given in tables, which represent the actual quantity of food taken, and of excretion voided, and also the proportion of the latter to the former.

Rabbit 1.—The following table represents the results of four days’ observation prior to the use of the digitalin.

<table>
<thead>
<tr>
<th>Total of 1 days</th>
<th>Mean for 1 day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food 800 grams</td>
<td>200 grams</td>
</tr>
<tr>
<td>Quantity of urine 569 c.b. centim.</td>
<td>142.3 c.b. centim.</td>
</tr>
<tr>
<td>Weight of urine 582.6 grams</td>
<td>145.6 grams</td>
</tr>
<tr>
<td>Urea 10.448</td>
<td>2.612</td>
</tr>
<tr>
<td>Feces 0.6</td>
<td>0.15</td>
</tr>
<tr>
<td>1 gramme food = 0.71 c.b. centim. urine.</td>
<td></td>
</tr>
<tr>
<td>" " = 0.73 gramme urea.</td>
<td></td>
</tr>
<tr>
<td>100 c.b. centim. urine = 1.84</td>
<td></td>
</tr>
</tbody>
</table>

The dose of digitalin administered was at first one-sixteenth of a grain, but it was soon increased to 2 grains per diem. It produced no signs of depression; but, on the contrary, violent temporary disturbance, manifested particularly by acidity of the urine. The only striking effect upon the pulse was irregularity. The use of the digitalin was prolonged over ten days, and the following table exhibits the results:

<table>
<thead>
<tr>
<th>Total of 10 days</th>
<th>Mean for 1 day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food 196.4 grams</td>
<td>196.4 grams</td>
</tr>
<tr>
<td>Quantity of urine 1506 c.b. centim.</td>
<td>150.6 c.b. centim.</td>
</tr>
<tr>
<td>Weight of urine 154.18 grams</td>
<td>154.18 grams</td>
</tr>
<tr>
<td>Urea 21.434</td>
<td>2.143</td>
</tr>
<tr>
<td>Feces 3.7</td>
<td>0.37</td>
</tr>
<tr>
<td>1 gramme food = 0.76 c.b. centim. urine.</td>
<td></td>
</tr>
<tr>
<td>" " = 0.78 gramme urea.</td>
<td></td>
</tr>
<tr>
<td>100 c.b. centim. urine = 1.42</td>
<td></td>
</tr>
</tbody>
</table>

From which it appears, that, with nearly equal quantities of food, the quantity of

* A cubic centimetre = 0.061 cubic inch, or 0.001761 pint.
urine passed under the influence of the digitalin was increased by 8·3 grammes; but that, notwithstanding, 0·5 gramme less urea was excreted daily than before its administration.

Rabbit 2.—Observations prior to use of digitalin.

<table>
<thead>
<tr>
<th>Total of 4½ days</th>
<th>Mean for 1 day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>1210 grammes</td>
</tr>
<tr>
<td>Quantity of urine</td>
<td>912 cub. centim.</td>
</tr>
<tr>
<td>Weight of urine</td>
<td>934·9 grammes</td>
</tr>
<tr>
<td>Urea</td>
<td>13·225</td>
</tr>
<tr>
<td>Faeces</td>
<td>0·6</td>
</tr>
</tbody>
</table>

1 gramme food = 0·75 cub. centim. urine.
" " " = 0·76 gramme "
" " " = 0·0108 " urea.
" " " = 0·0005 " faeces.
100 cub. centim. urine = 1·45 " urea.

Under the use of similar doses of digitalin to those given to the first rabbit, still less effect was produced upon the pulse. There was no general disturbance, and the urine was never acid. In neither of the animals was the frequency of micturition affected. The following are the results of four days' administration of the digitalin:

<table>
<thead>
<tr>
<th>Total of 4 days</th>
<th>Mean for 1 day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>1311 grammes</td>
</tr>
<tr>
<td>Quantity of urine</td>
<td>1013 cub. centim.</td>
</tr>
<tr>
<td>Weight of urine</td>
<td>1031·3 grammes</td>
</tr>
<tr>
<td>Urea</td>
<td>14·995</td>
</tr>
<tr>
<td>Faeces</td>
<td>1·3</td>
</tr>
</tbody>
</table>

1 gramme food = 0·78 cub. centim. urine.
" " " = 0·78 gramme "
" " " = 0·0107 " urea.
" " " = 0·0009 " faeces.
188 cub. centim. urine = 1·33 " urea.

For each gramme of food then taken, there was an increase of 0·03 cub. centim. of urine excreted. In this instance, however, the quantity of urea excreted, in relation to the food, was not remarkably lessened (as observed in the former case), although its proportion, in a given bulk of urine, was lessened, in consequence of the augmented excretion of water.

The deficiency of our knowledge respecting the properties and operation of the alkaloid delphinin, has led the author of this paper to their new and complete investigation. The delphinin which was employed in the experiments, whose results we are about to detail, was obtained from Messrs. Frommsdorf, of Erfurt.

Dr. J. L. VAN PRAAG administered the alkaloid to animals from each class of the vertebrata, and in the paper under our notice, gives the results of his observations on fishes, frogs, birds, and mammalia, and relates at length the experiments which he instituted. The mammals which he selected for experiment were dogs, cats, and rabbits. In these, asphyxia, as a result of paralysis of the heart (Herz-lähmung), was among the principal phenomena; whilst paralysis (Lähmung) of the nerves of motion, and, at a later period, of those of secretion and the special senses followed. Dogs were least of all affected when the poison was given to them in a piece of meat, since the two were soon vomited together. It operated
more powerfully when it was administered by the anus, or introduced into a wound of the integument. But death followed almost suddenly, so that scarcely a minute intervened, upon injection into a vein, from arrest of the heart’s action; the animals, in consequence of discontinuance of respiration, gasp for breath with open mouth, and in a short time death follows, in the midst of severe tetanus. On injection of the alcoholic solution into the anus in dogs, repeated evacuation of feces at first occurred, and then salivation. The walk became staggering and uncertain. There arose great adynamia, in consequence of which they leaned against anything for support, until at last they fell down. The sensibility of the skin diminishes simultaneously with the lessening power of the motor nerves, until anesthesia is complete. The respiration is at first increased, panting and accompanied by howling; in addition to this, tenacious, clear mucus accumulates in the glottis and larynx, which renders respiration still more difficult. At a later period, the frequency of respiration diminishes, until at last the act occurs very rarely, or ceases altogether. The functions of the brain and of the organs of the senses are little affected, until the disturbance of the circulation and respiration increases. In the instance of cats, into whose anus the alcoholic solution was injected, the evacuation of feces and flow of saliva were also increased, and there were observed, at first, frantic and wild leaps, the symptoms of adynamia occurring at a later period. The phenomena of the circulation and respiration are the same as in dogs, and both cats and dogs show signs of a tickling sensation in the mouth. In rabbits, also, after the injection into the anus, active and strong symptoms of reaction appear, as in cats, terminating, however, in adynamic symptoms. When the delphium, in a fatal dose, was introduced, in cats, into the subcutaneous cellular tissue of the back, the poison operated first of all on the sensory nerves at this spot, and induced symptoms resembling those arising from a powerful irritant. The animals exhibited great disquiet, bristled up their hair, set up their back, rolled on their back, and finally lay down. Gradually, however, in this case also, the action of the poison upon the heart and lungs appeared. When, in the instance of dogs, the poison was given dry with the food, the operation of the poison soon became apparent upon the mucous membrane; there were observed vomiting, and an excessive itching in the mouth, so that the animals rubbed their lips and mouth with their feet, and rubbed their nose upon the ground. With this, also, arose profuse salivation. The principal points observed on dissection of the poisoned animals were, fulness with blood of the membranes of the brain, of the heart, of the larger venous trunks, and of the liver; fulness of the gall-bladder, and a collection of mucus in the air-passages. Nothing was noticed respecting the condition of the kidneys. In one case, air was found in the veins of the membranes of the brain.

X. Some Remarks on the Vegetable Astringents, with special relation to the Root of the Arbutus Unedo. (Bull. Général de Thérapt., April, 1854, p. 304.)

M. Guyot Danney having presented a memoir to the Société de Pharmacie, in which he drew the conclusion, that various preparations of the root of the arbutus unedo might in all cases be substituted for extract of rhatany, M. Soubeiran was deputed to report upon this subject, and was led to make observations upon the vegetable astringents most frequently used, with a view to determine the place which the extract of arbutus should occupy amongst them. 1. The degree of astringent impression made by solutions of a certain quantity of the different extracts upon the mouth, gave rise to their arrangement in the following order of sapidity:—Pegu catechu; Jamaica catechu; Amboyna kino; Indian catechu; extract of rhatany; extract of monesia; extract of tormentil; extract of oak-bark; extract of bistort; extract of arbutus-root. 2. The colour produced, by perchloride of iron, with the different solutions, was as follows:—Pegu catechu, green; Indian catechu, extract of monesia, and the two kinds of kino, brown;
extract of rhatany, dirty grey; the others blue. In order to obtain an approxi-
mative estimate of the proportion of tannin in each, he diluted each of these coloured
liquids with water, until the colour ceased to be evident, and found that one
million parts of water ceased to be coloured when the solution contained only
8 parts of Pegu catechu, 10 of Jamaica kino, 12 of Ambonya kino, 14 of Indian
catechu, 15 of extract of monesia, 15 of extract of rhatany, 35 of extract of tor-
mentil, 50 of extract of bistort, 55 of extract of oak-bark, and 160 of extract of
arbutus-root. The order of astringency thus attained corresponds with the effects
of each as observed in medical practice.

XI. On Poisoning by Solanin. By Dr. Fraas. (Archiv für Pathol., Anatomi,
and Physiol., und für Klinische Medicin, Bd. vi. Heft 2, p. 226.)

An opinion has been prevalent, that certain diseased states in domestic animals
arose from the deleterious action of solanin contained in potatoes, on which they
had been fed. In testing the truth of this opinion, Dr. Fraas made the experi-
ments, of which the following account is an abstract. Otto had previously found
that the ripe potato, unspouted, contained only a trace of solanin, that more of
this principle was discoverable in the stalk of the plant, but the greatest quantity
in the sprouts, especially the shorter ones. A similar result was obtained by
Berchtold, in the spring of 1853. In 100 grammes of the green potato-sprouts,
he discovered 4 milligrammes of solanin; and another time, in the very short
sprouts, 12 milligrammes.

The first observations on animals were made on two pigs, to one of which were
given sprouted potatoes boiled, together with the water in which they were boiled,
which necessarily contained all the soluble solanin; while to the other were given
the boiled potatoes without the liquor, the food being, consequently, assumed to
be free from solanin. This was continued from the 15th of April to the 8th of
July, without any signs of ill health appearing in either animal, notwithstanding
that the outbreak of the disease in pigs was mentioned in the journals as having
appeared.

The next observations were made with pure solanin, 10 grains of which were
given to a pig, without the least injurious result, and the next day 20 grains were
given to the same animal, with no further result than producing a diminished
appetite and frequent white thin stools, the animal being quite well again the
next day. On the third day, 20 grammes of acetate of solanin were given without
effect.

Five grains of pure solanin were given to two dogs, the only results of which
were vomiting and dilatation of the pupil. Ten grains were now given, and the
oesophagus was tied; strong efforts at vomiting were made, and there was much
vascular excitement, but the dose was not fatal.

The sulphate of solanin was injected into the veins of dogs. In nine dogs,
death resulted from doses of from 5 to 2 grains thus administered; smaller doses
only served to excite the circulation. In the case of one dog, into whose right
jugular vein 5 grains were injected, respiration suddenly became difficult, accele-
rated, and spasmodic, with convulsions and tetanic extension and drawing back of
the head, and death occurred in seven minutes.

Two grains of solanin were injected into the right jugular vein of a horse without
any result being observed. Into the jugular vein of another horse, 30 grains of
sulphate of solanin were injected. The animal was suddenly attacked with severe
difficulty of breathing, and exhibited a great increase in the action of the heart,
with convulsions, so that he appeared to be dying. In the course of twenty
minutes he appeared quite recovered.

Two grains of acetate of solanin were injected into the rectum of a rabbit. The
symptoms produced were heaviness, apathy, and slowness of movement; dilatation
of the pupil followed, increased activity of the circulation and respiration, and
convulsions, which, however, ceased in about two hours’ time. The animal now
moved but little, but when it did attempt locomotion, it dragged itself along with
difficulty; but no special loss of power of the hinder extremities was observed.
It died in six hours.

To a second rabbit, a certain quantity of acetate of solanin was given daily by
the mouth, commencing with one grain. After several days, no effect being pro-
duced, the dose was increased to 2, and after another interval, to 3 grains. Some
days after this, the appetite lessened, but no other alteration being observed, the
dose was increased to 4 grains. At last, the animal became heavy, slow in its
movements, remained lying the greater part of the day, and at last died, without
paralysis or any considerable fever having been observed.

Dr. Fraas is inclined to the opinion, that the pernicious effects which often
follow feeding upon raw potatoes and potato-stalks, are due to the great quantity
of alkaline and earthy salts which they contain, and never to the solanin. An
analysis of the potatoes used in his experiments, gave the following results: In
100 parts of dried potatoes there were 4·22 per cent. of ash; or in 100 parts of
fresh potatoes, 1·17 parts of ash. 100 parts of ash contained—

<table>
<thead>
<tr>
<th>Compound</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphuric acid</td>
<td>2·90</td>
</tr>
<tr>
<td>Phosphoric acid</td>
<td>12·37</td>
</tr>
<tr>
<td>Silicic acid</td>
<td>A trace</td>
</tr>
<tr>
<td>Chlorine</td>
<td>4·23</td>
</tr>
<tr>
<td>Potash</td>
<td>52·23</td>
</tr>
<tr>
<td>Soda</td>
<td>A trace</td>
</tr>
<tr>
<td>Alumina</td>
<td>A trace</td>
</tr>
<tr>
<td>Oxide of soda</td>
<td>A trace</td>
</tr>
<tr>
<td>Magnesia</td>
<td>2·11</td>
</tr>
<tr>
<td>Lime</td>
<td>3·68</td>
</tr>
<tr>
<td>Carbonic acid</td>
<td>20·18</td>
</tr>
<tr>
<td>Loss</td>
<td>2·0</td>
</tr>
</tbody>
</table>

The potatoes contained no solanin.

ANNALS OF PHYSIOLOGY.

BY HERMANN WEBER, M.D.,

Physician to the German Hospital.

I. FOOD AND DIGESTION.

Researches on the Organs of Digestion and Absorption. By Dr. Donders.

Donders has performed some experiments in order to elucidate the influence
of the *pancreatic juice* on the digestion and assimilation of fat. The result of
these experiments is in accordance with those of Frerichs, Bidder, Schmidt, Lenz,
and Herbert, proving the incorrectness of Bernard’s† view, that the fatty matters
of the food are emulsified, and thus made fit for absorption by the action of the
pancreatic juice.

* See British and Foreign Medical-Chirurgical Review, No. 25, pp. 257, 258.
II. Respiration and Circulation.

1. An analysis of Donders' former essay on the 'Mechanism of Respiration and Circulation,' is given in the January number of this journal.* The present essay relates to some phenomena connected with an increased or diminished respiratory pressure. The effect of the increased respiratory pressure (compression of the thorax with prevented escape of air) was—1. In 7 out of 9 cases, increase of frequency of the pulse; in 2 out of 9, decrease. 2. In all cases, great weakness of the pulse and of the sounds of the heart. 3. In most cases, complete imperceptibility of the sounds of the heart. 4. In 2 out of 9, also, the pulse became imperceptible. Donders differs, therefore, from Ed. F. Weber,* in having found increase of frequency of pulse as the general effect, while Weber had found decrease; on the other points, both authors are in accordance. He explains the weak action of the heart by the scanty flow of blood to the right cavities. The principal phenomena produced by diminished (negative) respiratory pressure (deepest possible inspiration) were—1. In all cases the pulse became less frequent and weaker. 2. In some cases, disappearance of the sounds of the heart, and even of the pulse, if the lungs are kept for some seconds in the state of the deepest inspiration. We have no space to enter more fully into the explanation of these phenomena, as proposed by Donders. The chief points are, that the lessened pressure on the heart and thoracic vessels is considered to lead to an increased flow of the venous blood to the right heart, in consequence of which at first more vigorous contractions are excited, but soon, through the negative pressure, the left ventricle is prevented from expelling the blood, the heart remains in the state of diastole, &c. &c.

2. 3. The method of Buys-Ballot and Fabius is based on—1. The height of the trunk (from the protuberant occiput to the os coccygis); 2. The circumference of the thorax in the height of the nipples; 3. The mobility of the chest—that is, the difference between the deepest inspiration and expiration; 4. The age of the person. Of these four points, according to the method of the smallest quadrato, a formula was constructed. The height being called l, the circumference a, the motility m, and the age e, the formula would be:

\[l \times a \times (50^2 + 16\cdot 5 m + 0\cdot 37 m^2 - 2\cdot 5(35 - e)) \]

Without further entering into the correctness of this formula, Donders objects that it can show, at the utmost, what the vital capacity is, but not what it normally ought to be. By diseases, by the occupation and exercise, the various factors

* Two important errata must be noticed in the analysis of January:
 1. p. 162, line 30, read 7-5 mm, instead of 9-5 mm.
 2. p. 262, line 45, read forced expiration, instead of forced inspiration.

† Müller's Archiv, 1854, p. 88.
of the formula may be altered. As, for instance, the circumference of the thorax may become considerably increased by gymnastics; the formula would then calculate for such a case the vital capacity too high. Donders prefers, therefore, the old method of Hutchinson to that of Fabius.

4. Lenz performed his experiments on calves and dogs, making use of the hemadromometer and hemadynamometer. To examine into the relation between the three factors in question, he altered the frequency of the contractions of the heart by acting on the vagi, by introducing into the system, digitalin, tartrate of antimony, and chloroform. 1. Irritation of the Vagi produced (a) retardation of the pulse; (b), diminution of the lateral pressure of the blood; (c), diminution of the velocity of the circulation. 2. Section of the Vagi: (a), increase of the frequency of the pulse; (b), lateral pressure at first increased, then irregular, then sinking below the standard; (c), velocity changed in a similar manner. 3. Digitalin: (a), by small doses, decrease, by large doses, increase of frequency of the pulse; (b), lateral pressure at first increased, while the frequency of the pulse is decreased, then it gradually sinks. The increase of frequency was at first synchronous with increased pressure. (c), The velocity of the blood did not exhibit any remarkable change. 4. Chloroform (through the stomach to complete necrosis): (a) frequency of the pulse unchanged; (b), lateral pressure exhibited scarcely any abnormal alteration; (c), velocity much diminished. 5. Tartrate of Antimony (injected into the veins): (a), pulse in some cases scarcely influenced, in others very irregular and intermittent; (c), velocity in most cases at first decreased, then increasing. 6. In normal cases, great fluctuation in the frequency of the pulse, without any remarkable alterations in the two other factors. From all these observations and experiments, it results that, as yet, no relation can be traced between the frequency of the pulse, the lateral pressure, and the velocity of the blood.

5. In opposition to the theories of Baumgartner, Hamernik, Nega, and also to that of Skoda, and the older schools, Dr. Wachsmuth explains the actions of the valves of the heart, by assuming "that the gradually increasing resistance against the vis a tergo suddenly becomes preponderating by the remission of an active increase of the latter, which may be accompanied or followed, or may not be so, by an active increase of the resistance." According to Wachsmuth's view, the mechanism is the following. The auricle is filled and in the state of diastole at the close of the systole of the ventricle; as soon as the diastole of the latter takes place, a part of the blood contained in the auricle must enter into the ventricle; in consequence of this, the auricle contracts, or better, diminishes in size, becomes more narrow without muscular action (by passive contraction). In the meantime, the vis a tergo continues to convey the blood from the veins to both cavities, and only towards the close of the diastole of the ventricle an active muscular contraction of the auricle takes place. The sudden remission of the latter leads to the preponderance of the resisting power of the blood in the ventricles, effecting the sudden closure of the auriculo-ventricular valves, which process is, of course, much assisted by the ensuing contraction of the ventricles. Through this not only the complete closure is explained, but also the production of a musical note. The principal function of the auricle, therefore, is that of regulating the filling of the ventricles, forming the intermedium for the admission of the blood from the veins into the ventricles, and thus preventing the contraction of the ventricle being an impediment to the circulation; the short obstacle opposed to the flowing-off of the venous blood by the auricular contraction, produces, on account of the elasticity of the vessels, no venous pulsation, nor does it hinder the circulation.

6. Dr. Vierordt has constructed an instrument by which the phenomena of the arterial pulse (degree of motion of the artery, time of systole and diastole, &c.) are accurately delineated, such as to show, at once, in a figure, the rhythm, the velocity, the degree of equability of the single pulsations, &c. &c. We refrain, at present, from a description of the instrument, as we shall have occasion to return to this subject when Vierordt has published the result of his observations and experiments.
III. Lymphatic System and Ductless Glands.

3. *On the Spleen, and some Peculiarities of its Capillary System.* By Dr. Fuhrer. (Vierordt’s Archiv. Band xiii., pp. 140. 1854.)

1. Donders found the sheath of the lymphatic glands to consist of a thin fibrous layer, in which, however, he could not detect the fibrous cells and muscular fibres, as described by O. Heyfelder, nor was he able to excite any contraction by means of galvanism. From the sheath filaments enter into the interior of the glands, dividing the whole more or less completely into lobules, which, by further splitting of the fibrous filaments, are subdivided into smaller and smaller partitions. Within these partitions, the walls of the lymphatic vessels are very thin and indistinct; they contain holes of various sizes, some of which are large enough to permit the entrance of cells from the parenchyma. Donders supposes from this, that the lymphatic glands are fabrics of the lymph-corpuscles; that particles from the parenchyma, which is in a constant state of change, and in an intimate connexion with the blood through the rich distribution of capillaries, constantly enter into the lymphatic vessels, while some constituents of the chylus and lymph become admixed to the blood. With Bricke and Frey, Donders is inclined to consider the glandulae Peyerae as lymphatic glands. The researches of Dubois-Reymond, and Wiedemann make it to him very probable, that the function of secretion as well as that of absorption, through the lymphatic vessels, is in close connexion with galvanic currents.

2. Kölliker considers the lymphatic glands as consisting of sheath, cortical, and medullary substance. His description of the structure of the sheath is similar to that of Donders; the partitions of cortical substance are called by him alveoli; their size varies from \(\frac{1}{4}'' \) to \(\frac{1}{2}'' \). These alveoli contain a grayish pulpy substance, consisting of a very tender vascular network, of spindle-like, radiating cells, anastomosing one with another, and of an alkaline juice, in which round cells are floating, much like those of the lymph or chyle (0.003'')—0.005''). This juice appears to him to be not a peculiar component of the glands, but chyle or lymph. The medullary substance consists of the larger ramifications of the bloodvessels, and a copious plexus of lymphatic vessels, connected together by a dense intercellular tissue, without any alveolar structure. Concerning the course of the lymphatic vessels, they pierce, as vasa inferentia, the sheath of the gland on several points, ramify into finer and finer branches towards the alveoli, into which they probably open; the alveoli thus forming not mere excavations, but corpora cavernosa lymphatica. From these excavations, lymphatic vessels with walls take again their origin, proceed into the medullary substance, forming there the vascular plexus, from which they issue as vasa efferentia. The view of the lymphatic vessels really opening into the alveoli, and of the latter being a continuation, a part of the lymphatic vessels, is principally founded on the following points:—1. That no lymphatic vessels can be discovered within the spongy tissue of the alveoli. 2. That the cells are freely floating within the contents of the alveoli. 3. That by injection at first, the vasa inferentia and the alveoli are filled, and only by increased force also the vessels of the medullary substance and the vasa efferentia. The smallest ramifications of the arteries form a very rich meshwork within the walls of the alveoli; the lymph and chylus contained therein are therefore in a constant interchange with the blood; the lymphatic glands can, on that account, not be considered as mere plexuses of lymphatic vessels, but they are organa sui generis, for which the term "glands" ought to be retained. Their chief function is the formation of the greater part of all the lymph- and chyle-globules, which, no
doubt, takes place principally within the alveoli, where the lymph, being under a lower pressure than the blood, constantly receives from the latter some of its ingredients. That this growing of cells must be connected with a chemical change in the blood and lymph cannot be doubted; but Kolliker does not venture to proffer anything in this respect beyond what is generally adopted. He alludes to the faculty of the lymphatic glands to contract and to become larger (through the contractile elements of the blood and lymphatic vessels), as being important for the performance of their function, without, however, entering into details.

3. Führer considers the spleen to be at the same time an organ of regressive metamorphosis, as also a laboratory of the blood-globules. Concerning the first function, the spleen acts like the other secreting glands, only with this exception, that the products of the metamorphosis are not excreted by a proper duct, but are carried off with the blood by the vena lienalis, and conducted to other organs of secretion, to undergo there further change. The blood-globules are formed, according to Führer’s view, within a peculiar adventitious system of capillaries. These adventitious transitory vessels originate from the normal capillaries themselves, analogous to the new vessels in pseudo-membranes. They commence as small excrescences, which elongate into thin processes, forming on some points of their course various swellings, cellular cavities, in which the blood-globules are developed. New ramifications proceed from these, forming anastomoses with others, and communicating through these with veins, into which they pour out their contents. As soon as the circulation and formation of blood becomes sluggish, these adventitious vessels collapse, and a part of them perishes altogether; on the other side, their development becomes very active, connected with swelling of the whole spleen, and increase principally of the Malpighian bodies during and soon after the process of digestion—i.e., during the period of a more energetic tendency of the blood to the spleen, with increased activity in the formation of blood. The peculiar fibrous cells (Faserzellen) described by other authors as forming part of the parenchyma of the spleen, are cells or cellular bodies of the just-described adventitious vessels; they are, therefore, fragments of the apparatus for the formation of blood, the nuclei seen within them represent the commencement of new blood-globules. As corroborating his view, Führer refers to the phenomena consequent on the extirpation of the spleen—i.e., vicarious swelling of the lymphatic, principally mesenteric, glands, which exhibit an unusual development of the normal capillary vessels, and besides this, the adventitious vascular system just described in the spleen.

IV. Metamorphosis of Matter, Organs of Secretion and Excretion.

2. On the Doctrine of the Secreting Cell. By Dr. Luschka. (Vierordt’s Archiv, xiii. 1854.)

4. On the Influence of Digitaliae, and Section of the Vagus on the Excretion of Urea. By Dr. Siegmund. (Virechow’s Archiv, vi. 2, pp. 238 ss. 1853.)

6. On the Faculty of Absorption of the Human Skin. By Dr. Homolle. (L‘Union, Nos. 117, 118, 119, 1853; and Schmidt’s Jahrb., 1854, iii. pp. 290 ss.)

1. Falck and Scheffer performed their experiments on pigeons kept as much as possible under equal circumstances. The weight of the animals, of the food consumed, and of the excreta (collected on glass plates), was daily noted. The annexed table will exhibit the points of interest in the shortest and most palpable
manner. Under A are the figures belonging to pigeons I. and II., who were supplied with solid and fluid food *ad libitum*; under B, those of the same pigeons deprived of fluid food; under C₁, C₂, C₃, those of the same pigeons, supplied with solid and fluid food after they had been deprived of the latter during four days (under C₁ the numbers of the first day of supply; under C₂ the average numbers of the first four days; under C₃ those of the four following days, i.e., from the 6th to the 9th inclusive); under D, those of the same pigeons dying from want of fluid food. The weight of the pigeons is reduced to 1000, and the other figures in the same proportion.

<table>
<thead>
<tr>
<th></th>
<th>A.</th>
<th>B.</th>
<th>C₁.</th>
<th>C₂.</th>
<th>C₃.</th>
<th>D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>97</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>317</td>
<td>267</td>
</tr>
<tr>
<td>Wheat</td>
<td>83</td>
<td>88</td>
<td>19</td>
<td>32</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Ingesta</td>
<td>190</td>
<td>197</td>
<td>19</td>
<td>32</td>
<td>297</td>
<td>347</td>
</tr>
<tr>
<td>Excreta</td>
<td>66</td>
<td>73</td>
<td>11</td>
<td>19</td>
<td>56</td>
<td>74</td>
</tr>
<tr>
<td>Perspiration</td>
<td>114</td>
<td>121</td>
<td>69</td>
<td>60</td>
<td>135</td>
<td>98</td>
</tr>
<tr>
<td>Egesta</td>
<td>180</td>
<td>194</td>
<td>80</td>
<td>79</td>
<td>192</td>
<td>170</td>
</tr>
</tbody>
</table>

It scarcely requires to be remarked that the word perspiration is used by the authors for the loss through the lungs and the skin. We farther extract the following figures:

<table>
<thead>
<tr>
<th></th>
<th>A.</th>
<th>B.</th>
<th>C₁.</th>
<th>C₂.</th>
<th>C₃.</th>
<th>D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Pigeon I.: Ingesta : Egesta</td>
<td>100 : 100</td>
<td>100 : 415</td>
<td>100 : 50</td>
<td>100 : 75</td>
<td>100 : 100</td>
<td>100 : 282</td>
</tr>
<tr>
<td>Ingesta : Excreta</td>
<td>100 : 37</td>
<td>100 : 59</td>
<td>100 : 15</td>
<td>100 : 27</td>
<td>100 : 41</td>
<td>100 : 61</td>
</tr>
<tr>
<td>Ingesta : Perspiration</td>
<td>100 : 63</td>
<td>100 : 359</td>
<td>100 : 34</td>
<td>100 : 51</td>
<td>100 : 59</td>
<td>100 : 220</td>
</tr>
</tbody>
</table>

In Pigeon II.: Ingesta : Egesta | 100 : 99 | 100 : 245 | 100 : 49 | 100 : 83 | 100 : 100 | 100 : 300 |
| Ingesta : Excreta | 100 : 37 | 100 : 59 | 100 : 21 | 100 : 33 | 100 : 32 | 100 : 73 |
| Ingesta : Perspiration | 100 : 63 | 100 : 186 | 100 : 28 | 100 : 59 | 100 : 68 | 100 : 227 |

The figures under C₁ show how much the ingestion of water is increased on the first day after privation of fluid food, while the egestion does not surpass the standard in the same proportion. C₂ shows that also during the following days the water is still consumed in a larger quantity, the difference being, however, not so great; also the ingestion of solid food exceeds the average; the sum of the ingesta outweighs, therefore, that of the egesta. In C₃ we observe both returning to the normal proportion. B and D make it evident that during the privation of water also the quantity of solid food consumed is much below the average. Pigeon I. died in 12 days, pigeon II. 13 days after the commencement of the privation of water; loss of weight in I. 44.5 per cent., in II. 47.2. The post-mortem examination exhibits the phenomena of death from asphyxia.

2. While it is generally admitted that the secretion of bile, semen, with gastric juice and that of several other glands, is effected by means of a metamorphosis of cells, the products of the plexuses of the brain, the pleura, the pericardium, peritoneum, and membrane hyaloidea, are by most physiologists considered as having their origin in *simple transudation of the plasma saeum* through the coats of the vessels. Luschka doubts the correctness of the latter view, ascribing the secretion also of the serous fluids (cerebro-spinal fluid, humor pleural, pericardii, peritonei, and the humor aqueus and vitreus) to the agency of *secreting cells*. In favour of his view he draws attention to the great physical and chemical difference between these fluids and the *licor saeuminis*; to the limited quantity of fluid con-
tained in those cavities during the state of health, while no mechanical impediment for farther transudation can be recognised. Besides this, Luschka succeeded in detecting cells in connexion with all the structures in question, the physical and chemical constitution of which must tend to corroborate his view. The plexuses of the ventricles of the brain exhibit on their surface several highly developed layers of epithelium—the common finely granulated epithelial cells with nucleus, in various stages of development; spherical bodies with few granules and a nucleus; spherical bodies with a nucleus but without granules, with a very thin membrane; vesicles of a considerably greater size without either granules or nucleus, transparent like water, with a very delicate, scarcely perceptible membrane, visibly dissolving under the microscope by imbidding more water—the latter are only detected soon after death, perishing almost immediately in consequence of their delicate nature. This may be considered as the cause of their not sooner having been described in man; but it is also just that changeable nature which must make us conclude that they serve the purpose of chemical transformation of the liquor sanguinis. The liquor cerebro-spinalis is, therefore, according to Luschka’s view, the product of this continually growing and perishing process of these cellular bodies. Also on the surface of the pleura, peritoneum, and pericardium, besides the usual epithelial cells, others are found (immediately after death) analogous to the transparent, easily perishing bodies just described; and a similar formation is met with in the membrana hyaloidea.

3. Donders could not detect the hepatic cells in the bile even of the smallest gall-ducts, as described by Wharton Jones; but in the secretion of the pancreas and salivary glands he always found some glandular cells. The mucus is considered as the product of the epithelial cells which may communicate their contents to the surrounding fluid as well by bursting as by endosmosis and exosmosis.

4. Dr. Siegmund’s paper will be analyzed in another place. We, therefore, limit ourselves here to mention that he comes by his experiments (on rabbits) to the conclusion that the abnormal increase of urea, whether produced by digitaline or by action on the vagus, is the consequence of a constitutional condition analogous to what is generally called “fever” (pyrexia) without any local affection of the kidneys or specific influence on those organs.

5. Dr. Goll made his experiments on large dogs. The collection of the urine was performed by opening the abdominal cavity on both sides, and attaching thin glass canulas to the ureters. In all the observations the urine was collected during at least twenty minutes, in general, however, during thirty to forty-five minutes. The pressure of the blood was measured in some experiments, according to Volkmann’s method, by the “kymographon;” in others by the “planimeter” of Wetti.* The pressure of the blood was varied: 1. By irritation of the n. vagus, the experiments of Ludwig and Hoff‡ having proved that by irritation of the vagus the pressure is diminished. Goll is, however, aware that by this method, besides the heart, also the brain and the other nervous system may be influenced, and, through these, the secretion of the urine. 2. By vena-section and subsequent re-injection of the defibrinated blood. 3. By ligature of the carotids, the cervicales ascendentes, and in one case also the iliac communes.

The result of these experiments was, that during the state of irritation of the vagi, and while the quantity of the circulating blood was diminished (vena-section), the quantity of urine was lessened, while it was increased by ligature of the arteries. At the same time, Goll made the curious observation, that the quantity of urine secreted by the one kidney was scarcely ever equal to that of the other kidney, nor did any proportion exist between them, but the same kidney secreted now more and then less than the other; and yet the pressure of the blood and its composition (the two factors generally considered as most important) must have been altered simultaneously, and in an equal manner for both kidneys. We cannot help, therefore, assuming the existence of other unknown conditions, influencing the secre-
tion, which may be looked for perhaps in the muscular coats of the smallest arteries, in the capillaries, and in the walls of the urinary tubules. At the same time, however, we must conclude that, besides these unknown circumstances, the pressure of the blood in the arterial system exercises an important influence on the secretion of the urine.

6. Dr. Homolle bases his inferences on the changes which he observed in the urine after bathing, and principally in its reaction and specific gravity. The bath consisted, in part of the experiments, of mere water; in another part, of a solution of mineral salts and organic alkaloids. In another series of experiments, the endosmotic power of the skin, deprived of fat, is compared with that of the membranes of the intestinal tract. The chief inferences to which Homolle is led are, that water is absorbed through the skin during bathing; that the mineral salts are decomposed before entering into the system through the skin, only some of their bases being absorbed, while they pass unchanged through the intestinal membranes. The supposition, however, that the increased quantity and diminished specific gravity of the urine after bathing are attributable only to absorption of water, is not proved by the author in his present essay. Homolle further remarks:—1. That even the urine which had been acid before bathing, becomes alkaline after a bath. 2. That the urine becomes more alkaline after a bath with soda muriate, potass. iodid., and potass. ferro-cyanide, than after a bath with potass. carbon. 3. If potassa is the base of the mineral salt in solution, the quantity of potassa in the urine becomes increased. 4. This increase of potassa is in combination with carbonic acid. 5. No iodine is found in the urine after a bath with potass. iodid. 6. The chlorides of the urine are not increased after a bath with seasalt or ammonia muriat. 7. Even after a bath with acid salts the urine becomes alkaline. 8. No other bases but soda and potassa enter into the urine. 9. Organic substances, added to the bath, exercise no influence on the constitution.

V. Nervous System.

2. On the Nerves of the Vessels of the Stomach and the Function of the Middle Fasciculi of the Spinal Marrow. By Dr. Schiff. (Vierordt's Arch. für Phys. Heilk. Band xiii. pp. 31 ss. 1854.)

3. On the Accommodation of the Eye. By Prof. L. Fick. (Müller's Arch. p. 449. 1853.)

4. On the Relation of the Invisible Rays of high Refrangibility to the Media of the Eye. (Müller's Arch., p. 459. 1853.)

1. The means proposed by Dr. Miquel consist in the application of various degrees of pressure to the stem of a nerve, during a longer or shorter space of time. Dr. Miquel found that the feelings of numbtess, formication, pain, &c., produced by pressure, appear sooner, are more intense, and last longer, when the nervous system is in a less vigorous state than otherwise. He states that in the same subject, and on the same day, the numbtess could be produced sooner in the evening (already after about three minutes) than in the morning (after six to fifteen minutes), and that whenever the right arm was more used than the left, a remarkable difference was observed in favour of the arm less used. Miquel made his experiments on the nervus ischiad. and nervus medians. To the former the pressure was applied by leaning the weight of the whole body on the spot, where it passes between troehant. maj. and tuber isch. to the posterior part of the thigh; to the latter, by compressing it on the external side of the arter. brachialis. Dr. Miquel invites inquiry into these methods, which, if made more accurate,
might, he thinks, become useful as well in a merely physiological as also in a pathological point of view.

2. Dr. Schiff, experimenting on rabbits kept under the influence of chloroform, found that the motions of the stomach usually caused by irritation of the thalami opticci, the pedunculi ad cerebrum and cerebellum, the pons and the hemispheres of the cerebellum are impaired by the section of the nervi vagi, while this operation is not followed by any alteration in the structure of the membrana mucosa. Dr. Schiff concludes from these facts that the vagi contain almost only the motor nerves for the stomach, scarcely any trophic nerves. The thalami opticci and crura ad cerebrum are connected with the nervous fibres for the vessels of the stomach (probably through the sympathetic), as section of the thalamus opticus, or the crus cerebri of either side, is followed, after eight days, by stagnation of the blood and softening of the mucous membrane, and after fourteen or eighteen days, by partial softening of all the membranes, with exception of the peritoneum. Section of the spinal marrow below the origin of the nervi vagi has the same effect as that above their origin. Section of one half gives rise to the same changes as that of both halves of the spinal marrow. The same is the case with the section of merely the anterior fasciculi. Section of the middle fasciculi has no influence on the nutrition of the stomach. Dr. Schiff, therefore, not adopt the opinion of Bellingeri, that the middle fasciculi contain the vegetative nerves of the stomach; but they are intimately connected with the respiratory functions, as their section produces paralysis of the respiratory muscles of the corresponding side, while a similar result is not observed either after section of the anterior or after that of the posterior fasciculi. Dr. Schiff's experiments are therefore in accordance with those of Valentini and Longet, and with the theory proposed by Sir Charles Bell.

3. Fick maintains the view now almost generally adopted, that the mechanism of the accommodation is to be found in the alteration of the form and position of the lens. He considers the uvea to be the apparatus which effects, besides the regulation of the quantity of light (through the motion of the pupil), the accommodation for near and remote objects, by means of a change of the position and form of the lens, placing varying quantities of blood now before then behind the lens.

The facts on which this view is based are the following:—1. The very limited connexion between the vessels of the chorioidea and the iris. 2. The facility with which, by injection from the single vena vorticose and ciliary arteries of the chorioidea, a considerable part of the less minute arteries and veins, forming the larger meshes of the chorioidea, and a corresponding portion of the processus ciliareis, is filled,—while the capillary layer of the chorioidea (membr. Ruyeschiana) is filled only by increased force, the vessels of the iris remaining empty. 3. The vascular arrangement in the chorioidea and processus ciliareis exhibits no analogy with the vascular apparatus of other organs destined for their nutrition, exhibiting scarcely any capillary system except that of the membr. Ruyeschiana, but an almost immediate transition from the arteries into the veins. 4. The perfectly normal state of the vascular apparatus in the uvea of Albino's demonstrates that the production of pigmentum can certainly not be the only function of this apparatus. 5. The existence of so strong a junction between the capsula lentis and the chorioidea where the prolonged folds of the chorioidea project into the posterior chamber of the eye. 6. The contractility of the processus ciliareis, which L. Fick assumes as well from experiments performed with A. Fick (having produced contraction of the congested ciliary process by means of electricity), as also from the circumstance of the processus ciliareis being, after death, always found empty, except after death by strangulation,—as also from pathological facts. 7. The peripheral part of the lens is softer than the central.

Fick sees in the erectile and contractile vessels of the processus ciliareis an appa.
ratus by which, the form of the bulbus remaining unchangeable, in the state of
impletion of the vessels, pressure is exercised on the anterior capsula of the lens,
while through their depletion into the venæ vorticose a pressure is exercised on
the posterior capsula, effecting the lens slightly to advance towards the anterior
chamber, and to become at the same time rather more convex—a process in which
the difference in the consistency of the fluids of both chambers is likewise of
importance.

4. Donders applied the discoveries of Sir John Herschel, Brewster, and prin-
cipally Stokes,* that a solution of the sulphurs quinae makes the invisible rays of
high refrangibility lying beyond the violet (the so-called "chemical" rays) appear
in a blue light, to the investigation of the relation of these rays to the media of
the eye. It is well known that Brücke† had lately concluded (from his experi-
ments with tincture of guaiacum) that these chemical rays are absorbed by the
media of the eye, that they are invisible on account of their being prevented from
reaching the retina. Donders placing the transparent media of the eye in the
way of the invisible rays of high refrangibility, and behind the media of the eye
a paper screen painted over with a solution of sulphur quinae, found the latter
appear almost as intensely blue as if the media of the eye had not been in the
way of the rays. Brücke’s view, that the cause of the invisibility lies in the media
of the eye, can after this not be adopted, and it appears, therefore, that the
human retina itself is insensible for these chemical rays.

5. Meissner endeavours to prove in the present (as already in a former‡) essay,
principally by theoretical remarks, that the sense of touch is a special sense, that
the specific perception of this sense consists "in a psychical state of excitation, the
essential and distinctive property of which is that it possesses in itself a com-
pelling reason for the soul to form an idea of an external object in contrast to
anything belonging to our own body." The sensation of touch appears to Meiss-
ner not identical with that of pressure. The so-called sensory papillae are, ac-
cording to this view, the specific organs for the sense of touch, in the same manner
as the retina is the organ for the sense of sight.

QUARTERLY REPORT ON SURGERY.

BY JOHN MARSHALL, F.R.C.S.
Assistant-Surgeon to the University College Hospital.

I. OPERATIONS.

2. Plastic Operation. By Dr. CARNOCHAN. (American Medical Monthly, Jan.,
 1854.)
 p. 219.)
 Gen. de Thér., tom. xlvi., p. 41.)
5. On the Treatment of Periodic Haemorrhage after Operations. By M. BOUISSON.
 (Bull. Gen. de Thér., tom. xlvi., pp. 12 and 102.)

1. M. BAUDENS has put in practice a happy idea in rhinoplasty—viz., that of
saving the cartilages of the nose, if possible. He prefers taking the flaps for the
new nose from the cheeks and sides of the old one; and in an example of cancer of

† Müller's Archiv, 1845 & 1846.
‡ G. Meissner: Beiträge zur Physiologie der Haut. Leipzig, 1853.
the end of the nose, which appears to have affected the skin and subjacent tissue, without involving the cartilages, he has saved these latter, and so has preserved an efficient support for the flaps of skin afterwards made to cover them. The preservation of the nasal cartilages wherever practicable is, of course, a point gained in the subsequent preservation of the form of the nose, and the prevention of the too common flattening of the newly-formed part.

2. A very bold and successful attempt at restoration of the upper lip has been made by Dr. CARNOCHAN, of New York; an operation which is rarely called for in comparison with those on the lower lip. The patient was a lady, aged 39. When about 22 years of age, a pimple appeared on the upper lip, which enlarged, ulcerated, was considered cancerous, and removed by operation. She remained free from disease for 8 or 9 years, when the cicatrix became swollen and again ulcerated; and, with some interruptions, the disease progressed until April, 1853. At that time the whole thickness of the upper lip was destroyed up to the nose. Nearly its whole length was ulcerated; the right ala nasi was detached. Edges of ulcer hard; no glands enlarged. Two quadrilateral flaps were made in the cheeks, by incisions passing outwards from the base of the nose, and from the angle of the mouth as far as the masseter muscle. The diseased edges were all cut off, and the flaps being detached on their under surface were made to slide over the jaw, and meet in the middle line. A great number of pins were used. The cure was rapid, and the deformity left behind very slight. So complete a change was effected in the general health and comfort of the patient, that she felt as if she "inhabited another body."

3. An ingenious instrument for seizing and excising a portion of the tonsil, manageable by one hand, has been invented by M. MAISONNEUVE. It consists of a modification of the tonsil-guillotine, and the adaptation of a sort of fork, by which the redundant part of the tonsil is transfixed from before backwards, and brought away, after it is cut off by a ring-shaped blade, which moves from behind forwards. It would be impossible to convey a correct idea of the instrument without a figure.

4. In a recent case of rectal cancer in a female, M. DEMARQUAY removed the lower part of the rectum all round, and then, having dissected up the healthy edge of the bowel, he drew it down, and attached it to the skin at the margin of the anus. The wound was thus much diminished in extent. A supple cicatrix was the result, and the function of the part was quite restored.

5. M. BOUSSON, of Montpellier, has brought prominently forward the fact that distinctly periodic losses of blood are occasionally met with as one of the forms of haemorrhage after surgical operations; and that this intermittent form of haemorrhage must be carefully distinguished from other kinds dependent on local accidents or conditions of the wound, on particular states of the blood or circulatory system, on arrest of any ordinary discharge, either catamenial or haemorrhoidal, or on physical or moral excesses. The previous abode of the patient, in a malarious locality, the regular periodic character of the haemorrhage, the co-existence of a certain amount of febrile disturbance, and the occurrence of the bleeding at the crisis of the attack (as it were, as the substitute for sweating), are the principal grounds on which we may diagnosticate this form of consecutive haemorrhage. In certain cases all these conditions are fulfilled; but in a few, M. Bouisson believes that the intermittent character only is to be detected, there being no regular febrile access, just as we observe in the masked fevers, or fièvres larvéees. Finally, the most interesting fact connected with these periodic haemorrhages is, that they yield positively and promptly to full doses of quinine, even when other internal treatment, as by astringents, has apparently failed.

M. Bouisson remarks that this periodic haemorrhage from wounds after opera-
tions, has received little attention from surgical observers, probably owing to its rarity, except in localities prone to the development of malarious influences. In his special "treatise on periodic diseases without fever," M. Casimir has mentioned periodic bleedings from mucous surfaces, but not from wounds. Professor Sanson has briefly alluded to periodic secondary hemorrhages, deriving his knowledge also from observations in Montpellier. Besides this nothing but scattered allusions to the subject exist in surgical literature.

The special cases brought forward by M. Bousillon may be thus analyzed. They are four in number—viz., an amputation of the great toe, in a girl 18 years of age; amputation of the leg in a male aged 36 years; amputation of the thigh in a male of 21 years; and removal of the forefinger, with its metacarpal bone, for encephaloid disease of the latter, in a female aged 34.

As to the influence of locality, the first patient came from the neighbourhood of Arles, in which intermittent fevers are so common. The second was placed in a particular ward of the Hospital Saint Eloï, in which intermittent fever often made its appearance amongst the patients. No special local circumstances could be traced in the third and fourth cases.

The periods at which the hemorrhage began in each case, the number and dates of its recurrences, and the mode in which it was apparently affected by the administration of quinine, were as follow. In the first case, it began on the evening of the fifth day after the operation, before any ligatures had come away; it recurred at the same hour on the sixth and seventh days; during the early part of the eighth day, 10 grains of the sulphate of quinine were given, and the bleeding never recurred. In the second case, the hemorrhage first happened on the ninth day after amputation, no ligature being loose; it recurred at the same hour on the following day; on the eleventh day, 12 grains of quinine having been irregularly given, it again happened at the usual hour, but in more moderate quantity; on the next day, the remedy being persevered in, it ceased. In the third case, the hemorrhage began on the evening of the eleventh day, and recurred at the same hour on the thirteenth and fifteenth days, missing the intermediate days. It was diminished on the fifteenth day by 10 grains of sulphate of quinine, and arrested entirely by its repetition on the seventeenth day. Powerful astringents had been first tried. In the fourth and last case, the first hemorrhage took place at seven o'clock in the morning of the fourth day after the operation; it was renewed at precisely the same hour on the fifth. Quinine being administered, it did not happen on the sixth day; but the patient having then neglected to take that medicine, a fresh bleeding happened at seven in the morning of the seventh day; but by subsequent attention and an increase of dose, further bleeding was arrested. In all four cases, great care was taken to determine that the hemorrhage was a general oozying, and not from any particular vessel. Sometimes even compression was employed, but without success. In all cases, the quinine seemed alone to arrest the hemorrhagic attack; and its use was invariably continued for some days after the bleeding had ceased.

As to the general symptoms accompanying the attacks of bleeding, they were, in the first and second, well-marked, consisting of a cold and then a hot stage, at the height of which the bleeding occurred. In the third case there was no cold stage, but merely a slight febrile accession. In the fourth example no general disturbance at all was manifest: the remarkable periodicity of the attacks alone serving as a guide in the diagnosis and treatment.

M. Bousillon refers generally to other cases, collected from the clinical records of Montpellier. It is proper to add that he by no means neglects the ordinary rules of treatment in cases of consecutive hemorrhage. That an intermittent or periodic consecutive hemorrhage from the general surface of a stump occasionally happens—that its cause is constitutional and similar to that which gives rise to intermittent fever—and that it yields promptly to quinine—are conclusions to which M. Bousillon's observations irresistibly lead. Whether the bleeding is to be regarded, as he believes, as the substitute for the ordinary critical discharge—
of sweating—and whether a periodic hemorrhage without febrile disturbance is truly analogous to the masked fever, are points perhaps for further investigation. We commend the subject to our surgical friends living in malarious districts.

II. AFLECTIONS OF THE GENITAL ORGANS.

2. The Treatment of Nocturnal Emissions. By M. LAROCHE. (Ibid., tome xlvi., p. 76.)

1. M. MAISONNEUVE has lately employed a mode of dividing strictures of the urethra from within outwards, which differs but slightly in principle from methods already in use. The instrument, however, differs materially. It consists of a bistouri caché, or of the lithotomy knife of Frère Côme, somewhat modified to suit its new office. The new urethrotomy knife is longer, more slender, and bent sideways; the sheath is smaller and cylindrical, especially at its free end. The hinge and handle are so arranged that, with the thumb, the blade can be projected from the side at pleasure. The instrument is introduced through the stricture with the blade concealed, and is then withdrawn with the blade projected, so as thus to divide the walls of the urethra at the seat of stricture. The incision is recommended to be lateral, and to be made on both sides.

It will be seen that this operation resembles very closely in principle the numerous improved methods of dividing the stricture internally, which followed on the publication of Mr. Stafford’s paper on the “Lancet-stillette” methods, we mean, in which the urethral walls are divided by a cutting blade, or blades, projected from a tubular instrument, and so withdrawn after this latter has been passed through the stricture. These M. Maisonneuve calls urethrotomy from behind forwards, and his own method from within outwards. Certainly, the distinction appears to us more verbal than real; and the cutting stilette is as neat and manageable as the new urethrotome.

M. Maisonneuve insists on the value of this mode of dividing a succession of constrictions, and remarks that perineal abscess does not follow the operation if the incisions be lateral, and not on the middle line downwards.

2. M. LAROCHE relates the case of a youth, aged 18, whose nightly pollution was instantly stopped on taking a dose of digitaline equal to three grains of the powder of the leaves. The remedy was continued (more or less?) for forty-five days. The symptoms returned only twice—viz., on the eleventh and thirtieth nights after the treatment began. MM. Corvisart and Brughtmans also advise this application of digitaline.

3. An enlarged or varicose condition of the veins of the labia majora passing up to the inguinal ring in the female, has been described by M. MORPAIN under the title of varicocele in the female. This is not the place to discuss the anatomical questions which this appellation would suggest, but certainly one may say that the spermatic veins in the male are those chiefly concerned in varicocele in that sex, so that the condition above described in the female is not strictly analogous to male varicocele. The affection, however, exists, arising generally during pregnancy, and is occasionally very troublesome. M. Morpain has now recorded two cases, one treated successfully by M. Debout, by micturial mictions (!) and pressure; the other by Hugnier, who employed Vidal’s method of ligaturing, or constricting the veins by means of two line wires of brass, which are passed on each side of the vessels, and are then twisted together at their ends. Three such ligatures were required.
III. Affections of the Rectum.

On Imperforate Anus. By Dr. Chevers. (Indian Annals, No. I., p. 296.)

Dr. Norman Chevers, in a short paper, full of matter, discusses the varieties of this most intractable deformity in the male infant, and gives the particulars of two fatal cases in which the intestine communicated with the urinary passages. Considered morphologically, the classification which Dr. Chevers has adopted is imperfect, but practically it is useful. In the one set of cases, the only defect is a contraction or obliteration of the anal orifice: the treatment of these is simple, obvious, and generally successful. In another set of cases, the rectum, or pelvic portion of the alimentary canal, is absent; there is no anus; and the colon, ending in a cul-de-sac opposite the sacral promontory, may or may not communicate with the urinary passages either at the bladder, or frequently at the membranous part of the urethra. An occasional escape of meconium by the urethra will of course disclose such a communication, but a communication may exist without such an escape. An examination with a probe (per urethram) should always be made, to determine the question, if possible, for thus we may obtain a guide to reach the distended gut. Where such a communication exists, however, the termination of the case is usually fatal; where it does not, the operation may be successful. In the performance of this, Dr. Chevers recommends the use of a half-inch trocar, as being neither too large nor too small, and that it should be passed up boldly through a perineal incision in the middle line, as high as the promontory of the sacrum, where the distended gut is most likely to be met with. In a third set of cases, the obliteration may affect any part of the intestinal canal, from the duodenum to the sigmoid flexure; whilst the anus and pelvic part of the rectum are very much contracted. A probe passed up is soon arrested, and bougies merely dilate the bowel, and admit of an examination by the fingers. It is necessary, in such cases, to decide whether an operation should be done by puncture from the dilated pouch, or, for artificial anus, over the seat of the colon. The position of the distension in the abdomen is one guide to the seat of the abnormal obstruction. Distension may not be felt per rectum, although the distended bowel be the colon at the sacral promontory: an operation per rectum should therefore be tried first, if the lower part of the abdomen be much distended.

In all cases, the operator should wait for the lowest pervious part of the bowel to be fully dilated; but no longer than when vomiting has set in.

QUARTERLY REPORT ON MIDWIFERY.

By Robert Barnes, M.D. (Lond.)
Physician-Accoucheur to the Western General Dispensary.

I. Diseases of the Unimpregnated Uterus. Ovarian Disease.

1. The Surgical Treatment of certain Fibrous Tumours of the Uterus, herefore considered beyond the resources of Art. By Washington L. Atlee, M.D. (Trans. of Amer. Med. Assoc. 1853.)

2. The Pathological Changes in the Mucous Membrane of the Uterus, &c. By Dr. C. Mayer. (Verhandl. der Gesel. für Geburthilfe in Berlin. 1853.)

3. A Successful Case of Ovariotomy. By Dr. Gurilt. (Verhandl. der Gesel. für Geburthilfe. 1853.)

1. Dr. Washington L. Atlee has, in a prize essay, published in the 'Transactions of the American Medical Society,' put forth some rather bold innovations in
the surgical treatment of fibrous tumours of the uterus. He classifies these tumours according to their situation, into extra-uterine, intra-uterine, and intra-mural. He does not appear to regard tumours of any kind or situation to be beyond the reach of surgical treatment. He believes that the true fibrous tumour occasionally degenerates into cancerous disease.

One of Dr. Atlee's principles of treatment is based upon the following view: "These tumours are very imperfectly organized; consequently their vitality may be very easily destroyed. A section made through their thin investing membrane will sometimes be followed by the death of the whole mass. This may be owing to the admission of atmospheric air causing it to degenerate. Indeed, it would appear that the action of the oxygen of the air, like a portion of yeast in a fermentable mass, may originate in any part of a fibrous tumour, an action of cremacausis which may extend throughout the whole."

Another mode of treatment is thus stated: "The excessive haemorrhages which sometimes occur, arise not from the uterus itself, but from the vessels of the membrane which covers the tumours. These floodings, I think, occur in this way: the veins of the investing membrane become at times greatly engorged, in consequence of their circulation being impeded by the muscular action of the uterus, while the arteries, by reason of their more resisting coats, continue to supply them with blood. The point of least resistance must necessarily be at the os uteri, as all other parts are compressed by the contracting uterus. The veins on the surface are thus distended. The mucous membrane is delicate, and offers but little resistance to the rupture of these vessels. Now the practice which I wish to inculcate, as based upon the above fact, and which has invariably arrested haemorrhage instantaneously, is, during hemorrage, to pass the bistoury along the vagina into the cavity of the uterus, and make a very free incision into the most exposed portion of the tumour."

As the most comprehensive way of conveying some idea of the operative proceedings of Dr. Atlee, and their results, we extract the headings of the cases related, with brief remarks in illustration.

Case 1. "Mrs. M., 49 years old; tumour intra-uterine, nearly its entire surface scaled to the interior of the uterus, even down to the edge of the os tinece; the whole tumour removed; supposed weight, ten pounds; recovered; death subsequently from inflammation of the lungs." The plan resorted to, was by successive operations to separate the adhesions, and to force the tumour lower into the pelvis by ergot. Portions of the tumour were then cut off by the bistoury. The next step was to bring away pendulous portions with the cranial perforator. After persisting in this course for a considerable time, the uterus being supported externally, Dr. Atlee "succeeded in breaking up the whole internal structure of the tumour, and in scooping out a large quantity of it." This proceeding was repeated some days after. Every one will share in the regret expressed by the author, "that an imprudent exposure to cold, and a subsequent alarm, interfered with the recovery of the patient, by establishing a fatal disease in the lungs at the very moment when the patient herself, her friends, and the surgeons were congratulating themselves on the successful issue of this unique case."

Case 2. "Mrs. J. M., aged 49; tumour intra-mural, having been developed in the posterior wall of the uterus, and expanding that wall into a cyst inclosing it; the whole tumour removed; supposed weight, four or five pounds; recovered." A sketch illustrating this case represents the tumour very much larger than the uterus itself. A similar treatment by ergot and incisions through the tumour was adopted. Dr. Atlee remarks, that although a long and deep section of the tumour and its coating was made, no haemorrhage followed, notwithstanding severe floodings had previously occurred. The operation attempted was that of enucleation; but the greater portion of the mass gradually wasted away by a species of decomposition.

Case 3. "Mrs. J. M'B, aged 30; tumour intra-uterine; os tinece thick and closed; whole tumour removed; supposed weight, six or seven pounds; recovered. Subsequent reproduction of the tumour; again removed; recovered."
CASE 4. "Miss M. T., aged 33, tumour intra-uterine, its entire surface intimately incorporated with the interior of the uterus; its removal attempted by gastrotomy, which failed; subsequent recovery, and an attempt made to remove it per vias naturales; death from erysipelas."

CASE 5. "Miss M. B., aged 36; tumour intra-uterine, and distended the uterus to the size of full pregnancy; os tinctae closed; cervix entire and dense; orifice very small; the whole tumour removed; supposed weight eight or nine pounds; recovered." Ergot, detachment of the adhesions, and cutting into the substance of the tumour so as to induce decomposition, were the means employed. The cervix uteri was first incised so as to facilitate its expansion.

CASE 6. "Mrs. S. B. K., aged 42; tumour intra-mural; was developed in the posterior wall of the cervix, expanding it into the form of a cyst; occupied the abdomen to the height of the umbilicus; patient bloodless from repeated floodings, and her life in imminent hazard from present hæmorrhage; bleeding ceased immediately on operating. (a long histology was introduced into the cavity of the uterus, the edge turned backward upon the tumour, the posterior wall of the cervix and os uteri, down through the corresponding wall of the vagina which formed the antero-inferior covering of the tumour cut through, the tumour incised, enucleation; removed the whole mass, weighing nine or ten pounds, at once through the os externum. Death from anæmia."

CASE 7. "Miss A. B., aged 49; tumour intra-uterine, and sealed to the interior surface of the uterus, extending to within one inch of the umbilicus; the cervix was lost in the tumour, and the os was firm and ring-like; removed one-third of the tumour; died suddenly from disease of the heart." Operation: ergot, detachment of adhesions, incisions into tumour, incisions of os uteri, crotchett to aid in disintegrating tumour.

CASE 8. "Miss H. B., aged 31; tumour intra-uterine, and sealed to the interior of the uterus; very prominent, and extended above the umbilicus; cervix entire and moveable on the tumour; os tinctae closed; supposed weight seven or eight pounds; recovered." Operation: os and cervix opened by the knife; the tumour incised, degeneration (sloughing) induced; ergot.

CASE 9. "Mrs. E. B., aged 36; tumour intra-mural; cervix uteri bent against the tumour at an acute angle; operative measures (ergot, incisions of os and cervix, and into tumour) discontinued before the tumour entirely disappeared; recovered."

CASE 10. "Miss E. K., aged 35; tumour intra-mural, very prominent above the pubis, extends upwards within 2½ inches of the umbilicus; cervix folded up against the tumour; tumour as large as a child's head; removed in detached portions; apparent convalescence; death from peritonitis; disease malignant." Operation: ergot, incision into tumour, partial enucleation, putrefaction induced.

CASE 11. "Mrs. E. W., 47 years; tumour intra-mural; the whole anterior wall nodulated from the fundus to the os tinctae; patient perfectly anæmic; incised the whole length of the uterus; recovered." In this case, the removal of the tumour does not appear to have been undertaken: the incision was intended to arrest the haemorrhage, which it is said to have accomplished.

CASE 12. "Mrs. E. A. M., aged 42; tumour extra-uterine or pelvic; the uterus and bladder raised into the abdomen; gastrotomy; non-removal of the tumour; recovery from the operation; subsequent operations per vias naturales; tumour diminished in size; recovered." The subsequent operations were—incisions into the tumour, partial enucleation, setting-up of evacuation.

CASE 13. "Mrs. W. G., aged 62; tumour intra-uterine; attached to cervix; tumour removed; recovered from the operation; apprehension of cancerous degeneration."

CASE 14. "Mrs. S. G., aged 49; tumour intra-mural; having been developed in the anterior wall of the uterus, and expanding that wall into a cyst enclosing it; the whole tumour removed; supposed weight, seven or eight pounds; recovered."
Operation: ergot; incisions into tumour; partial enucleation; removal of portions by crotchet and forceps; induction of eremacausis in remainder.

2. DR. MAYER, after adverting to the statement of Dr. Robert Lee, that out of 1000 dissections of women, only 20 exhibited disease of the uterus, and to the similar statements of Messrs. Hewitt, Pollock, and Gray, remarks, that Virchow has recently turned his attention to the morbid alterations of the uterine mucous membrane in the dead body, and has found them of frequent occurrence. DR. Mayer observes that, in the living body, these pathological changes are remarkably common; that they are found at every age, in children, virgins, young and old women, in the barren, and in those who have borne children. The various diseases of the uterus are the constant companions of nervous affections of every kind; and it may be asserted that very few hysterical females are free from uterine affections—that is, diseases of the mucous membrane, erosions, and the further development of these into ulcerations. In the last two years and a half, DR. Mayer has met with 14 retroversions, 65 retroflexions, 44 anteverisions, and 51 anteflexions of the womb; 21 polypi, and 26 ovarian tumours.

In another communication (p. 79), DR. Mayer stated his opinions as to the use of the speculum. He gives the following view of the pathological conditions of the os uteri and cervical canal, that may be detected by the speculum:—I. The catarrhal affections, subdivided as follows: 1. Erosions, excoriations of the lips of the os uteri; 2. Chronic catarrhal ulceration of the lips and of the cervical canal; 3. The aphthous form of the lips; 4. The follicular ulceration of lips and cervical canal—diseased follicles of the mucous membrane, ocella Nabothi—polypi of the mucous membrane; 5. Papillary degeneration of the mucous membrane of the os and cervical canal: the hemorrhagic form; the knobby or granular form; the fungous form, with small soft granulations; 6. The varicose ulceration with enlarged capillaries, and the telangiectatic swelling of the lips. II. The syphilitic ulceration. III. The phagedenic ulceration. In addition to these, fibrous polypi emerging from the os, the cauliflower exccrescence, and scirrhous ulcerations, may also be discovered.

The author discusses the question: In what diseases of women is the speculum useful? His answer is, not only in all disturbances of the functions of the sexual organs, in irregular, scanty, profuse, or painful menstruation, in sterility, in disposition to abortion, in hemorrhages, in painful or difficult micturition, in obstinate constipation, especially in all painful sensations in the pelvic organs, but also in all nervous affections, in hemiplegia and palsy, in neuralgia of the extremities, in hyperesthesia of the most different nervous tracts, in hysterical suffocation, in returning cardialgia and colics, and even in disorders of the mind. The physician will thus frequently discover the right clue to a rational treatment in the numberless affections of the nervous system.

3. DR. GURDE relates the history of a successful case of ovariotomy by Langenbeck. A single woman, aged 34, had borne an ovarian tumour for five years. An incision two and a half inches long was made in the linea alba. The cyst punctured, about nine quarts of fluid were abstracted, and the sac was drawn out. The pedicle was transfixed, and ligatures applied. The wound was closed by the knot-suture, and ice-water compresses applied. The after-treatment consisted in a bleeding on the evening of the operation, and repeated doses of morphia. The cure was completed in two months. The extirpated sac showed a thick-walled simple cyst, bigger than a man's head. It was probable that the left ovary was removed with the tumour, since several smaller cysts were found attached.

4. DR. BRADFORD relates a successful instance of ovariotomy. An unmarried lady, aged 21, had been suffering from an ovarian tumour for twelve years. The tumour was of large size, rising to the ensiform cartilage; and upon the anterior superior part above the umbilicus there was a hard, bony substance, imbedded in
the sac, and about the size of a saucer. An incision in the median line, five inches long, was made. The cyst was found strongly adhering to the omentum at the upper part; it became necessary to extend the incision four or five inches higher. The bands connecting the tumour to the omentum were very large and firm, and were inserted by several points into the bony substance. It required considerable force to break them up. The tumour, when removed, weighed forty-one pounds. The surface of the sac on the inner and front part was rugous, and studded over with innumerable small particles of bone. The ligature came away six weeks after the operation. Seven months after the operation the patient was reported in good health, having gained flesh.

Dr. Bradford states, that out of ten cases of ovarian disease examined by himself and Dr. Dunlop, they had operated in four, the result being in all these cases successful.

II. PREGNANCY, AND THEORY OF PARTURIATION.

1. On the Duration of Pregnancy, the Causes of Birth, and the Mode of Uterine Contraction. By Dr. GUSTAV. VEIT. (Verhandl. der Ges. fur Geb. — Berlin, 1853.)

2. Three Cases of Albuminuria during Pregnancy. By Dr. HECKER. (Op. cit.)

1. DR. GUSTAV. VEIT has communicated an elaborate essay upon the duration of gestation, the causes of labour, and the mode of uterine contraction.

1. On the Duration of Pregnancy.—It is admitted that the period of fructification of the ovum is the only terminus a quo which can serve for the precise reckoning of gestation. We can at most determine the period of the fruitful coitus; never of the fructification itself. We have good reason to conclude that between these two periods, not hours only, but days, may intervene.

The author has tabulated 45 cases from Reid, Montgomery, Girdwood, Rigby, Lockwood, Lee, Desormeaux, Dewees, Beatty, Skey, M’Ilwain, Ashwell, Cederschjold, and others, in which the date of impregnation appeared to be fixed by a single coitus. From this table it appears that the shortest pregnancy was one of 263 days, and the longest 300 days, leaving a variation of 37 days. Labour came on 8 times between the 263rd and 270th days; 25 times between the 271st and 280th; 7 times between the 281st and 290th; and 5 times between the 291st and 300th days. The mean was 276.93. It is obvious that these results can only furnish untrustworthy and uncertain conclusions, from the limited number of observations.

The author next examines the evidence derived from the observations of Tessier, Lord Spencer, and Krahmer, upon the duration of gestation in animals. He observes in these also a great variation as to the time. That males are carried somewhat longer than females results from the observations of Spencer and Krahmer.

The impossibility of determining the date of the fruitful intercourse has driven obstetric practitioners and women to estimate from the day of the last menstruation. This method has of late received a sanction from the observation, that an ovum ripens and escapes from the ovary at this time, if not exactly at the end of menstruation, at any rate in the latter half of its duration. (Bischoff.) It is said: “The period when menstruation should have returned for the tenth time is the period of labour;” and since 28 days is stated to be normal menstruation-type, the 280th day from the last appearance of the menses is given as the date of labour. Precise observations upon this point are yet very deficient in number. Tabulating those of Reid, Merriman, and Cederschjold, it appears that out of 757 cases, 14, or 1.85 per cent., labours took place in the 36th week; 27, or 3.56 per
cent., in the 37th; 72, or 9.51 per cent., in the 38th; 117, or 15.45 per cent., in the 39th; 202, or 26.65 per cent., in the 40th; 167, or 22.06 per cent., in the 41st; 98, or 12.94 per cent., in the 42nd; 40, or 5.28 per cent., in the 43rd; 11, or 1.35 per cent., in the 44th; 5, or 0.66 per cent., in the 45th; and 1, or 0.13 per cent., in the 46th week.

In the interval of four weeks between the 267th and 294th days, only 77.13 per cent. of all the births took place; whilst the extreme limits were the 248th and 316th days,—a range of 68 days.

Devilliers found a mean of 27.4 days; Merriman, of 280; Cederholm, of 276; Reid, of 278.8; but of the total of the observations collected by the author, the number 278.5 is obtained. This number differs from the mean obtained from the observations of cases of single coitus—viz., 276.93—by 1.57 only. This would appear to support the opinion that conception follows shortly upon a fruitful menstruation.

Another question is, as to the relation between the menstrual periods and the duration of pregnancy. The law that the duration of pregnancy is a multiple of the menstrual period has, until recently, only been applied to the normal type of 28 days: Cederholm, however, lays it down that the duration of pregnancy is governed by the duration of the individual menstrual period, and that the first is always ten times the latter. Cederholm found that the greatest number of births took place between the 270th and 290th days, but that on the intermediate days few births occurred. The key to this appeared to be discovered in the frequent variation of the menstruation-cycle between 27 and 29 days. He observed that, in women whose menstrual period bore the 28 days type, the duration of pregnancy was 280 days; and that in one of the 34 days type, pregnancy lasted quite three or four weeks over 280 days, and that, moreover, in this last case, the menstruation-period and gestation terminated together. Experience, however, does not bear out Cederholm's law. Berthold observed, in 7 cases, that whereas, multiplying the menstruation-cycle by 10, he obtained 285, 291, 295, 298, 301, 303, and 305 days, labour came on on the 273rd, 279th, 284th, 286th, 287th, 290th, and 291st days.

Krahmer's observations, moreover, do not bear out the opinion that there is a constant relation between the heat-periods and gestation-periods of animals.

Dr. Veit concludes that actual experience does not supply a definite answer to any of the questions relating to the duration of pregnancy.

II. On the Cause of Labour.—The greater part of the researches hitherto published have only an historical interest. The cause has been sought in one of three things:—1. In the pressure of the presenting part of the child, and the stretching of the circular muscular fibres of the uterus by the longitudinal fibres; 2. In the excessive development of the whole organ; and 3. In the menstrual congestion. The influence of the menstrual congestion is inadmissible. Kiwisch has shown that the continuation of the periodical discharge of ova during gestation is theoretically improbable, because it would be aimless; and looking to experience, the cessation of the monthly flow of blood during gestation and lactation is opposed to this doctrine. The general barrenness during lactation proves the ripening of ova ceases during this time. Moreover, in animals, the heat ceases as soon as fructification takes place, and returns only after delivery. All direct observations, again, show that in woman, during gestation, no new ovum is developed in the ovary. The author has never seen a freshly-burst follicle in the bodies of puerperal women.

He submits, that there is a period when the growth of the uterus no longer keeps pace with that of the ovum. When this harmony is so disturbed, then is there an irritation acting upon the uterine nerves, through the stretching consequent upon the expanding strength of the ovum. Analogy shows that Nature employs a similar agency in the case of other hollow organs provided with muscles: as the bladder and rectum, which are excited to contract by the quantity, not the quality, of their contents. The author approves the opinion of those who do not
place the date of the first pains in one of the last days before the end of labour, since in the last two or three weeks of gestation feeble contractions occur.

III. On the Mode of Contraction of the Uterus.—Kiwisch and Scanzoni represent the contractions as taking place simultaneously throughout the whole organ: Baudelocque expressed the same opinion. Wigand states that contraction begins at the neck of the uterus. Others believe that it begins at the fundus, and thence spreads over the organ. The author enters upon a rather warm criticism of the arguments of Scanzoni. He contends that Scanzoni's views as to the reflex nature of the contractions are not borne out.

If we seek to determine the question à priori, resort is made to experiment on animals. In these, peristaltic movements are observed, beginning at the tubal ends of the horns, and spreading in waves towards the mouth of the womb. (Valentin, Weber.) The human womb differs from that of animals only in this, that the middle portion is more developed than the horns. What does experience teach? By tactile examination, Litzmann and others have acquired the conviction that every pain begins in the fundus; most observers, however, contend that the changes wrought in the form of the uterus through the contractions cannot be perceived in the upper part sooner than in the neck. The author adheres to the latter opinion. But this, he says, does not prove that the starting-point of the contraction is not the fundus. How does the contraction act upon the uterine contents? Wigand observed that when the finger is applied to the neck when a pain came on, the presenting part of the child reeded, whilst the waters came down; but Murphy and Scanzoni have shown that this does not prove the origin of pains in the neck. The moveable presenting part recedes through the pressure of the water downwards. Wimmer has observed the movements of the uterus in a case of entire prolapsus, in which labour came on at the sixth month. "It was plainly seen," he says, "that the contraction began at the fundus, and proceeded downwards to the middle part."

From the present appreciation it follows that the human womb also moves peristaltically in the direction from above downwards. It follows, also, that in every pain several waves course downwards from above, that the number of waves stands in exact proportion to the duration of the pain, and the succeeding wave begins before the first has run out. There will thus be a moment when both the upper and lower parts of the uterus will be contracting at the same time.

2. Dr. Hecker has related the histories of three cases of albuminuria in pregnant women, with and without eclampsia:

Case 1. A primipara, æt. 23, had been in good health up to the time of labour. On the evening of the 6th December she took a rich supper; she was taken ill in the night, and fell into convulsions. A period of four or six weeks was yet wanting to the term of gestation. The head presented. No edema. The legs exhibited a perfect tetanic rigidity, as if she had been poisoned by strychnine: she foamed at the mouth, and gnashed her teeth. Immediately on the cessation of a fit some urine was drawn by a catheter. The secretion was acid, and an enormous quantity of albumen was thrown down by heat. Chloroform was exhibited, and the uterine douche employed to hasten parturition. The douche had the desired effect; but the chloroform did not in the slightest degree diminish the intensity or frequency of the fits. The patient died soon after delivery. An extravasation of blood the size of a dollar was found under the arachnoid, on the left hemisphere; and a similar one, but smaller, on the right hemisphere. The left kidney was shrunk to the third of its normal size, weighing only two ounces: it was quite unfit for the excretion of urea. The change was doubtless of long standing. The right kidney was normal.

Case 2. The eclampsia broke out after the birth of the child. A woman, æt. 31, with her second child, had a lingering labour. She had rigors. Edema nowhere observed. Urine drawn off by the catheter showed a quantity of albumen and a crowd of fibrinous cylinders. Bleeding and opium resorted to, with apparently
good effects. The urine of the third day contained no trace of albumen. She rapidly recovered.

Dr. Hecker refers to another case, in which he examined the kidneys of a woman who had been convulsed during labour. They were very large, and presented an advanced stage of Bright's disease. The urine was albuminous.

Case 3. A woman, of 26, pregnant for the second time, was so unusually large that twins were suspected. Fourteen days before labour the legs began to swell, then the abdomen, then the eyelids. Urine drawn by catheter was repeatedly examined during the latter days of gestation. It threw down albumen copiously; and fibrous cylinders were also observed. She was delivered of twins. Ten hours after delivery the urine was alkaline, full of albumen, and the sediment contained a mass of fibrous cylinders. Thirty-six hours after delivery the urine was clear, neutral, and without a trace of albumen. This patient had no convulsions. She died three weeks after delivery, of peritonitis. The kidneys were pale, flabby, and bloodless, and easily separated from their capsules: their tissue exhibited no change under the microscope.

3. Professor Chiari has related the histories of three cases of pregnancy attending anomalous formation of the uterus:

I. Pregnancy: uterus bilocular.—A primipara, of 32, of small stature, weak conformation, with great distortion of the spine, was received into the Prague Lying-in Hospital. The fundus of the uterus reached the scrobiculus cordis; the head presented at the inlet of the pelvis. On examination, a fleshy septum was found dividing the vagina into two halves. By the finger, and by the speculum, the two halves of the os uteri were discovered. The right os was more easily permeable by the uterine sound than the left; and on the right side the head was more distinctly felt. Pregnancy in the right half was diagnosed. On account of the deformity of the pelvis it was determined to induce labour prematurely. The patient was in the 36th week. Occhiali's method, by irritating the breasts, was first tried, without effect, during six days. Kiwisch's douche was tried: the first time, no result; the second trial was immediately followed by an eclamptic fit, and death in a few minutes. The child was withdrawn, living, by the Caesarian section, but did not survive. The division of the uterus and vagina into two halves was found complete, down to the vestibulum. The right half was more developed; the placenta was adherent to the fundus of this cavity. The left uterine cavity had thick walls, not greatly differing in appearance from the right; the lining membrane was clothed with a villous yellow layer, several lines in thickness. The length of this left cavity was nearly the same as that of the right, but its breadth was much less.

II. Pregnancy: bilocular uterus.—A primipara came into the hospital, having been delivered of a mature child, by breech-presentation, in the street. The cord had been torn off: the patient was bleeding profusely. The placenta was found adhering to the right side: in attempting to detach it the womb contracted irregularly. When removed, regular contraction followed, leaving the womb the shape of a ball. Peritonitis set in, and the patient died on the fourth day. Autopsy: septic endometritis, metropylebitis and lymphangitis plexus lumbalis, peritonitis sinistra, laceration of the perineum, edema of the lungs of both sides, uterus bilocularis. The uterine walls were thick, and the cavity divided by a septum, two inches in length, into two halves. The placental-attachment was in the right cavity. The left half, also, was tolerably capacious: its long diameter, two inches; its transverse, nearly the same. (The condition of the lining membrane is not described.)

III. Pregnancy: one-horned uterus.—A woman was delivered in the hospital of a seven-months' child, which died of induration of the cellular tissue on the fifth day. The mother was affected with syphilis; she died on the eighth day of septic endometritis. The autopsy revealed a one-horned uterus: the left side entirely wanting. The left horn, the left tube, the left ovarium, and the left round ligament,
were equally wanting. The uterus was bent over to the right in the abdominal cavity.

Schanzoni relates a case of pregnancy in a rudimentary uterine horn, with probable passage of the ovum from the right ovarium to the left horn of the uterus. A woman in her fifth pregnancy was seized with pain in the left side, followed by repeated faintings. The general symptoms, and outward and internal examination, led to the belief of intra-uterine gestation, the escape of the fetus into the abdominal cavity, and a profuse haemorrhage. Death followed in half an hour. The autopsy presented a fetus lying in the abdominal cavity. Below the fetus a tumour the size of a fist was found connected with the fetus and the surrounding intestines. On the right of this tumour was a second tumour, the size of a child's head. On removal it was found that the left tumour was the left rudimentary horn of the uterus; the right was the main mass of the organ. The two were connected together by a round string with a narrow canal. A tube and round ligament, leading to the ovary, terminated in each part. The left ovary presented several Graafian vesicles approaching maturity, several superficial scars, but no trace of a recently-burst follicle. In the right ovary there was discovered a three-cornered, callous scar; on the lower border of the inner circumference a bright-yellow corpus luteum. In this case, Schanzoni observes, the impregnated ovum must have passed over from the right ovary, across the right cavity of the uterus, and through the uniting canal, into the left rudimentary horn. This has never before been observed in a woman, although Bischoff has seen it in a bitch. The appearances present the most striking similarity to the preparation described by Rokitansky.

III. LABOUR.

1. On the Causes of Indurations of the Placenta. By Dr. Meckel. (Verhandl. der Ges. für Geb.—Berlin, 1853.)

3. Reposition of the Prolapsed Umbilical Chord. By Dr. C. Hecker. (Id. op.)

4. Case in which the Umbilical Chord passed Eight times round the Neck. By Dr. Crede. (Id. op.)

5. On Premature Detachment of the Placenta. By Dr. Crede. (Id. op.)

6. Cesarian Section. By Kilian; reported by Dr. Sack. (Prag. Vierteljahrschr. 11 Jahrg. 1854. Erster Band.)

1. Dr. Meckel has put forth some observations upon the different indurations of the placenta. These are sometimes accompanied by atrophy, sometimes of the nature of tumours. The greater number of degenerations—which are described as induration, hepatization, fibroid, cysts of the placenta, and so forth—consist of various changes of parenchymatous or superficial extravasations of blood. The most frequent cause of extravasation of blood is congestion and inflammation of the maternal portion of the placenta. The inflammations of the mucous membrane of the gravid uterus spread to the placental portion, or, less frequently, to the decidua of the ovum. The latter gives rise to chronic induration, or acute softening, with small extravasations, and sometimes formation of pus.

2. Dr. C. Hecker has made an interesting contribution to our knowledge of the mode of death of the child during delivery.

The author sums up the evidence in proof that the placenta is a breathing-organ. He dwells upon the observations of Bayard, Casper, Ritgen, Cruvelhier, Litzmann,
and Krahmer, showing that in every case where the new-born child perishes from more or less complete occlusion of air, minute ecchymoses are seen under the pulmonary pleura. He also refers to the direct observations of Carus, Volkmann, Schneider, and Valentin, which go to show that whosoever the communication between mother and fetus is cut off, symptoms of asphyxia, such as peculiar movements and efforts to respire, take place. He believes that these facts supply a new starting-point, whence useful researches into the cause of death of the fetus during delivery may be extended. The interruption of the circulation between mother and fetus may occur in three ways:—1. Through pressure upon the umbilical cord; 2. Through premature separation of the placenta from the uterus; 3. The normal attachments are preserved, but no blood proceeds from the maternal side to the placenta: this happens in the case of the mother’s death.

Dr. Hecker illustrates by cases each of these modes of arrest of the circulation. He details six cases in which the child perished from pressure upon the cord. In all these, inspection of the body exhibited the characteristic ecchymoses of asphyxia on the pulmonary pleura, and general hyperaemia of the lungs. In one case, also, in which turning was resorted to, inspiration-movements were felt. (It is familiar to the practical accoucheur that movements, called convulsions, are commonly observed in the fetus under the circumstances referred to by Dr. Hecker. It is also well known that when they do occur the child’s life is in imminent danger.)

He next relates two cases of death of the child through twisting of the cord round the neck. In these, also, asphyxial ecchymoses were observed. Then three cases are related of death from pressure upon the cord, arising from unfavourable positions of the child. Hyperaemia and ecchymoses were observed.

Three cases in which the child perished through premature detachment of the placenta are detailed. In these, identical post-mortem appearances were observed. Lastly, he relates the histories and results of the post-mortem examinations of three cases, in which the child perished in consequence of the death of the mother. The facts were of exactly the same order as in the previous cases. In one instance he remarks that the fetus made unmistakable efforts to breathe, before its extraction by the forceps.

3. Reposition of the Prolapsed Umbilical Cord.—Dr. Hecker related a case of prolapsus of the cord; the head presented. He replaced the cord above the child’s forehead, by introducing his hand. The child was born alive.

4. Dr. Credé related a case in which the cord was twisted eight times round the child’s neck. The mother was affected with secondary syphilis; the child was apparently of the full time. The length of the cord was 57 inches. The death of the child was obviously caused by the strangulation, and had apparently taken place a few days before birth. The dissection exhibited no cause of death elsewhere, but the neck was so compressed, that it was not thicker than a thumb.

5. Dr. Credé has communicated the leading points of a work he has in the press on uterine haemorrhages arising from premature detachment of the placenta or faulty attachment. In the case of considerable haemorrhage during pregnancy, he avowed himself favourable to the use of the bladder or India-rubber bag filled with ice-water, recommended by Huter, Gariel, Didal, and Braun. When labour has begun, he disapproves of the tampon. If the child lies in a longitudinal direction, then, in those cases where the placenta covers only a part of the os uteri, leaving another part free for the passage of the child, and even in some cases where the placental villi quite fill the os uteri, the descent of the head into the true pelvis pushes the detached portion of the placenta on one side, and compresses it against the walls of the uterus and the pelvis. Thus the child itself presses upon the bleeding spot. In those cases in which the blood flows fast at the commencement of labour, it completely stops as the child comes down. Credé observed this in five
cases—three times in head presentations, once with a mutes presentation, and once with a cross presentation converted into a head presentation by turning. In four cases, the placenta projected over a part only of the os. In one case, its attachment was complete; in this instance it was pushed over to the left side, when it was tightly squeezed by the child's head. He rejected the method of Dr. Simpson, of detaching the placenta as early as possible, on account of the unavoidable destruction of the child.

6. Dr. Sack reports a case in which the Cæsarian section terminated favourably to mother and child. It was the seventh case of Kilian. A woman, aged 22, a primipara, was admitted into the obstetric clinic at Bonn. The forceps were used without success, on account of narrowing of the brim. The incision divided the omentum; and on opening the uterus, the placenta was seen. The child was so tightly jammed by the head into the brim, that repeated strong pulls by the breech were necessary to extract it.

7. Professor Faye has related the history of a case in which he performed the Cæsarian section. The inlet of the pelvis was narrowed by two fibrous sub-peritoneal uterine tumours; these were pedicellated, and had fallen into the pelvic cavity. The issue was fatal to the mother. Professor Faye remarks that the Cæsarian section has been performed four times during the last ten years in Norway; that in all the cases the mothers died, and that in two the child lived.

8. Dr. Churchill has published a valuable essay on paralysis during gestation and childbirth. After advertent to the absence of all notice of this affection in the great majority of obstetric writings, he cites the cases described by Ley, Scanzoni, Lever, Simpson, and Crosse, and introduces others communicated by Beatty, M'Clintock, Forrest, and Ireland, and some which occurred under his own observation. From an analysis of 34 cases, it appears that in 22 the attack occurred during pregnancy, and in 12, during or after labour. In 17 there was complete hemiplegia, and in 1, partial; in 4, paraplegia; in 6, facial paralysis; in 5, amaurosis; in 3, deafness. Four cases terminated fatally. It cannot be urged that congestion produced by the stress of labour, or pressure of the womb upon the pelvic nerves, is the cause. In two cases, the phenomenon followed anæmia from hemorrhage. But the condition Dr. C. dwells upon, as offering the greatest prospect of solving the pathological difficulty, is the frequent coincidence of albuminuria. Dr. C. seems to incline to the opinion that some change in the blood is the cause. We may remark that the paper is a complete résumé of the subject.

QUARTERLY REPORT ON FORENSIC MEDICINE, TOXICOLOGY, &c.

By W. B. KESTEVEN, F.R.C.S.,
Member of the Council of the Epidemiological Society.

I. WOUNDS, ETC.

Effects of Combustion upon the Human Body.—A conflagration having taken place in a dense neighbourhood in Paris, involving the deaths of many persons, M. Tardieu, to whom the examination of the human remains was officially entrusted, has taken the opportunity of minutely observing and recording the effects produced upon the human frame by fatal burning.

The soft parts on the bodies examined were in various conditions: completely charred to cinder, partly carbonized, reduced to dried fibrinous shreds. The bones were dried and brittle, and in the instances of the long bones, fractures with obliquely splintered and charred ends were observed, differing distinctly from the characters of ordinary fractures. In the flat bones, which were thinned by the
heat, the fractures caused by the heat assumed the form of fissures confined to one surface, and not penetrating the substance of the bone. The intervertebral discs were contracted in their diameters. Teeth and cartilage seemed to resist the action of fire more than other hard parts. The soft parts exhibited great diminution of volume; this was more especially observed upon the viscera, which had been more or less protected from the immediate action of the fire. Some of these were mummified. The blood in the heart, aorta, and other large vessels, presented an extraordinary appearance, resembling wax, or fatty matter, of a most beautiful carmine colour. The cerebral substance was contracted to half its bulk, and in consistence resembled a half-dressed sweetbread.

To the details of the preceding, M. Tardieu has added the appearances discovered on the body of an infant that had lain several years behind a stove, and had become completely mummified. The effects of slow long-continued heat were much the same as the above described, with the absence of the active destructive action of fire seen in the carbonization of the external soft parts.—Annales d’Hygiène, &c., April.

Death by Burning.—The body of a woman aged 64 years, was found burnt, at the door of an oven. The posture of the body was that of kneeling; the right hand rested with its knuckles at the edge; the head and the left arm extended, were within the oven; the right shoulder and upper extremity were outside, whereby the body had acquired an oblique position. Some suspicions having been excited as to the origin of this death, an official investigation was instituted, in order to ascertain if the body furnished sufficient indications to determine whether the burning had been accidental, intentional, or violent.

The head was so much burnt that the integuments of the forehead and left side of the face were completely charred. The neck showed traces of the action of fire, extending to the sternum. The integuments of the trunk were blackened posteriorly, as far as the sixth cervical vertebra. On the superior surface of the left breast was a distinct mark of the fire. Near this spot, vesication had taken place, the integument having been raised, the corium being of a dark-red colour. The left shoulder was burnt in one spot. The dorsal surface of the left wrist was deeply charred. The hand was firmly clenched by the flexor muscles. The skin of the arm and fore-arm was slightly charred, and partly mummified. The right upper extremity was also burnt about the shoulder; posteriorly, the integument of this limb, from the elbow to the axilla, was excoriated and slightly reddened, but presented no sign of the action of fire; on the knuckles of the ring and middle finger were three excoriations, but no trace of burning. An examination of the interior of the cranium exhibited very important injuries. The bones of the skull were blackened, or of a nut-brown colour. The membranes were thickened, and adherent to the bone. The surface of the cerebral substance was brittle; the usual moisture and fatty substance had disappeared, giving a resemblance to boiled brains. This change, however, did not extend to the central parts; the lateral ventricles and medulla oblongata appeared natural. The external surface of the cerebellum exhibited also this change in consistence; it was otherwise natural. The larger sinuses were empty, the other vessels moderately full. There was no sign of injury of any kind at the base of the skull or brain. The lungs were healthy. The heart was empty; the large vessels moderately full.

The commission appointed to investigate this case, after having inquired into all the circumstances connected therewith, gave it as their opinion that the burning had been inflicted during life, or instantly after death, as evidenced by the presence of vesication, but that it was impossible to determine from the position of the body, or the injuries found thereon, whether this had been accidental, intentional, or violent; at the same time they inclined to the first—i.e., accidental death—from the absence of all evidence that it had been caused by violence, and the improbability of its having been suicidal. The deceased had been subject to vertigo; it was possible that this might have occurred at the moment that she was engaged
about the oven's mouth, and that paralysis might have been instantly induced through the heat of the fire.—Casper's *Vierteljahrschrift*, January, 1854.

Case in which it was doubtful whether Death had been occasioned by Drowning or by Violence.—About 2 p.m. of Feb. 3rd, the body of a man was found lying near the edge of a river. The person by whom it was observed, not knowing what it might be, endeavoured to drag it to the side with a pole armed with a hook; in this way he brought it from the water, first a leg, and then an arm, and at last the trunk itself to shore. On his return two hours afterwards, he found the body lying on its back several steps higher on the strand than where he had left it, having been rolled over by the water, the other leg hanging in the water. One of the persons who saw it at this time stated that blood flowed from the nose and mouth. The body was watched, but suffered to remain on the same spot, in the open air, until the evening of the next day—about thirty hours. It was then removed, and its external appearances noted. The body was identified as belonging to J. M,—of M——, who had left his home on the 3rd of January, and had not since been heard of. There were reasons for suspecting that he had committed suicide.

The sleeve of the coat was torn, as were also the knees of the trousers and stockings, and there was a hole, an inch and three-quarters long, in the upper leather of the boot. The body was much decomposed, and had apparently lain in the water from a fortnight to three weeks. On the vertex was a tumefaction to the extent of three or four square inches—how much elevated was not stated; on the forehead, a contused wound an inch and a half in length, and a quarter of an inch in width, having ragged, softened edges, from which blood flowed. The eyelids were swollen, the integuments had disappeared from the nose, the tongue was between the teeth, the abdomen was distended. Both knees presented abrasions, adherent pebbles, &c.

On the 5th of February, the body was opened and examined internally. The stomach was found to contain undigested potato, &c., but neither sand nor water. The diaphragm was not convex towards the abdominal cavity. The lungs were collapsed, leaving the heart exposed; of a bluish colour, more or less adherent to the costal pleura, and when incised did not appear congested with blood. The heart and large vessels presented nothing unusual. The trachea and larynx were free from water or sand. The cranium was demuded of scalp and pericranium on the forehead, to the extent of more than an inch and a half. The scalp was, for an extent of four or five inches, loaded with dark blood, and edematous. The skull bones were uninjured; nothing abnormal was perceptible between these and the dura mater. At that portion of the brain corresponding to the external sanguineous infiltration of the scalp, congestion of the cerebral vessels was observed—in other parts this was wanting; the sinuses were empty. The brain was healthy, so far as could be judged.

The inference drawn from the appearances thus described was, that the deceased had met his death from violence applied to the head, and that the body had been placed in the water after death;—that drowning was not the cause of death.

Dr. Simons, of Mentz, combats this conclusion. He remarks, that many of the usual signs of drowning having been absent may be accounted for by the length of time that the body had lain in the water, and from the length of the period during which the body had afterwards lain exposed to the air. The aspect of the wound of the scalp, and the discharge of blood thence, served to indicate that it had not been inflicted during life, or immediately on its cessation. It was scarcely probable that a wound so inflicted upon a body which had lain nearly three weeks in the water, would bleed afresh at the end of that period; neither was it probable that so firmly adherent a membrane as the pericranium would have been so extensively separated as was found in this case. The existence of such lesion was far more readily explicable by supposing it to have been accidentally occasioned by post-mortem violence, in dragging the body out of the water on to the bank. The
edema, &c., of the vertex, Dr. Simeons held to be reasonably explained as having arisen from the head of the deceased having come into contact with the ground, or some hard substance, at the time that he plunged into the water, supposing suicidal drowning to have been the cause of death. There was an absence of all appearances within the cranium indicating such an injury to the skull as would have proved fatal. The consequence of so long a submersion is, that blood would flow freely from the integuments when cut or lacerated. The deceased had dined just before he left his master's house, and on examination of the body the undigested food was found in his stomach, proving that death had taken place within a very short period from his having left the house. Besides these considerations, other circumstances afforded support to the opinion that suicide had been committed.—Casper's Vierteljahrsschrift, January.

The Medico-Legal Relations of Injuries of Doubtful Origin.—Cases are of frequent occurrence which, from their character, it is difficult to say whether they have originated in accident, intention, or violence. The following instances are related by Herr Hodann, to illustrate the difficulties in question.

1. A cooper had received two wounds on the front of the forearm, extending to the wrist, the one dividing the radial, the other the ulnar artery. The loss of blood was considerable, and the patient was exhausted. His own account of the accident was, that he had, with two knives in his hand, slipped from a narrow plank into the water, and that he had in this way caused the two wounds. This history was confirmed by eye-witnesses. If these had not attested the accuracy of his statements, and rendered him aid, this man might have died in the water, and it would then have been a difficult question to have determined how he had come by his death.

2. The body of a woman, about forty or fifty years of age, was found in the Oder, far advanced in decomposition. In the pockets of the dress were several heavy stones, and round her neck was the rope of a clock, from five to six times tightly twisted, the end passed behind the ear, where it was tied in a firm knot. The larynx was compressed thereby, but not broken. No other injuries were observable. So far as the process of decomposition permitted observation, there was an absence of congestion of the brain, and organs of the chest.

Had the deceased died from hanging or strangling? How, under either circumstances, did her body come into the water? It transpired subsequently that she had left her home in a depressed state of mind, having written a letter in which she declared her intention to put an end to her existence. It seemed most probable that she had, in the first place, unsuccessfully attempted suicide by hanging; and that failing, she had completed self-destruction by drowning.

3. The body of a man was found in some water, with the legs firmly tied together; around the right wrist was another cord, the free end of which passed round the back, and was fastened on the front of the body to a loop at the other end of the cord, by an unusual knot. There was an entire absence of all other violence, or of robbery having been committed. The case was doubtless one of suicide.

4. A young girl, through disappointed love, determined on suicide. For this purpose, she inflicted such repeated blows on her head with an axe, that the integuments were reduced to a pulp, the periosteum was torn off the bone, and the bone itself depressed. She recovered from these injuries, but subsequently died insane. Had she been found dead, with the axe beside her, it would have been concluded that she had been murdered.—Casper's Vierteljahrsschrift, January.

II. TOXICOLOGY.

Death from Chloroform during Labour.—A lady, twenty-five years of age, in full health, was in her second accouchement. Labour had progressed slowly for above thirty hours, when she expressed a wish for the inhalation of chloroform, which she
had used in her previous labour. Her medical attendant, Dr. Freeland, advised
against its use, and after waiting a few hours, bled her to fifteen or twenty ounces.
The case having made but little progress, forty drops of tincture of opium were
given, and the patient obtained some rest. When she awoke, she again import-
tuned for chloroform, on account of pain in the abdomen and loins. Her pulse
was strong and full, not exceeding 100; the tongue moist and clean; uterine
action tardy; os uteri yielding; head advanced; pelvis capacious; no unpleasant
symptom. Ergot of rye was then given. The patient insisting on having chlo-
roform, Dr. Smith was sent for, who brought a small bottle containing not more than
two ounces. This he placed on a table, within sight of the patient. While Dr.
Smith was receiving Dr. Freeland's account of the case, she obtained possession of
the bottle of chloroform, and refused to give it back, inhaling it from time to time.
When remonstrated with by the physicians on the peril she incurred, she answered
that her pains were "quite comfortable." In this condition she remained for twelve
hours. Upon a careful examination, no material change in arterial action or nervous
power was discovered, but very clearly, as the physicians thought, a promising
change in the rigidity of the organs; and the chloroform being gone, they felt
confident there would soon be increased uterine action, and a "triumphant" finishing
up of the case. Absence, however, of all pain, a cold sweat, cold extremities,
 oppressed and whistling respiration, receding pulse, and "vacant glare," pointed
to a sudden and fatal termination. Delivery was immediately effected; stimulants,
&c. were employed; but the patient died in about ten minutes afterwards.

This case is quoted from the report thereof in the 'Buffalo Medical Journal,'
December, 1853, by Dr. De Wolf, who had been called in consultation at the last;
and is given in Dr. Henry Littlejohn's report on toxicology, in the 'Association
Journal,' May 20th.

We cannot refrain from expressing some surprise that a patient, under the above
circumstances, should be allowed by her medical attendants to have possession of
a two-ounce bottle of chloroform, and repeatedly inhale its contents during twelve
hours. The exhaustion of a previous lingering and painful labour, of thirty or
forty hours' duration; the loss of from fifteen to twenty ounces of blood; and the
administration of forty drops of laudanum to procure sleep—as they were not at
any time the most favourable preparations for the inhalation of chloroform, so they
formed, in this case, the more cogent reasons why it should have been given with
the very greatest care, instead of being, without precaution, allowed to be loosely
sniffed during twelve long hours. No apology can be grounded on the statement
that the patient surreptitiously obtained the bottle, and determinedly retained pos-
session thereof. The duty of a medical attendant is often more imperative in the
direction of protecting patients from themselves, and the consequences of their
own perversities, than in relieving them from the effects of pathological or ex-
traneous influences. Firmness of purpose in such a case should go beyond verbal
remonstrance, if the attendant would avoid painful after-reflections, and some
remorse.

Another death from chloroform, which occurred in Paris, is recorded in the
'Lancet,' April 9th. In the weekly journals for May, two more cases are detailed,
one having taken place in St. George's Hospital (the first that had happened
there), and the other at the Lock Hospital. A death from the same cause, which
took place in Sheffield, is related in the 'Association Journal,' April 7th.

Attempted Murder with Nitric Acid.—The dead body of a woman was found,
presenting abundant traces of the action of nitric acid in the mouth, on the face
and upper part of the body and garments; the throat, &c. also exhibited marks of
violence, such as abrasions, impressions of fingers, &c. Similar stains on the
clothes of a man with whom she had cohabited, and with whom she had been seen
a short time previously, were proved by chemical analysis to have been caused by
nitric acid. On examination of the body, it was found that the nitric acid had not
reached the stomach. It was suggested that this was not necessary to the fatal
result, as death may have been caused from suffocation induced by the irritating effect of the acid upon the glottis. The suggestion is, however, as M. Chevallier observes, merely theoretical. The congested state of the brain and lungs, together with the injuries on the neck, rendered it more probable that death had occurred from strangulation, and that the fatal consequence may have been favoured by the deceased having been intoxicated. We may observe, however, that both Dr. Christison and Dr. Taylor state the possibility of death being caused by the action of a mineral acid as here suggested; and although regarded by M. Chevallier as a mere hypothesis, the fact is cited by Dr. Taylor as having been met with by Mr. Quain in 1836, and by the late Dr. A. T. Thomson in 1837.

This case occasioned the questions—Whether the stains of nitric acid applied to the living body differ from those it produces after death? How long these would remain? and Whether other acids would cause similar effects? M. Chevallier observes, that the effects of nitric acid applied during life vary with the degree of its concentration and the duration of its application. Strong acid will produce a greyish eschar, more or less deep, surrounded with a more or less intense yellow ring. Simple epidermic stains are first of a canary colour, becoming, after some hours, of a deep orange hue, remaining until the epidermis wears off. Applied to the dead body, nitric acid produces stains of a sulphur or yellowish-green colour, which, in about ten or twelve hours afterwards, becomes surrounded with a more or less extensive grey tint, evidently from imbibition of a portion of the acid; towards the third day, this greyish stain presents, at its limits, a pale violet hue. These characters will last for about seven days.

Experiments performed by M. Chevallier, with sulphuric, hydrochloric, and oxalic acids, show that each of these presents particular characters, but all differing from those of nitric acid.—*Journal de Chimie Médicale, February.*

Death from Sulphuric Acid.—Mr. James Heywood, a chemist in Sheffield, met his death by falling forwards on the ground where a large quantity of sulphuric acid had been spilt from a carboy. The fatal result, which took place five hours afterwards, appears to have been caused by the irritating action of the fumes of the acid, or by the actual application of some of the acid to the glottis.—Morning Herald, March 10th.

Poisoned Confectionery.—The ‘Lancet’ Analytical Sanitary Commission gives the following summary of 101 analyses of coloured confectionery, of the sugar-plum and sweetmeat order. The colours were given by various substances—e.g.:

- **Yellows**—In 59 samples, the colour was given by varieties of chromate of lead; and in 11, by gamboge.
- **Reds**—In 60, this colour was derived from cochineal; in 12, from red lead; in 6, from bismuth of mercury.
- **Browns**—8 were coloured with brown ferruginous earths.
- **Purples**—2 were coloured with a mixture of Prussian blue and (probably) cochineal.
- **Blues**—1 was coloured with indigo; 21 with Prussian or Antwerp blue; 15 with German or artificial ultramarine, a sulphuret of sodium and aluminium.
- **Greens**—10 samples were coloured with varieties of Brunswick green, a mixture of Prussian blue and chromate of lead; 1 was coloured with carbonate of copper; 9 with Scheele’s green, or arsenite of copper.

Several of these colouring ingredients were variously combined in some samples. In all the cake ornaments, the colours used were painted on with carbonate of lead. The majority of the above colouring matters are among virulent or deadly poisons. The quantity is not in all cases so small as supposed, as proved by

See Taylor on Poisons, p. 222; Medical Jurisprudence, 4th edition, p. 43; Christison on Poisons, p. 157.
instances frequently occurring of disease, and even death, following upon their ingestion; moreover, it must be borne in mind, that the effects of lead, mercury, and arsenic, are cumulative.

In France, Belgium, and Switzerland, the employment of poisonous colouring-matters in articles of confectionery is penal; and the vendors are held responsible for all accidents which may be occasioned thereby.—*Lancet*, May 26th.

Poisonous Contamination of Alimentary Matters.—In the ‘Medical Times and Gazette’ of April 15th, Dr. Alfred Taylor has related the circumstances under which he detected the accidental contamination of the bread placed on his table, with Scheele’s green.

In the ‘Journal de Chimie Médicale,’ February, there is also an account of the ill effects of fly poison, which had been mixed in cheese in order to prevent the development of maggots! and by which several persons were seriously affected.

*Poisoning from *Aemynth crocata.*—A woman, aged 24 years, for the relief of erythema, on going to bed, drank a strong decoction, under the name of “herb tea.” She was very soon after seized with faintness, purging, and vomiting, followed by convulsions, and died within an hour after having taken the poison, which was ascertained by Dr. Nicon, of Swansea, to have been hemlock water dropwort (*Aemynth crocata*), and the wild celery (*Opium graveolens*).—*Association Journal*, March 10th.

*Poisoning with *Hypoctrus niger.*—Dr. Schlizzi, of Aiguez-Mortes, relates that several persons accidentally partook of a considerable quantity of the roots of this plant, which they had mistaken as edible. They were instantly seized with the symptoms of poisoning, varying in severity according to the quantities severally eaten. Those who had taken a moderate dose presented all the characters of mania; those who had taken rather more became apoplectic, and as this condition passed off, exhibited maniacal excitement; lastly, those who had partaken most largely of the roots, suffered also from tetanic symptoms similar to the effects of strychnia. The quantities taken are not stated.—*Journal de Chimie Médicale*, March.

Chronic Poisoning with Ergot of Rye.—A girl was admitted into the Hôpital Cochin, under M. Maissounneu, who had lost the use of her fingers for a month previously. One of the last phalanges in both hands was of a deep black colour; the lips of the others were purple and cold. The fingers themselves were stiff, cold, shrivelled up, and painful to the touch; while the hands were covered here and there with red spots, like erysipelas. The pulse was perceptible at the wrist. The feet were swollen, but presented no sign of approaching gangrene. She stated that the limbs were never the seat of any spontaneous pain, and that she had felt no giddiness at the beginning of her illness. Previous to the appearance of the gangrene she had been regular, but since then she had never menstruated. For three months prior to her illness, she had partaken of no injurious food.—Quoted from ‘Gazette des Hôpitaux,’ February 11, in Dr. Littlejohn’s ‘Report on Toxicology’ in the *Association Journal*, May 20th.
MEDICAL INTELLIGENCE.

[The following suggestive letter from Dr. Beneke, on a mode of examining into the qualitative alterations of the blood and urine in zymotic diseases, has been communicated to the Epidemiological Society, and we have been requested by the Honorary Secretaries to publish it.—Editor.]

My dear Dr. Sieveking,—I should feel very much obliged if you would let me know whether any steps have been taken by the Epidemiological Society, to come to an accurate knowledge of the obscure chemical changes of the constituent parts of the blood, which take place in patients suffering from zymotic disease.

From some observations which I have made with regard to this point, I am convinced that co-operation of many members of the profession on the same path would throw much light upon the nature of these diseases; and more especially, I may say, that the accurate examination of the qualitative changes of certain substances, which are mixed with the blood or the urine of patients suffering from zymotic disease, would be of the greatest importance.

Nothing has been done hitherto to solve the question, whether the qualitative changes of substances in the zymotic patient take place in the same way or in a different one, as in healthy persons, or patients not suffering from zymotic disease. We know that there are substances in the healthy economy which act by a so-called catalytic power, like a ferment on other substances; we know that, by such fermentation, one kind of the so-called protein-compounds is changed into another one, that amylon in this way is changed into grape-sugar, grape-sugar into lactic acid, &c., &c. Are not these fermentations (to use a short expression), important as they are for the healthy economy, are they not altered in disease? May not an alteration of them be of the same importance as many alterations of the quantity of certain constituent parts of the body in other diseases? Is there not much reason to suppose that, especially in zymotic diseases, they are of a paramount importance? Is it not very likely, that those fermenting substances can exceed the normal quantity, as well as remain beyond the normal standard?—that certain fermenting substances are produced in disease, which do not appear in the healthy state?

From my own observations, I only know, that the urine of different times of the day, as well as of different patients, requires a very different time for decomposition; it appears to me, that persons suffering from zymotic disease void a urine which is much earlier decomposed than urine of healthy persons or individuals suffering from any other complaint, supposing the acidity of the different specimens to be the same. Again, urine of different times of the day, as well as of different patients, when mixed with grape-sugar, shows quite a different action on the sugar—viz., on its decomposition into vegetable acid and water. Hence I only conclude, that there exist alterations, whose accurate investigation must lead to most important conclusions on the nature of the diseases themselves.

But trifling as they are, I should have been far from laying any weight upon these observations, if they were not supported by the most excellent inquiries of the well-known physiologist, C. Schmidt, of Dorpat, regarding cholera, and likewise by Professor Frerich's investigations on uremic patients.

In page 68 of his excellent work on 'Cholera,' Schmidt adduces the conclusions from his experiments in the following words:

"The normal blood of a healthy person, and more especially the blood-globules—not the serum sanguinum—examined at the time when cholera was prevailing amongst the inhabitants, contain a substance, by the self-decomposition of which a ferment for sugar originates, and another substance, by the self-decomposition of
which a ferment for urea is produced. In a cholera-patient, however, who was attacked four hours before, the former ferment was not to be detected—it seemed to have been transformed into the latter; and in another cholera-patient, who suffered from the disease since forty-eight hours, sugar, mixed with the blood, was in full decomposition on the third day, and urea on the fourth day; sugar gave here three times the quantity, and urea ten times the quantity of decomposed matter, as they did when mixed with the blood of the healthy individual—namely, carbonic acid and ammonia. Moreover, in this patient, a formation of emulsion (the ferment for amygdalin), which could not be detected in the healthy individual and in the first cholera-patient, took place a short time after the formation of the sugar- and the urea-ferment.”

Professor Frerichs, on the other hand (on page 107 of his elaborate work on ‘Bright’s Disease,’ 1851), came to the conclusion, that the uraemic intoxication is not caused by the admixture of urea, nor of any other constituent part of the urine to the blood, but only by the generation of a ferment, which acts on the decomposition of the urea into carbonate of ammonia.

These observations, striking as they are, appear to be of the greatest importance for the whole doctrine of the zymotic diseases. They clearly show that, under certain circumstances, fermenting substances are produced in the blood, which in such a quantity or quality are not to be detected in the healthy state. It is very likely that similar circumstances, as in the blood, are to be detected in the urine, and it really seems worth while to take this subject into the most careful examination.

I think, therefore, it would not be improper to propose the following question: When certain quantities of blood or urine are mixed with certain quantities of grape- or milk-sugar, or of urea, or of amygdalin, what difference exists with regard to the fermentation or decomposition of these substances, when blood or urine of healthy persons is employed, and when blood or urine of patients suffering from zymotic disease, is used?

Regarding the urine, I have made my first experiments with five equal portions of it at the same time, in order to know whether boiling of the urine, or the elimination of the extractive matters, might cause an alteration of the decomposition. The first specimen was only exposed to the influence of the air of a certain temperature; the second was boiled, and then left to the influence of the air; the third was mixed with a certain quantity (0.5 grammes) of milk-sugar, and then left to the influence of the air; the fourth was first boiled, then mixed with the same quantity of sugar as the third, and then exposed to the air; and in the fifth specimen, the extractive matters were thrown down by acetate of lead, then the urine was filtered, mixed with sugar, and exposed to the air. On each of the following days, each specimen was examined with regard to the reaction and the absence or presence of sugar by Trommer’s test.

With regard to the blood, it would be necessary to examine the unaltered blood as well as the blood-corporcles, the fibrine and the serum sanguinis separately; and these examinations should be exhibited on a great many healthy persons, as well as on a great many persons suffering from different, and especially from zymotic, diseases.

These short remarks, my dear Dr. Sieveking, I take the liberty of communicating to you, and you will be kind enough to tell me whether any inquiries in this direction have been made already by the Epidemiological Society. If not, I leave it to you whether you think it proper to lay the question before the members of the society; I should be very much pleased if their scientific co-operation were to contribute to an early investigation of a subject, which seems to me of the greatest importance physiologically, as well as therapeutically.

With the kindest regards,

I remain, my dear Dr. Sieveking, yours very sincerely,

Dr. F. W. Beneke.

Oldenburg, January 30, 1854.
The Elections at St. Bartholomew's.

We cannot pass over without a word of remark the late elections of Drs. Baly and Kirkes, at St. Bartholomew's Hospital. They have an interest beyond the walls of that institution, for a great principle was involved—a principle which it is the peculiar honour of this age to have recognised and enforced. It would, indeed, have been a retrograde step, most deeply to be lamented, if, at this time, when our rulers are throwing down the exclusive barriers which have hitherto kept the body of the people from the posts which industry and talent may justly claim, the governors of St. Bartholomew's Hospital had reverted to the custom of allowing the claims of interest and relationship to override all others. Such an abuse of public duty might, indeed, have been attended with one good result: it might have called forth such an expression of public opinion as would have led to some modification of the present absurd practice, which assumes that an annual subscriber to a hospital is the best judge of the merits of the men who carry out the purposes of the charity.

The interest of this election centred only in the choice of the assistant-physicians, as there was, fortunately, no opposition to the election of the most competent man to be the new assistant-surgeon.

For the post of assistant-physician, a gentleman who has an European reputation, who has been selected for honourable employment by the government of the country, and who has been for many years a teacher in the medical school of St. Bartholomew's Hospital, presented himself.

It could scarcely be credited that there was for one moment a doubt of Dr. Baly’s success. Yet such was the case when it became known that a young physician had come forward, whose claims were based neither on services to science nor on labours in the medical school, but simply and entirely on the ties of blood with the senior physician of the hospital.

When, however, it became evident to the advocates of nepotism, that Dr. Baly’s claims could not be successfully set aside, a movement was made which had very nearly the effect of bringing victory out of defeat. A new vacancy was created, into which it was hoped the unsuccessful candidate for the first vacancy might quietly pass. We can now scarcely regret this attempt, since it failed in its design, and has had the effect of bringing Dr. Kirkes into a new sphere of activity and usefulness; but we must say that the authorities who could thus coolly consult the interests of a single man, without the least consideration of the sick persons, to afford the best aid to whom is the object of the hospital, have been guilty of a most grave dereliction of public duty.

How this attempt was defeated we need scarcely say. The same arguments which were urged in favour of Dr. Baly against Dr. John Hue, were equally operative in favour of Dr. Kirkes. By the most strenuous exertions, the real question at issue, merit or nepotism, was urged upon the governors, and by a narrow majority, the man who deserved the post was chosen to fill it. But the large number of governors who voted in favour of Dr. John Hue, who, whatever may be his talents and future services, has at present no claim to be the assistant-physician of a great hospital, must satisfy every one that, in spite of the present triumph, the claims of merit are not secure in any future election.

We trust, then, that those who have fought this battle will remember, that a victory not followed up is a victory thrown away. Now is the time, long looked forward to, long striven for, the time to introduce some better system into the elections at our great hospitals. The present plan is rotten throughout. Improper in its principle, it cannot be right but by accident, in its practice. There is no reason why, because a man wishes to aid the poor with his money, by subscribing to a hospital, that to him should be intrusted a duty he cannot properly exercise, that of choosing those who are to carry out the objects of the hospital. If any man subscribes to a hospital, in order merely to gain a vote at an election, it is money given for a base purpose, and not in that pure spirit of charity in which
alone the offering should be made. The authorities of a charity like St. Bartholomew's should scorn to accept the money which is given merely to serve a selfish purpose: let them boldly take away the privilege of election from their subscribers, and vest it in some competent and responsible body. Then they will do away with the reproach, that any man who chooses to subscribe his pittance to St. Bartholomew's Hospital should have the power to thwart the noble purpose of its royal founder, who did not intend it to be the pleasant appanage of family interest, but to be the scene of a grand work of beneficence, from which men could offer up their earnest labours in the cause of suffering humanity, to Him in whose honour the ancient portals of the hospitals were, in old time, raised.

Nurses for the Poor.

We are happy to observe that the Epidemiological Society has appointed a committee to consider an important subject, which has been very strenuously urged on the attention of the profession by Dr. Sieveking—viz., the desirability of providing nurses for the poor in their own homes. Those who know the homes of the London poor, and who see how hardly sickness presses on a family, and how invaluable the aid of a nurse would be when a mother of a family is on a bed of sickness, or when the father is for the time incapacitated for work, and when his wife has been worn out with the treble duty of attending to her sick husband, and to her family, and of providing, it may be, the means of living, will at once admit that few philanthropic problems are more necessary to be solved than the one which the Epidemiological Society have undertaken to consider. The plan proposed by Dr. Sieveking is to instruct the women in the workhouses, who at present have little or nothing to do, in the duties of nursing, and to send them out gratuitously, or at a small charge, to such poor persons in the parish as may want such assistance. We have not space at present to discuss this proposal, but it appears a very feasible one, and it has the double advantage of giving help where help is needed, and of supplying useful occupation where occupation is wanted. We trust that the committee may receive the support and encouragement which they deserve.

Sir John Forbes' Medical Bill.

At the moment when the movement for medical reform seemed almost ended for the time by the dissensions of its promoters, a new phase has been given to the subject by the Bill prepared by Sir John Forbes. We should say, did not experience teach us to be wary of our hope, that it is probable this Bill may lead to a settlement of the question. It is a judicious adjustment of the claims of the profession and of the corporations, and of the requirements of the public.

We shall not enter into the details of the Bill: this has already been sufficiently done in the weekly journals; and we need only say that it contemplates the formation of a central council, under whose control will be put all the details of medical education, while at the close of their students' career, and after undergoing certain preliminary examinations, candidates for the profession will be obliged to join the Colleges of Physicians or Surgeons. The Society of Apothecaries will suffer political extinction. In choosing the members of the council, we hope the most liberal course will be taken, and that the general practitioners will be called upon to furnish their proper proportion, either by the plan submitted in the alternative scheme of the third clause, or in some similar way. The Bill also would cause the enforcement of a complete register of medical men, and would also render illegal the practice of medicine, or the assumption of medical titles, by unqualified persons.

Even this brief sentence will show that the Bill will effect a radical change in medical education, and in the position of medical men with regard to the public.
And yet, with this vast change, it still keeps up, and endows, indeed, with a new life, those old corporations which the public generally believe to be identical with the medical profession itself. The time-honoured names remain to us; and the Colleges of Physicians and Surgeons, which, in spite of all shortcomings, are the representatives of the profession, and are indelibly connected with the history of British medicine, will still remain as household words among the people of this country.

It has been reported, and we hope with truth, that the Corporations are disposed to look favourably on this Bill. They could do no wiser thing. Their privileges are left intact: they keep everything they ought to keep, everything they could hope to keep, and much more, one should think, than they expected to keep. Their course is clear: if they wish to continue to exist, they must conform in time to the demand for Reform; a demand which may be at present baffled, but must ere long be satisfied.

As to the profession at large, we would most strongly urge them to support this Bill. It will give us the greater part of what we want, and all we could hope to gain. It gives us three benefits—viz., improved education, medical registration, and protection from quackery, as far as it can be done. For such tangible boons as these, we may well submit to sink minor differences of opinion, and even to postpone, sine die, the profound organic changes some have contemplated. It might be possible to devise a more sweeping and democratic scheme, but it would be hopeless to think of carrying it into law.

We have no doubt that, if we were to exert ourselves, it would be possible to get this Bill passed even during the present session. The Provincial Association have given up their own Bill; they have here a much better one. If the leaders of that body wish us to believe that they are sincerely desirous to benefit the profession, they have now their opportunity. The Association has a potent organization, and represents a large portion of the most educated medical men. If they could take the suffrages of their constituents, we cannot doubt what the result would be.

If the Corporations whose interests are so carefully cared for, and the Association whose objects are so completely attained, were to signify their support of this Bill to the Home Secretary, we can scarcely doubt that the government would be only too glad to pass this measure, and thus to end the vexatious question of medical reform.

BOOKS RECEIVED FOR REVIEW.

Medicinisch-chirurgische Enzyklopädie für praktische Arzte. In Verbindung mit mehreren Aerzten herausgegeben, von Dr. H. Proesch und Dr. H. Pless. Leipzig, 1854. (Erster Band, Erste Liefer.)

Statistical Reports on the Health of the Navy, for the Years 1837—43, inclusive. Part II. East India Station. Parliamentary Paper. 1854.

Tableau of the Yellow Fever of 1853, &c. By Bennet Dowler, M.D. New Orleans, 1854.

An Inquiry into the Pathological Importance of Ulceration of the Os Uteri, being the Croonian Lectures for the Year 1844. By Charles West, M.D., Physician-accoucheur to St. Bartholomew's Hospital. London, 1854.

Pneumonia, its supposed Connexion, Pathological and Etiological, with Autumnal Fevers; including an Inquiry into the Existence and Morbid Agency of Malaria. By R. La Roche, M.D. Philadelphia, 1854.

Luft im Blute. Von Dr. G. Cless. Stuttgart, 1854.

Epilepsy and other Affections of the Nervous System, which are marked by Tremor, Convulsions, or Spasms. By Charles Bland Radcliffe, M.D., Assistant Physician to the Westminster Hospital. London, 1854.

Thoughts on Uremia. By Gunning S. Bedford, A.M., M.D., Professor of Obstetrics in the University of New York.

Psychological Inquiries: in a Series of Essays, intended to illustrate the Mutual Relations of the Physical Organization and the Mental Faculties. London, 1854.

APPENDIX.

ANNUAL REPORT OF CASES ADMITTED INTO THE
MEDICAL WARDS OF ST. GEORGE'S HOSPITAL,
DURING THE YEAR ENDING DEC. 31ST, 1853.

BY DR. BARCLAY,
MEDICAL REGISTRAR OF THE HOSPITAL.

During the past three years an uniform system of registration of medical cases, and classification of diseases, has been adopted at St. George's Hospital, with the view of ascertaining any great leading facts with relation to the prevalence of disease and the ratio of mortality, which from time to time the statistics of an hospital may serve to elucidate; and, in conformity with this plan, an Annual Report has been presented to the Governors, embodying the results of this registration. By mutual co-operation unquestionably much valuable information might be accumulated from the various hospitals, especially those connected with the metropolis, where talent and industry are never wanting to carry out any object that may tend to the advancement of science; and by the suggestions of others engaged in similar pursuits, the purposes to which registration may be made subservient would be more fully developed than has been attempted in the accompanying table.

It is here presented simply in the form in which it was submitted to the governors of the hospital, as the 'Annual Report of Medical Cases for the year 1853,' with the addition of two columns containing the total admissions, and the percentage of mortality for the three years. The cases, when first admitted into the hospital, are entered in the ordinary register of patients, and after death or discharge each case is transferred to a classified index of diseases, which forms the basis of the annual summary. By this arrangement a considerable amount of information regarding any particular disease is at once available: the age, sex, and occupation of the patient, the duration of the disease prior to admission, the period during which the case remained under treatment, and its results, as well as the diseases with which it was complicated, can readily be ascertained with reference to any of those enumerated in the index of diseases.

In the accompanying Report, whenever these complications have been deemed of sufficient importance, the particulars regarding them have been introduced in the notes, especially with reference to the fatal cases. But though the materials for a more complete enumeration exist, it was found impossible to tabulate them in such a manner as to bring the statement within the moderate compass of a yearly abstract.

Hitherto it has been limited chiefly to the development of three important particulars:—the actual number of examples of each disease admitted during the year, the ratio of mortality, and the proportion of cases complicated with other...
Annual Report of Cases admitted into the
diseases; and in order to do this with any degree of accuracy, the report for the year must always be delayed for two or three months after its close, to allow time for the termination of the cases. Its exact character is a report of diseases treated in the hospital during the year, not of patients admitted; consequently, the sum of the numbers given does not represent the actual number of persons who were the subjects of these diseases. For while each patient applies for admission on account of the urgency of some particular symptom, and might thus be classified solely according to the most prominent form of disease under which he is labouring, true statistics of the relative mortality of each disease could not possibly be thus attained. For example: a patient is admitted with dropsy;—this is in itself a disease altogether independent of the organic lesions with which it is associated, coming on sometimes quite irrespective of them, or absent in spite of their existence. This patient may have disease of the heart, or disease of the kidneys, or both, and he may have in addition a distinct attack of bronchitis, without which he never would have had dropsy; another patient applies for disease of the heart without dropsy; a third for bronchitis alone; a fourth for bronchitis with disease of the heart, and so on; and it is quite manifest that in seeking for statistics of these several diseases, a patient with disease of the heart must be classed under that head, whether he have dropsy, or bronchitis, or albuminuria, or not; and one with bronchitis must be classed under that head, whether he have diseased heart or kidneys, or dropsy, or none of these diseases: in short, that the same case must be entered under each head, and appear under each as one of the complicated cases.

In pursuance of this plan, the first column gives the total number of cases under each head, entered in the patients' register for 1853 as having suffered from that particular disease, whether primarily or secondarily, whether admitted labouring under it, or having been attacked by it while under treatment for some other malady; the second column gives the total deaths, and where the disease under which they are enumerated seemed to have nothing to do with the fatal result, the fact is recorded in the notes; the third gives the ratio of mortality calculated from the previous numbers; the fourth and fifth columns give respectively the number of cases in which some other disease was present in addition to that under which they are classed, and the deaths among these complicated cases; the sixth and seventh, as already stated, give a general summary of the three years.

Further information may be obtained by a comparison of these several columns with each other: by subtracting the fourth and fifth from the first and second, we may ascertain in what proportion any given disease is liable to prove fatal, in a healthy individual, uncomplicated by any other malady; while we also learn, in a general manner, the proportion of complications in different diseases. Again, the sixth and seventh columns, as compared with the first and third, show, by an accumulation of three years' observations, the increase or diminution of each form of disease during the past year, and its more or less favourable rate of mortality.

A few words must be said of the mode of classification which has been adopted. It is based upon that of the Registrar-General, but does not entirely coincide with it; and though there is manifestly a disadvantage attendant on want of uniformity in tabular arrangements, as it interferes with a ready reference for the purposes of comparison, yet the alterations seemed imperatively called for, and were not made without due consideration; they were finally adopted, with the concurrent advice and sanction of all the physicians of the hospital, from whom most of the suggestions originally proceeded.

Scarcely any two authors agree in their manner of classifying diseases; and therefore, without giving the preference to one over another, where so many have equal claims, it was judged best to assimilate that which was prepared for the hospital as much as possible to the weekly returns of mortality. But it must be remembered, that while the one is a statement of cases of disease, the other is a report of causes of death, and many of the diseases enumerated in the former find no place at all in the latter. But, in addition to this, the classification of the
Registrar-General is not altogether free from objection. Take, for example, diarrhea, as classed among zymotic diseases. It is true that, at certain seasons of the year, some of the examples of diarrhea might be so classed; but of the cases admitted throughout the year how few are really examples of a zymotic disease! In many instances it is a concomitant of phthisis; in some, of albuminuria; and in not a few, is a consequence simply of injurious aliment. It therefore seems more natural to place it among the diseases of the intestinal canal, to which class dysentery has also been removed, as it is commonly seen only in its chronic form.

Indeed, there are serious difficulties in the way of the adoption of the whole class of zymotic diseases, and it has been thought better to break down the first three divisions of the Registrar-General into a number of separate heads, which will be found to succeed each other in different groups. Febrile diseases stand at the commencement, amongst which acute rheumatism and gout would naturally find a place; and, simply as matter of convenience, the chronic forms of the same diseases are placed in juxtaposition. Next follow diseases produced by adventitious causes, such as poisons, &c.; and then those which have been classed as diseases of uncertain and variable seat,—dropsy, hemorrage, anemia, &c. These are followed by depraved constitutional states,—scurfula, tubercles, and morbid growths; and next in order stand the quasi-nervous diseases, followed by the true diseases of brain, spinal cord, and nerves; after which each set of organs is taken in succession.

Hydrocephalus has not been separated from inflammation of the brain; hooping-cough and croup have been placed under diseases of the respiratory organs; crysielas has been regarded as an eruptive fever; chlorosis has been recognised as distinct from anemia; and amenorrhea without anemia has been classed as a disease of the uterus itself. Ascites has been removed from diseases of the organs of digestion and placed under dropsy, anasarca being used as the generic term for general dropsy; even when ascites was present, if the case was characterized by a tendency to general infiltration of the areolar tissue.

Such are a few of the more important changes in arrangement which necessity or convenience has dictated; but there are yet many difficulties in the way of a correct enumeration of cases, of which the whole class of hemorrhages afford numerous examples. Reference has been already made to diseases of the intestinal canal, and perhaps this is one of the most imperfect. Ulceration occurs in the course of fever and of phthisis very frequently, and is probably always present in chronic dysentery; yet, in the absence of post-mortem evidence, its existence can only be inferred, and, consequently, the cases classed under this head have been limited to those arising from some other cause. Similarly, diarrhea occurs in the course of various diseases, but it constantly happens in hospital practice that the primary disease is in a quiescent state, that the patient is only conscious of suffering from diarrhea, and when that is suspended, leaves the hospital in as good health as prior to the attack;—such a case must be recorded as one of diarrhea, but complicated with other disease. Hence, some phthisical patients find their way into the class of diarrhea patients, and it has consequently been the practice to enumerate all who have had diarrhea as a prominent symptom; but just as a streak or two of blood in the sputa is not called haemoptysis, so one or two loose evacuations are not classed as diarrhea.

Imperfect as this Report necessarily is, not only in consequence of the inherent difficulties in the way of a complete system of registration, but still more because no similar documents have been published from which suggestions might have been drawn, it has yet been the endeavour of the medical registrar to render it as complete as the proposed plan would permit, and neither time nor labour has been spared to obtain the greatest possible accuracy in all the details.

It is to be hoped that the example set by St. George’s Hospital in this matter may speedily be followed by other hospitals, and that this may form the commencement of a series of similar documents, which cannot fail to be productive of good.
Cases admitted during the year 1853.

<table>
<thead>
<tr>
<th>Nature of Disease</th>
<th>Admitted</th>
<th>Died</th>
<th>Per centage of mortality</th>
<th>Complications of disease</th>
<th>Deaths among comple-diseases</th>
<th>Admitted during three years</th>
<th>Per centage of mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continued fever</td>
<td>108</td>
<td>15</td>
<td>13·88</td>
<td>26</td>
<td>8</td>
<td>374</td>
<td>12·04</td>
</tr>
<tr>
<td>Influenza</td>
<td>10</td>
<td></td>
<td></td>
<td>1</td>
<td>21</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Asiatic cholera</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eruptive fever:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measles</td>
<td>5</td>
<td></td>
<td></td>
<td>1</td>
<td>8</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Scurfata</td>
<td>5</td>
<td>2</td>
<td>67·0</td>
<td>2</td>
<td>2</td>
<td>20</td>
<td>17·3</td>
</tr>
<tr>
<td>Varioloid</td>
<td>4</td>
<td></td>
<td></td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erysipelas</td>
<td>19</td>
<td>4</td>
<td>22·2</td>
<td>5</td>
<td>64</td>
<td>17·2</td>
<td></td>
</tr>
<tr>
<td>Intermittent fever:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quotidian</td>
<td>4</td>
<td></td>
<td></td>
<td>2</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tertian</td>
<td>7</td>
<td></td>
<td></td>
<td>2</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartan</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irregular</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rheumatism:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute</td>
<td>52</td>
<td>3</td>
<td>577</td>
<td>16</td>
<td>3</td>
<td>185</td>
<td>3·64</td>
</tr>
<tr>
<td>Subacute and slight</td>
<td>88</td>
<td></td>
<td></td>
<td>21</td>
<td>301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>139</td>
<td>1</td>
<td>7</td>
<td>28</td>
<td>1</td>
<td>411</td>
<td></td>
</tr>
<tr>
<td>Gout, including rheumatic gout:</td>
<td>25</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poisoning:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irritant</td>
<td>2</td>
<td>2</td>
<td>100·0</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>25·0</td>
</tr>
<tr>
<td>Narcotic</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syphilitic and gonorrhoeial</td>
<td>9</td>
<td></td>
<td></td>
<td>8</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colica peticumum</td>
<td>8</td>
<td></td>
<td></td>
<td>7</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entozoa</td>
<td>8</td>
<td></td>
<td></td>
<td>7</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intestinal worms</td>
<td>3</td>
<td></td>
<td></td>
<td>7</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echinococcus hominis</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dropey:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaesarca</td>
<td>100</td>
<td>9</td>
<td>39·0</td>
<td>100·0</td>
<td>39·0</td>
<td>297</td>
<td>33·3</td>
</tr>
<tr>
<td>Ascites</td>
<td>24</td>
<td>9</td>
<td>39·9</td>
<td>15</td>
<td>9</td>
<td>52</td>
<td>53·8</td>
</tr>
</tbody>
</table>

1 Of the fatal cases,
1 was complicated with disease of heart,
1 was complicated with phthisis.
1 was complicated with disease of liver.
1 was complicated with haemorrhage from bowels.
1 was complicated with peritonitis.
1 was complicated with pleurisy.
1 was complicated with pneumonia.

8 Fatal in about five hours.

8 Of the fatal cases,
1 was complicated with pyrexia.
1 was complicated with scrofula.

4 One case of varioloid eruption commenced in the hospital. Mode of introduction not known.

4 Three cases of erysipelas commenced in the hospital.

6 Of the fatal cases,
3 were complicated with disease of kidneys and dropey.
1 was complicated with phthisis.

7 All the fatal cases suffered from pericarditis.
1 also complicated with endocarditis.
1 was complicated with pleurisy.
1 was complicated with disease of liver and subsequent ascites.

8 The only death resulted from albuminuria and dropey.

9 The only death resulted from albuminuria and dropey.

10 The fatal cases were,
1 of poisoning with sulphuric acid.
1 case with abscess of stomach, which was followed by ulceration of stomach.
11 In 90 of these cases, organic disease of the kidneys, heart, or lungs was present. In the remaining 10, of which 2 proved fatal, the dropey was dependent merely on anaemia and exhaustion.

12 In 16, disease of the liver or peritonum was clearly made out as the cause of the ascites. In the remaining cases (none fatal), its cause was not determined.
Medical Wards of St. George’s Hospital. 289

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemorrhages:</td>
<td>22</td>
<td>6</td>
<td>26.08</td>
<td>3</td>
<td>3</td>
<td>11</td>
<td>91</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>6</td>
<td>2</td>
<td>33.33</td>
<td>4</td>
<td>4</td>
<td>18</td>
<td>111</td>
</tr>
<tr>
<td>Hæmoptysis</td>
<td>6</td>
<td>2</td>
<td>33.33</td>
<td>3</td>
<td>3</td>
<td>18</td>
<td>111</td>
</tr>
<tr>
<td>Hæmaturia</td>
<td>6</td>
<td>2</td>
<td>33.33</td>
<td>3</td>
<td>3</td>
<td>18</td>
<td>111</td>
</tr>
<tr>
<td>Intestinal</td>
<td>11</td>
<td>2</td>
<td>18.18</td>
<td>6</td>
<td>6</td>
<td>24</td>
<td>208</td>
</tr>
<tr>
<td>Uterine</td>
<td>8</td>
<td>2</td>
<td>25.00</td>
<td>2</td>
<td>2</td>
<td>18</td>
<td>91</td>
</tr>
<tr>
<td>Purpura and spurious</td>
<td>6</td>
<td>4</td>
<td>66.67</td>
<td>5</td>
<td>5</td>
<td>18</td>
<td>278</td>
</tr>
<tr>
<td>Purpura</td>
<td>3</td>
<td>2</td>
<td>66.67</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>111</td>
</tr>
<tr>
<td>Scurvy</td>
<td>46</td>
<td>25</td>
<td>54.35</td>
<td>26</td>
<td>26</td>
<td>171</td>
<td>111</td>
</tr>
<tr>
<td>Anæmia</td>
<td>13</td>
<td>4</td>
<td>46.15</td>
<td>4</td>
<td>4</td>
<td>27</td>
<td>333</td>
</tr>
<tr>
<td>Chlorosis</td>
<td>19</td>
<td>4</td>
<td>41.03</td>
<td>9</td>
<td>9</td>
<td>25</td>
<td>333</td>
</tr>
<tr>
<td>Cachexia</td>
<td>12</td>
<td>4</td>
<td>33.33</td>
<td>11</td>
<td>11</td>
<td>25</td>
<td>160</td>
</tr>
<tr>
<td>Tubercular diseases:</td>
<td>158</td>
<td>50</td>
<td>31.95</td>
<td>57</td>
<td>57</td>
<td>333</td>
<td>336</td>
</tr>
<tr>
<td>Phtisis</td>
<td>7</td>
<td>6</td>
<td>85.77</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>87.5</td>
</tr>
<tr>
<td>Tubercles in peritoneum</td>
<td>4</td>
<td>4</td>
<td>100.00</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>100.0</td>
</tr>
<tr>
<td>Tubercles in bones</td>
<td>4</td>
<td>4</td>
<td>100.00</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>100.0</td>
</tr>
<tr>
<td>Morbid growths:</td>
<td>1</td>
<td>1</td>
<td>100.00</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>66.67</td>
</tr>
<tr>
<td>Hydatids</td>
<td>10</td>
<td>8</td>
<td>80.00</td>
<td>7</td>
<td>7</td>
<td>20</td>
<td>65.0</td>
</tr>
<tr>
<td>Encephaloid</td>
<td>32</td>
<td>4</td>
<td>12.72</td>
<td>10</td>
<td>10</td>
<td>67</td>
<td>14.9</td>
</tr>
<tr>
<td>Scirrhous</td>
<td>1</td>
<td>2</td>
<td>20.00</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>20.00</td>
</tr>
<tr>
<td>Colloid</td>
<td>2</td>
<td>1</td>
<td>50.00</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>50.00</td>
</tr>
<tr>
<td>Growth from bone</td>
<td>14</td>
<td>1</td>
<td>7.14</td>
<td>2</td>
<td>2</td>
<td>40</td>
<td>7.5</td>
</tr>
<tr>
<td>Hysteria</td>
<td>13</td>
<td>1</td>
<td>7.69</td>
<td>2</td>
<td>2</td>
<td>40</td>
<td>7.5</td>
</tr>
<tr>
<td>Chorea</td>
<td>10</td>
<td>8</td>
<td>80.00</td>
<td>7</td>
<td>7</td>
<td>25</td>
<td>82.1</td>
</tr>
<tr>
<td>Chronic disease</td>
<td>6</td>
<td>4</td>
<td>66.67</td>
<td>5</td>
<td>5</td>
<td>25</td>
<td>25.00</td>
</tr>
<tr>
<td>Aplexy</td>
<td>4</td>
<td>4</td>
<td>100.00</td>
<td>4</td>
<td>4</td>
<td>15</td>
<td>60.0</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>33</td>
<td>5</td>
<td>15.15</td>
<td>12</td>
<td>12</td>
<td>33</td>
<td>17.7</td>
</tr>
</tbody>
</table>

1 Associated in 18 cases with phthisis.
2 In both cases the chief cause of death.
3 Two occurred in fever, one of which was fatal. The other fatal case was one of those recorded under hematemesis.
4 Besides 12 of menorrhagia.
5 All the fatal cases were complicated with organic disease of viscera, especially disease of heart and kidneys.
6 Besides 10 of amenorrhoea.
7 The fatal cases were all examples of purulent contamination of the blood, 1 from abscess in the course of scarlatina, 3 from phlebitis.
8 In only one case was scrofula the cause of death, under the form of large strumous abscess.
9 Four cases had also tubercles in the lungs.
10 All the cases admitted with cephalic inflammation. Three had also tubercles in the lungs.
11 Cyst in arachnoid, causing epilepsy.
12 Of the fatal cases, 7 occurred in patients of a tubercular diathesis. Of these, 4, as already stated, had tubercles in the brain.
13 In the fatal case, there was disease both of the heart and kidneys.
14 Of the fatal cases, 1 had a cyst in arachnoid,
15 very slight recent effusion of blood.
16 old disease of the kidney.
17 encephaloid disease of the liver.
Annual Report of Cases admitted into the

Cases admitted during the year 1853.

<table>
<thead>
<tr>
<th>Nature of Disease</th>
<th>Admitted</th>
<th>Died</th>
<th>Per cent. of mortality</th>
<th>Complicated with death of diseases</th>
<th>Deaths among complications</th>
<th>Admitted during three years</th>
<th>Per cent. of mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional disturbance</td>
<td>49 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Inflammation of cord</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>600</td>
</tr>
<tr>
<td>Paralysis</td>
<td>34 2</td>
<td>58 5</td>
<td></td>
<td>10 2</td>
<td>8</td>
<td>84</td>
<td>71</td>
</tr>
<tr>
<td>Hemiplegia</td>
<td>20 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>Paraplegia</td>
<td>6 1 4</td>
<td>16 8</td>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>47</td>
</tr>
<tr>
<td>Local paralysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuralgia:</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Tic douloureux</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Seizures</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Hemiplegia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angina</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Diseases of the heart:</td>
<td>16 9</td>
<td>56 25</td>
<td>10 5</td>
<td>9</td>
<td>45</td>
<td>39 5</td>
<td></td>
</tr>
<tr>
<td>Pericarditis</td>
<td>6 3</td>
<td>50 0</td>
<td>6 3</td>
<td>9</td>
<td>38</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Endocarditis</td>
<td>16 13</td>
<td>81 23</td>
<td>18 5</td>
<td>13</td>
<td>75</td>
<td>62 7</td>
<td></td>
</tr>
<tr>
<td>Hypertrophy</td>
<td>15 11</td>
<td>73 3</td>
<td>15 3</td>
<td>11</td>
<td>41</td>
<td>46 3</td>
<td></td>
</tr>
<tr>
<td>Dilatation</td>
<td>51 14</td>
<td>27 45</td>
<td>30 10</td>
<td>14</td>
<td>164</td>
<td>21 4</td>
<td></td>
</tr>
<tr>
<td>Valvular disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diseases of arteries and veins:</td>
<td>5 2</td>
<td>40 0</td>
<td>4 2</td>
<td>11</td>
<td>27 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aneurism</td>
<td>8 3</td>
<td>37 5</td>
<td>3 11</td>
<td>20</td>
<td>30 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phlebitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diseases of respiratory organs:</td>
<td>10 5</td>
<td>50 0</td>
<td>5 12</td>
<td>29</td>
<td>40 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laryngitis</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Tracheitis</td>
<td>150 19</td>
<td>12 6</td>
<td>8 4</td>
<td>37 1</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronchitis</td>
<td>34 10</td>
<td>29 4</td>
<td>20 14</td>
<td>8</td>
<td>108</td>
<td>26 8</td>
<td></td>
</tr>
<tr>
<td>Pleurisy</td>
<td>60 18</td>
<td>29 8</td>
<td>34 14</td>
<td>148</td>
<td>27 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Seventeen cases presented more or less the characters of insanity.

2 Associated with paraplegia.

3 In the fatal cases, hemiplegia was associated—
 in 1 with disease of kidney and effusion of serum in the ventricles.
 in 1 with chronic inflammation of brain.

4 The fatal case presented no organic disease. Paralysis first attacked the muscles of the eyes, then
 the fauces, and lastly the muscles of respiration.

5 Two had also endocarditis. Pericarditis was associated—
 in 8 cases with acute rheumatism.
 in 1 " disease of kidney.
 in 1 " phthisis.
 in 4 " pleurisy.

Pleurisy also co-existed in 3 of the rheumatic cases, and 2 of those with disease of kidney.

6 Endocarditis was associated—
 in 4 cases with acute rheumatism.
 in 2 " pleurisy.

7 Two of the fatal cases already enumerated under pericarditis.

8 Twelve had disease of the kidney.

9 had also dropy.

10 Eleven had dropy.

11 Nineteen had dropsy.

12 All fatal from purulent contamination of blood.

13 All the fatal cases were phthisical.

14 Of the fatal cases,
 4 were associated with disease of heart or kidneys.
 " " emphysema.
 " " pleurisy.
 " " peritonitis.

15 Among those enumerated as complicated cases, eight had both pleurisy and pneumonia.
Medical Wards of St. George's Hospital.

Cases admitted during the year 1853.

<table>
<thead>
<tr>
<th>Nature of Disease</th>
<th>Admitted</th>
<th>Deat.</th>
<th>Per cent of mortality</th>
<th>Complicated with other cases</th>
<th>Deaths</th>
<th>Among complicated cases</th>
<th>Admissions</th>
<th>Per cent of mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emphysema</td>
<td>13</td>
<td>6</td>
<td>46.2</td>
<td>13</td>
<td>6</td>
<td></td>
<td>32</td>
<td>31.2</td>
</tr>
<tr>
<td>Asthma</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pertussis</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pneumothorax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diseases of mouth and pharynx:</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Quinsey</td>
<td>7</td>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Enlarged tonsils</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Ulceration</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Mumps</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Diseases of stomach and oesophagus:</td>
<td>66</td>
<td>1¹ 1'52 29</td>
<td>166</td>
<td>75.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyspepsia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulceration</td>
<td>2³</td>
<td>2</td>
<td>100.0</td>
<td>1</td>
<td>1</td>
<td></td>
<td>4</td>
<td>75.0</td>
</tr>
<tr>
<td>Diseases of intestinal canal:</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>1</td>
<td>1</td>
<td></td>
<td>4</td>
<td>50.0</td>
</tr>
<tr>
<td>Obstruction</td>
<td>4²</td>
<td>2</td>
<td>100.0</td>
<td>2</td>
<td>2</td>
<td></td>
<td>10</td>
<td>6.6</td>
</tr>
<tr>
<td>Constipation</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>4</td>
<td>50.0</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>4</td>
<td>2</td>
<td>100.0</td>
<td>2</td>
<td>2</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Dysentery</td>
<td>4</td>
<td>2</td>
<td>100.0</td>
<td>2</td>
<td>2</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Tympanitis</td>
<td>4</td>
<td>2</td>
<td>100.0</td>
<td>2</td>
<td>2</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Ulceration</td>
<td>3</td>
<td>2</td>
<td>66.6</td>
<td>3</td>
<td>3</td>
<td></td>
<td>8</td>
<td>87.5</td>
</tr>
<tr>
<td>Diseases of peritonitis:</td>
<td>14</td>
<td>2</td>
<td>143.0</td>
<td>11</td>
<td>6</td>
<td></td>
<td>36</td>
<td>36.0</td>
</tr>
<tr>
<td>Acute peritonitis</td>
<td>19</td>
<td>2</td>
<td>100.0</td>
<td>11</td>
<td>6</td>
<td></td>
<td>63</td>
<td>33.1</td>
</tr>
<tr>
<td>Chronic peritonitis</td>
<td>17</td>
<td>2</td>
<td>100.0</td>
<td>11</td>
<td>6</td>
<td></td>
<td>56</td>
<td>33.1</td>
</tr>
<tr>
<td>Diseases of liver and gall bladder:</td>
<td>5</td>
<td>2</td>
<td>40.0</td>
<td>4</td>
<td>1</td>
<td>17</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>19</td>
<td>15</td>
<td>78.9</td>
<td>15</td>
<td>1</td>
<td></td>
<td>37</td>
<td>72.9</td>
</tr>
<tr>
<td>Jaundice</td>
<td>18</td>
<td>6</td>
<td>33.3</td>
<td>12</td>
<td>6</td>
<td></td>
<td>49</td>
<td>24.5</td>
</tr>
<tr>
<td>Enlargement</td>
<td>9</td>
<td>2</td>
<td>22.2</td>
<td>5</td>
<td>1</td>
<td></td>
<td>27</td>
<td>22.2</td>
</tr>
<tr>
<td>Gall-stones</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Diseases of spleen:</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Enlargement</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Diseases of urinary organs:</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Nephritis</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

¹ Of the complicated cases, 12 were associated with bronchitis.
² This case already enumerated as the result of poisoning with caustic alkali.
³ The only fatal case was one of great dilatation of the stomach, without any evident organic lesion.
⁴ No cases have been entered as ulceration, in which the fact was not ascertained by post-mortem examination.
⁵ The result of malignant disease.
⁶ Of the fatal cases, 1 was associated with phthisis.
⁷ These cases are not enumerated in which ulceration was a symptom of fever or of phthisis.
⁸ Of the fatal cases, 1 was due to malignant disease.
⁹ Seventeen of these had ascites.
¹⁰ Of the fatal cases, 2 had malignant disease of liver.
¹¹ Accompanied by jaundice.
Annual Report of Cases

Cases admitted during the year 1853.

<table>
<thead>
<tr>
<th>Nature of Disease</th>
<th>Admitted</th>
<th>Dead</th>
<th>Per cent. of mortality</th>
<th>Complicated with other diseases</th>
<th>Deaths</th>
<th>Admitted during three years</th>
<th>Per cent. of mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystitis</td>
<td>5</td>
<td>0</td>
<td>0.01</td>
<td>2</td>
<td></td>
<td>17</td>
<td>5.8</td>
</tr>
<tr>
<td>Albuminuria</td>
<td>71</td>
<td>43</td>
<td>6.1</td>
<td>43</td>
<td>1</td>
<td>229</td>
<td>50.3</td>
</tr>
<tr>
<td>Diabetes</td>
<td>5</td>
<td>1</td>
<td>20.0</td>
<td>3</td>
<td>1</td>
<td>13</td>
<td>15.4</td>
</tr>
<tr>
<td>Diseases of ovaries:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dropy</td>
<td>7</td>
<td>3</td>
<td>42.8</td>
<td>2</td>
<td>2</td>
<td>16</td>
<td>25.0</td>
</tr>
<tr>
<td>Tumours</td>
<td>7</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Diseases of uterus:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amenorrhoe</td>
<td>10</td>
<td>7</td>
<td></td>
<td>3</td>
<td></td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Menorrhagia</td>
<td>12</td>
<td>6</td>
<td></td>
<td>3</td>
<td></td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Leucorrhoe</td>
<td>14</td>
<td>9</td>
<td></td>
<td>3</td>
<td></td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Tumours</td>
<td>4</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td>8</td>
<td>12.5</td>
</tr>
<tr>
<td>Prolapse</td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Congestion</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Diseases of bones and joints:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diseases of skin and cellular tissue:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erythema</td>
<td>8</td>
<td>6</td>
<td></td>
<td>3</td>
<td></td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Urticaria and roseola</td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>7</td>
<td>25.5</td>
</tr>
<tr>
<td>Lichen and prurigo</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Squamous eruptions</td>
<td>9</td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Vesicular eruptions</td>
<td>19</td>
<td>9</td>
<td></td>
<td>9</td>
<td></td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Pustular eruptions</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Pompoxil and rapia</td>
<td>7</td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Cellular inflammation</td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>10</td>
<td>33.3</td>
</tr>
<tr>
<td>Diseases of muscles</td>
<td>3</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>10</td>
<td>33.3</td>
</tr>
<tr>
<td>Anomalous and accidental cases</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>17</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

1 Complications—
60 cases with anaemia.
28 " disease of heart.
18 " disease of lumps.
6 " phthisis and scrofula.
9 " disease of brain and paralysis.
13 " diseases of other abdominal viscera.
7 " rheumatism and gout.
3 " erysipelas.
1 " diffuse cellular inflammation.
1 " scarlatina.
2 " purpura.
2 " fever.
2 " cancer.

2 Death from phthisis.
3 Complicated in both instances with chronic peritonitis and ascites.
4 Besides eighteen of chlorosis.
5 Besides eight of hemorrhage from uterina.
6 The fatal case was one of diffuse cellular inflammation, associated with dropy and albuminuria.
7 Abscess forming in centre of belly of rectus femoris muscle, followed by secondary pneumonia.
THE
BRITISH AND FOREIGN
MEDICO-CHIRURGICAL REVIEW.

OCTOBER, 1854.

PART FIRST.
Analytical and Critical Reviews.

Review I.

1. Change of Climate considered as a Remedy in Dyspeptic, Pulmonary and other Chronic Affections; with an Account of the most eligible Places of Residence for Invalids in Spain, Portugal, and Algeria, at different Seasons of the Year: and an Appendix on the Mineral Springs of the Pyrenees, Vichy, and Aix les Bains. By D. J. T. Francis, M.D., Physician to the Margaret Street Dispensary for Consumption, &c.—London, 1853. Post 8vo, pp. 339.

2. The Climate of Port Philip. By J. B. Clutterbuck, M.D., Nine Years' resident in the Colony.—London, 1850. 12mo, pp. 156.

The influence of Climate upon the health of man, has ever been a subject of deep interest to the medical philosopher. It is peculiarly so at the present time, when the facilities of locomotion have set all the world on the move, and countries and peoples that were formerly but little known are now, by the aid of steam, brought nearer to this metropolis than Dublin or Edinburgh were fifty years ago. The modern invalid is no longer content with a visit to any of the time-honoured shrines of Hygeia in his own country; for they possess the fatal advantage of being too near home; nor to those foreign depots for the migrating sick of all nations, whose traditionary fame had hitherto secured to them a monopoly, as for example, Rome, Pisa, Madeira, and Provence. More distant climes are now sought for—even to the other side of the earth—hence the sunny south is eclipsed by the shores of the Pacific, the "island of the blessed" in the Eastern Atlantic, by other islands with brighter skies and ranker vegetation in the Polynesian seas; and even "sweet Provence," with its limpid streams and verdant valleys, sinks into insignificance when com-
pared with the auriferous regions of Tasmania, alleged to possess the *ne plus ultra* of climates on the terrestrial globe.

There is a fashion in climates, as in many other matters relating to medicine, fostered by the caprice and love of change of noble and wealthy invalids, which may in some sort account for the extraordinary opinions which have prevailed from time to time as to the sanative virtues of localities positively insalubrious. The habit of estimating the qualities of a climate from the luxuriance of the vegetation, and the gratification of the animal feelings of persons in sound health, is perhaps the chief source of the popular belief in the efficacy of foreign climates in the treatment of mortal diseases; but, as we have elsewhere observed, "however agreeable to the senses warm air, sunny skies, and luxuriant vegetation may seem, they afford no proof of salubrity, nor of the beneficial effect of any climate." The author of one of the works which we are about to review, is strongly imbued with this popular view of a salubrious climate, and, carried away by the glorious scenery and almost tropical vegetation along the south of Spain, he awards to certain localities in Andalusia the palm of salubrity, in reference to pulmonary complaints, which has been denied to Italy and Madeira. Yet patients die of phthisis in Malaga, the El Dorado of climates, according to Dr. Francis, as well as in either of the last-named medical stations. Nor is this to be wondered at, when we bear in mind that the valuable 'Statistical Reports on the Sickness, Mortality, and Invaliding in the Army' have shown that there is no immunity from what has been so erroneously called the "English disease" in any quarter of the globe, but that pulmonary consumption is a prevalent and fatal disease in all climes and nations.

There is no perfect climate—all we hear about "earthly paradises," and "heavens upon earth" notwithstanding;—for a climate to be perfect in relation to phthisis, should not vary in temperature from day to day throughout the year; and the transition from day to night, as well as from one season to another, should be imperceptible. As a condition of this kind is incompatible with the physical laws to which this planet is amenable, it only remains for the climatologist to ascertain where that climate is to be found which approaches nearest to equality of temperature, (Dr. Francis says Malaga is the place), for in that quality consists the chief virtue of climate as regards pulmonary complaints. The degree of heat is a very inferior consideration as compared with the range of temperature, and there is no reason why the mild, humid, relaxing, atmosphere of Rome should be more efficacious in the treatment of phthisis than the cold rarefied air of Siberia, if the temperature of the latter were equable.

Before examining the claims upon our attention put forth in favour of the Spanish climate, let us glance at the history of the more distant and still more lauded climate of Australia Felix. This favoured country, we have been taught to believe, is the modern Arcadia. Its name has been associated with smiling landscapes, all gently undulating, covered with fruits, flowers, and odoriferous herbs. Banks, on which wild thyme and violets continually grow, and an eternal summer to crown the whole. The belief was general that for invalids, especially for consumptive invalids, this country afforded the perfection of climates. This
notion was undisputed until the gold discovery in 1851, when the peculiarities of the country became better and more extensively known, and, as a matter of course, the real character of the climate more accurately described by competent observers. There are two descriptions of this climate diametrically opposed to each other. So much has been said of the beauty, mildness, and salubrity of the climate of Australia, it would have been a very fruitless task to offer any observations of an unfavourable tendency, until a sufficient number of successful and unprejudiced voyagers returned, to bear testimony by their own personal experience. We have now before us several documents from different sources, descriptive of the leading characters of this famous climate; a few extracts from which we shall place before our readers. The following passages are taken from the diary of Mr. W. H. Archer, assistant to Mr. Neisen, the actuary at Melbourne. The meteorological observations were made in a tent in Canvas Town, on the banks of the Yarra Yarra, near Melbourne.

"Rounded the Cape in the middle of October; wet, squally, and wretchedly cold. Consoled by thinking of the land of promise, the gentlest and healthiest of climates. Landed at Port Philip the first week in November, the commencement of the Australian summer. First few days very fine, somewhat over warm though, 80° in the shade. Still very fine, a moderate breeze from the south, fresh from the sea. All true about the climate. Fixed my tent near the Yarra, and hung up my thermometer. November 5 (my first day), the mercury rose to 90° in the shade. Lay panting on a box the greater part of the day. Next day so chilly was obliged to put thicker trousers on, and an extra coat. Dark heavy clouds overhead all day; no sun visible. Mercury once got up to 64°, and gradually sunk down again. In the evening 1 fairly shook with cold. November 7, morning early; not a cloud to be seen, air fresh and temperature delicious. At breakfast the thermometer stood at 70°, but the breeze soon dropped, and at about one o'clock the quicksilver stood at 96° in the shade. Lay gasping with nothing but duck and canvas about me. Did nothing but drink water, lemonade, ginger beer, and cold tea. November 8, heat abated, not above 84°; the day following it fell to 72°, and in the evening to 55°. Then came a succession of hot days; Monday, 94° in the shade; Tuesday, 96° in the shade; Wednesday 94°; then a few moderate days; then three successive days at 84°, 74°, 70°, in the shade; and then cold, being 60° and 58°; moderate again for a few days; then cold; then hot again, 96°, 96°, 96°, in the shade; then 78°, 75°; then 84°; then 64° and very wet; then 100° in the shade, with hot wind, sending clouds of infinitesimally small sand, that found its way through everything: in the evening the wind shifted, and all night long the rain poured in torrents; awoke in a temperature of 62°, which diminished the next day to 55°. December 30, another hot wind, day and night. December 31, worse; thermometer rose to 110° in the shade, and 130° in the sun; sky dark, with sand clouds rushing over our heads; tents blown down by hot blast; some people died from the heat and suffocation; mouth full of dust. January 8, mercury at 64°, cold and rain. January 9, mercury at 60°, colder, and much more rainy. January 10, mercury at 54° all day, with rain; great-coats and gloves; several blankets at night; tents blown down by cold blast."}

Surprised at the strangeness of the summer, and supposing that all which had been said in England about the beauty of the climate of Australia probably had reference to Sydney or to Adelaide (South Australia), this writer, upon inquiry from old residents, was assured that the variations of the temperature in winter were quite as severe. On the 26th of November there was a hailstorm in Sydney, which demolished all the
windows of houses and churches that lay in its course. The hailstones
were commonly "the size of greengages." In Sydney, the thermometer
was continually at 130° in the sun; and in Adelaide, it was some-
times 140°. As for the hot dust blast, called a "brickfielder," they had
it just as bad at both places. It would thus appear that one "heaven
upon earth" is about as objectionable as another. The complaints of
the country are influenza, diarrhœa, dysentery, boils, "eye-blight," con-
sumption, and a strange sort of cough, which the people call "the guitar."
All these are very prevalent, scarcely any one escaping one or more of
them. Many parts of Australia would be fatal, I should think, to persons
with pulmonary complaints. Yet consumptive patients are sent out here.
Some allowance, however, must be made for the unusual severity of the
summer of 1852–53; but the hot wind, or simoom, and clouds of dust
or sand, are common in the finest seasons.

William Howitt, writing from the "Ovens," December, 1852, com-
plains bitterly of the climate. He says:

"The dust winds, and violent variations of the atmosphere, often of no less than
100 degrees in a day, would try any constitution. The season has been frightfully
unhealthy and fatal to many. Hundreds are still lying ill from the insidious in-
fluence of this 'fine salubrious climate.' At Melbourne, scarcely a soul but what
has been ill. Gentlemen who have been in India, China, and over Europe and
America, say that this is the worst climate they know. Without any apparent
cause, people are everywhere attacked with dysentery, rheumatism, cramp, and
influenza, and the little black fly of Australia is a perfect devil."

Another writer, Mr. C. Thompson, states of the climate of Melbourne,

"That it is a gross deception to say that it is so salubrious. The glowing
descriptions of this climate should never have been promulgated. For instance,
yesterday, January 1, 1853, in the morning the thermometer stood at 102° indoors,
and 128° in the sun, with a violent gale of blinding, burning dust, as bad as on a
Nubian desert, and ere sunset the temperature fell 40 degrees. This is a frequent
occurrence during the summer months. Dysentery has been a prevailing com-
plaint amongst all classes of all ages; and in many instances rapidly fatal.
Invalids should not be deceived regarding the climate, which is more adapted to
vigorous constitutions than to those labouring under infirmity."

Dr. Clutterbuck, who was nine years resident in the colony, observes:

"No climate, probably, is more variable than that of Port Philip. I have seen
the thermometer range, in the course of twenty-four hours, between 70° and 102°;
in the shade sometimes standing at 65°, 70°, 80°, or 86°; in the sun, at 132°.
New South Wales and Van Diemen's Land are better provided with rain than
England. Thus London, generally noted for its wet climate, has an annual quan-
tity of rain equal to 22 19 inches; while the average which falls upon a station
in New South Wales is 48 inches, in the sister colony 41 inches, yearly. Fever,
dysentery, inflammation of the liver, apoplexy, palsy, croup, in fine, inflammatory
and other diseases, are of as frequent occurrence as in England. The two first
have all the characters of tropical maladies, and assume a violence of form and
rapidity of progress unknown in the mother country; and I am surprised to find
a medical writer of the present day,* in adverting to the Australian climate, thus
expressing himself:--'Fever are almost unknown, and the same may be said of
hooping-cough, croup, &c.' Consumption, the greatest scourge to persons residing
in England, consigns many victims in Port Philip to a premature grave. To imagine,
as many do, that emigration to this colony tends either to prevent the development of this complaint, or to arrest its progress, is a fatal delusion. Even during the earlier stage of consumption in England, I have never witnessed so urgent and oppressed a state of respiration as that which occurs in this portion of New South Wales. This fact, apparently, is to be ascribed to the stimulating effect of the intense summer heat; as also to the extreme variations in the temperature of the atmosphere within twenty-four hours. In whatever manner we may attempt to explain the fact, I have little hesitation in expressing my belief that the most intense cold of England (added, if you please, to a London fog) does not produce so baneful an influence, on a habit predisposed to consumption, as the sudden vicissitudes of the Australian climate.” (pp. 19, 20.)

It should be observed, that the preceding observations refer chiefly to the climates of the principal towns of the colony. If the invalid is prepared to forego all residence in towns or villages, and dwell in the vast solitudes of the bush, several hundred miles in the interior, he will there find a climate less obnoxious to these serious changes. This is what has so deceived strangers, who very naturally expected to find the “finest climate in the world” at Melbourne, Sydney, and Adelaide.

The most agreeable period of the day is the early morning, between six and eight o’clock. The air is then clear, light, dry, fresh; and a cool brightness pervades the whole atmosphere and surrounding scenery. After this, the day may be anything. The sunsets are often magnificent. Though the twilight is of very brief duration, the heavens present a grave scenery, of fading purple in grand and well-defined designs, which, in the clear solitudes of the bush, suggest the profoundest melancholy, by their associations with intense beauty and the loneliness of death. But the air is generally cold, and what we understand in England by a “sweet summer evening” is comparatively unknown in Australia Felix.

The chief purpose of Dr. Francis’s book is to show the superior claims, in a sanitary point of view, of the climate of Spain over that of Italy, for pulmonary complaints. He observes:

“An experience of two winters passed in Italy, convinces me that much of the objection so forcibly urged by Dr. Burgess against the climate of that country is well founded. An experience of three other winters passed in the Peninsula is equally convincing, that when judiciously selected cases are sent to Spain, each one to the locality best adapted for its treatment, the climate of that country, in its good results, will rarely disappoint any reasonable expectation.”

In the first place, let us examine the nature of these objections against the climate of Italy. We maintain that much misconception prevails with respect to the efficacy of foreign climates in cases of pulmonary consumption. Our views are contained in the following summary:

Madeira, with all its sanitary fame, is no exception to this rule, as the meteorological observations of Drs. Heineken, Gourlay, and Mason incontestably establish. Malta is subject to great vicissitudes of temperature, and to the baneful effects of the Sirocco and Libeccio—African blasts. The climate of the south of France is rendered most injurious to consumptive invalids by the influence of the Mistral, the scourge of Provence: the mortality amongst the natives shows this. Nice, which exhibits the luxuriant vegetation of the tropics, is subject to great alternations from
heat to cold, and the deaths by phthisis are numerous even amongst the inhabitants. The climate of Italy, however delightful to persons in good health, affords no immunity from pulmonary disease. It has been vastly overrated, especially as an adjuvant in the cure of phthisis; and the localities generally recommended are not the most favourable. For example: Northern Italy, which has been hitherto overlooked by the profession, affords, in the reviewer's opinion, two of the best localities for the residence of pulmonary invalids throughout the Italian peninsula—namely, Como and Venice. Invalids residing in Italy will find the summer climate of Lake Como the best adapted for pulmonary complaints. The transitions of temperature are more gentle here than at any other station in Italy, and its climate approaches nearer to equability than elsewhere. Venice presents peculiar advantages.

The climate of this singular city is, in great measure, exempt from those violent atmospheric perturbations which are the bane of the Neapolitan seashore; whilst it possesses a certain mildness of character and equability, often unknown in some of the more southern parts of Italy. Besides, there is the exercise of the gondola, the gliding motion and gentle oscillation of which are so peculiarly adapted for consumptive invalids. Genoa is admitted by all writers to be one of the most unfavourable localities in Italy for pulmonary complaints. Florence is equally prejudicial. The climate of Pisa is far too relaxing, humid, and murky, to be beneficial in tuberculous disease. The Roman climate, if mild, is sedative and depressing; and owing its mildness to malarious emanations, cannot prove sanative, particularly in a malady characterized by depression of the vital force, and accompanied by vitiated nutrition. It is a mistake to suppose that a warm, humid, relaxing atmosphere can benefit pulmonary disease. Cool, dry, and still air, appears a more rational indication, especially for invalids born in temperate regions. The climate of Naples is the most dangerous throughout Italy for persons suffering from affections of the respiratory organs.

Dr. Francis considers the climate of the peninsula to be exempt from most of the disadvantages of that of Italy. He observes:

"Comparing Spain with Italy, in point of advantages of climate, I think that reason, as well as such little experience as there is on the subject, would incline us to look very favourably on the claims of the former. First, its latitude, which, in regard to the places of common resort, extends many degrees further south. The latitudes of Rome and Naples, for instance, are $41^\circ\frac{1}{2}$ and $40^\circ\frac{1}{2}$, whilst that of Malaga is $36^\circ\frac{1}{2}$. Then the physical disposition of the two countries. The whole of the Mediterranean coast of Spain may be said to have a southerly aspect; whilst, as a general rule, walls of lofty mountains, running parallel to the sea, form a huge protective barrier on the north. Between these and the sea lie those strips of smiling country which occur at frequent intervals all along the coast, sheltered and basking in the sun, and producing a vegetation which, for force of development, seems to be singular in southern Europe." (pp. 2, 3.)

There are two perfectly distinct forms of climate in the Spanish peninsula. One pertains to the littoral portions of that country, the other to the interior. The air of central Spain is dry and rare, and often agitated by winds. The range of the thermometer is very great, and its variations sudden and extreme. However beneficial such a climate may be to
the nervous or dyspeptic, the pulmonary invalid incurs great risk by remaining at all in the country. The Mediterraneaean, or southern and eastern coast, enjoys the warmest winters in Europe, and it is to a description of this part of the country that a large portion of Dr. Francis's book is devoted.

"The air is decidedly dry, especially in the centre, about Alicante and Valencia, where the land, unless artificially watered, is in many parts barren. More of humidity occurs as we approach the Straits of Gibraltar on the one hand and the French frontier on the other. All along this coast the east winds, no longer dry, harsh, and irritating, but somewhat moist and soothing, unless at Gibraltar, are of frequent occurrence at all seasons. They help to temper the extreme natural dryness of the air and keep down the summer temperature. The skies are unclouded; the vegetation and general aspect of nature oriental. It is a land of flowers and fruits; of sugar, cotton, dates, cochineal, and indigo; of rice, wine, and oil. And everything that grows, wherever there is water, attains a prodigious luxuriance. The summers on this coast would be found too hot, unless for persons in good health; but for the rest of the year the climate is delicious." (p. 97.)

It will be seen, from the foregoing extract, that Dr. Francis attributes considerable importance to the latitude of those parts of Spain which he recommends for consumptive invalids, and points to the luxuriant vegetation as an indication in favour of the climate. He frequently refers to these two features throughout his work. Now, the fact of Malaga being four or five degrees farther south than Rome or Naples does not at all imply that the climate of the former is more salubrious than the climates of the last-named cities, whatever it may indicate as to increase of temperature. And luxuriant vegetation is by no means an index of the healthiness of any locality. The author, however, advances other arguments of a more legitimate character in support of his views, as, for instance, the extraordinary equability of temperature which he describes as existing in Malaga, and other adjacent cities, which we shall enter fully into by and by; but we may remark in limine, that this equability of temperature, the grand desideratum of all climates, is not necessarily the result of either the latitude or the vegetation of the place.

CLIMATE OF MADRID.

Dr. Francis commences with the climate of Madrid, which he pronounces to be, what is pretty generally known, unhealthy and dangerous for invalids. Madrid is very nearly in the centre of the Peninsula, in latitude 40° 24', population 250,000. It is surrounded by a naked, treeless country, like a desert, or a solitude as unbroken as any in the wilds of Estremadura. The chief peculiarities of the climate are the extent of daily and yearly range of the thermometer, and the remarkable alternations of temperature that may be experienced in passing from the sun into the shade, or from a sheltered spot to some street running in a direction north and south. These peculiarities are ascribable to the exposed situation of the town, in the midst of an arid plain elevated 2113 feet above the level of the sea; whilst on the north lies a lofty sierra, from the snowy crests of which the subtile, dry, keen air enters the streets unbroken and but little warmed by the naked land which it has traversed. The mean annual temperature is 57°. The mean range of the thermometer 102°. In the summer of 1839, which the author spent in Madrid,
the thermometer on three occasions marked 112° in the shade, whilst in
the succeeding winter there were several consecutive days of skating.
The mean daily range for the whole year is about 8°. The actual, as
well as the sensible range, on most days, is, however, very much greater.
Thierry remarks that an inhabitant of Madrid is habitually exposed to a
daily difference of temperature of from 30° to 40°; and occasionally the
difference may amount to more than double those figures. We have
observed a thermometer which indicated a temperature below freezing
point a little after sunrise, and reached 106° in the sun at 3 p.m.; and
to this prodigious range a person out of doors would have been exposed
within the short space of seven or eight hours.

The mean temperature of winter is 44°, of spring 56\frac{1}{2}°, of summer
74°, and of autumn 58\frac{1}{2}°. The mean height of the barometer is 27.8
inches, and the yearly range one inch, one line, and a half. The quantity
of rain that fell in 1846, whether as rain, dew, or snow, was only 20½
inches. The number of rainy days, that is, days in which the rain was
in sufficient quantity to be measured by the pluviometer, was only 37.
The mean term of the hygrometer of De Saussure was 65.9°. Of the
winds, the north-east prevailed on 87, the south on 99 days. The vicissi-
tudes of the climate, and the sudden transitions from heat to cold, give
rise to numerous complaints, including every form of pulmonary disease;
but there are two diseases specially associated with the name of Madrid
—colic and pneumonia. The extraordinary rapidity of the progress of
the latter, and its fatal character, are the chief peculiarities of that com-
plaint. And it is remarkable that the air which produces these terrible
consequences is often so gentle in its movements, that no suspicion of its
injurious consequences might be created in the mind of the stranger.

Dr. Francis next describes the climate of Lisbon, which, however, he
does not recommend for phthisical patients, seeing that consumption is
on the increase amongst the natives, as amongst the Portuguese at
Madeira, and that it is one of the most common causes of death. The
climate is inconstant. The fluctuations between the extremes of dryness
and moisture, and the variations of temperatures, are often sudden, as well
as remarkable.

Seville is an interesting city for a winter residence; but its climate is
objectionable for invalids in many points of view. The low-lying ground
on which the town is built renders it subject to occasional inundations
from the overflowing of the Guadalquivir. There is also an open stream
which winds round the east and west sides of the town, close to the walls,
and falls into the Guadalquivir. In rainy seasons a large current of
water runs down this deep channel; but, for the greater portion of the
year, it is a sluggish, shallow ditch, full of black decomposing vegetable
matter. Much unhealthiness, especially summer and autumn fevers, is
fairly ascribable to this source.

Dr. Francis having failed, after repeated inquiries, to discover the
existence of any recorded meteorological data at Seville, observes:—"The
only alternative, with a view to form an opinion of the climate, will be,
to make use of unregistered observations, and of the valuable information
afforded by the state of vegetation." Although frost and snow are of rare
occurrence, after nightfall and during the early morning, there is a keen,
1854.]

The Climates of Spain and Australia.

penetrating feel about the air, which no person with delicate chest should encounter. Nor should we venture out into the narrow streets until the sun has gained some power. In the summer the heat is intense, and rivals that of Madrid. At that season, the upper parts of the houses are no longer habitable. Calmness is a remarkable character of the climate of Seville, when compared with most other places. Storms and thunder are rare, and on many a day in winter not a breath of air is stirring. The prevailing winter wind is the north, which is nearly calm, owing to the influence of the Sierra Morena, which lies in that direction. The hygrometric condition of the atmosphere is not given, nor the amount of rain that falls yearly. Winter, as the term is understood in more northern countries, is said not to exist; although, during the daytime, it may be chilly in the streets and houses, once out in the open country, and there is always a genial, invigorating warmth.

"From time to time, however, and especially in the summer, there prevails the well-known Levante or east wind. This wind, which at the Mediterranean towns is so agreeable and refreshing, is remarkable here for its sultry and nerve-exhausting properties. Having passed in its course over many leagues of parched land, incessantly developing electricity in the glowing sun-light, it becomes to Seville what the north, in a less degree, is to Malaga, what the west wind is to Valencia. When the Levante blows—the sirocco of these parts—people hasten to close their doors, windows, and every other opening, against the entrance of the irritating air. It produces, in those who are exposed to its influence, a burning sensation of the face, renders the whole system feverish and irritate, gives rise to ophthalmias, especially in the case of persons who are predisposed to such affections, and is particularly injurious wherever there is a tendency to nervous disorders. Its effects upon the moral constitution are no less remarkable. During its persistence, the number of quarrels and knife-wounds in the town is almost invariably increased; and I was informed by good authority, that in the administration of justice, allowance is generally made in the case of manslaughter committed under such circumstances. The occasional occurrence of this wind does not, however, at all detract from the sanative merits of the climate of Seville, since no invalid would be counselled to visit the city during the summer, the season in which such winds prevail. But it furnishes a reason, in addition to the heat, why even healthy persons may find it expedient to avoid the city of Figaro during that portion of the year." (pp. 137, 138.)

Dr. Francis disputes the accuracy of Mr. Ford's statement, that the winter of Seville is "very wet," and says, that the winter which the latter writer spent in that city was an exceptional one. The rainy season in Seville usually commences in October, November and December being generally dry. Rain also falls in considerable quantity towards the end of March and in April, and then the sun, being more effectually shut out by clouds than in the winter, the air feels damp and chilly.

"Turning now to the test of climate afforded by the state of vegetation, I will state some facts that came under my own observation in 1848-49, which, I am told, may be viewed as an average season. The process of growth proceeded, although in a diminished degree, throughout the winter. Many kinds of flowers were, at the same time, blossoming in gardens in the open air, and among them, smelling roses were so common, that the gratification of the general taste for weaving them among the hair was indulged in freely by the young women of the poorest class. There were deciduous trees, especially the white poplar (alamo blanco), a great favourite in Spain, the old leaves of which remained green upon the boughs at the same time that the new ones were coming forth. The first great burst of vegeta-
tion, corresponding with our March or April, took place in the second week in January. Then the ranunculus ficaria, one of the harbingers of spring, was in flower, and a profusion of thick herbage already covered the banks and waysides. On the 16th of February, poplars and willows along the river walk were gay with their new full-blown foliage. It may be useful now to compare the above account, in regard to Seville, with what was observed at Malaga at a corresponding period of the year. Journeying from the former to the latter place in the middle of May, the vegetation was found to be much more advanced on approaching Malaga, making every allowance for the four days spent on the road. The cactus was more fully in bloom, the aloe shoots much taller, and instead of showing merely the unexpanded spike-like stem, had already put out some of the lower flowers. The oleander, the flower buds of which at Seville were still in the state of unopened calyx, all along the banks and bed of the Malaga river from Caratraca, were blazing with mature flowers. Then, again, as the valley opened out towards Malaga, the golden tint of harvest was spread over the whole country, whilst several fields of wheat had already fallen beneath the sickle. There was nothing corresponding with this at Seville.” (pp. 139, 140.)

The mortality from consumption is estimated at about 10 per cent. Affections of the throat and larynx are not unfrequently met with during the warm weather, and are attributed to exposing the open neck to currents of cool air while the body is heated. The most common causes of death are low kinds of typhus, of which numbers of persons die during the summer.

CLIMATE OF CADIZ.

The almost insular situation of Cadiz, and its exposure to the winds from the sea, which are the prevailing ones, render the climate humid and relaxing. It would be an island, were it not for a long narrow strip of low ground, which extends from the southern point, and connects it with the neighbouring country. Seen a little way off, it seems to rise from the sea, and a more beautiful object cannot easily be found than this city of clear, marbly-white buildings, with its brilliant sky and more intensely blue waters.

“'The climate of Cadiz,” observes the author, “as might be expected, derives its character in an unusual degree from the marine situation of the town. The annual range of temperature is small; the winters are extremely mild, and the summers temperate. The air, for the most part soft and moist, is more relaxing than it is usually found to be in the southern parts of the Peninsula. At the same time the climate is more changeable than that of Malaga, Cadiz being open on all sides to the winds, without any mountain protection whatever; and although these usually come from the ocean, and are damp rather than cold, it does occasionally happen that the Levante, or east wind in summer, and the north-east wind in winter, visit the town with their ordinary character, as exhibited on the land, but slightly affected by the three or four leagues of sea they have passed over in reaching the city.” (p. 146.)

The climate of Cadiz is considered favourable to health and longevity. Señor Igartuburu has published some statistical tables, showing their results. His conclusions are derived from an average of seven years (1838 to 1845). They embrace the whole province of Cadiz. The deaths were 58,000.

There were forty-three centenarians during the seven years, of which twelve occurred in Cadiz itself. The proportion of the women to the men
who arrived at this great age was as 4 to 1. Of the diseases that are
found to prevail at Cadiz, the author says, that—

"Pulmonary consumption creates a good deal of apprehension amongst the inha-
bbitants. Many such cases are to be seen in the hospitals, when they present, in
the general progress and symptoms, close analogy with what is observed in Eng-
land, making allowance for a more rapid advance as the summer sets in. Accord-
ing to calculations made during several years, the mortality from this cause is said
to be 12 per cent."

Dr. Francis attributes this mortality from phthisis chiefly to the immor-
tality of the place; and, at the same time,

"The changeableness, and that sudden, which its semi-insular situation entails,
the chilly and damp air which often blows after a warm day, to be followed in its
turn, possibly, by a dry northern wind, render an amount of precaution necessary,
which few young persons, whilst in the enjoyment of health, are in the habit of
observing."

The climate is, however, recommended for patients with heart-disease,
dry asthma, and other affections of the chest in which irritability is a
prominent feature.

The mean annual temperature of Cadiz is 62·75°, being two degrees
warmer than Rome and Pisa, six than Pau, one than Naples; but colder
than Madeira by two, and than Malaga by nearly four degrees. The
winter temperature is four degrees warmer than that of Rome or Naples,
and six than that of Pisa. The temperature in spring being 60·28°,
exceeds that of Rome or Pisa by three degrees, and of Naples by two.
The comparatively low annual temperature of Cadiz, the latitude being
36·31°, is to be accounted for by the relative coolness of the summers, the
average of which is 73·91°. The mean annual range is 57·7°, the extremes
35·7° and 93·4°. The mean diurnal range is 10, being nearly identical
with that of Madeira.

Cadiz is the most rainy place along the Mediterranean coast of Spain.
It is even more so than Lisbon. The average number of rainy days is 99,
and the quantity of rain 22·6". The greater portion falls in autumn and
winter. It is, however, only relatively to other parts of the south of
Spain that the amount of rain at Cadiz is great. Compared with Rome,
there are eighteen days more of rain in the latter city, whilst the quantity
that falls there is still more in excess. The same may be said of the other
chief Italian towns, except Naples, which is about the same. Even at
Madeira, the quantity of rain exceeds considerably that of Cadiz. How-
ever, sufficient has been shown to indicate that the air of Cadiz is charged
with a large amount of moisture. The predominance of the sea winds in
all seasons over the land winds, in the proportion of more than two to one,
will assist in explaining this.

CLIMATE OF MALAGA.

Dr. Francis paints in vivid colours the extreme salubrity of Malaga,
and the comparative immunity of its inhabitants from fatal diseases.
Judging from the statements of the author, no other climate of which
there are recorded meteorological observations, at all approaches, in a
sanitary point of view, the climate of Malaga. He appeals to the equa-
bility of the temperature, the longevity of the people, and, as usual, to
the tropical vegetation, as arguments in favour of his statement. Making every allowance for high colouring, there are figures and facts here stated, for the first time, relative to the climate of Malaga, which are remarkable, and deserving of attentive consideration:

"There is no place in Spain," says Dr. Francis, "nor in the whole of Europe, so far as our present information goes, that possesses a climate at once so mild and equable, with so little variation from day to day, and from day to night, as Malaga. Situated in the 36° 43' of latitude, it is far to the south of any portion of the Italian peninsula, and even of Sicily and Greece. Winter indeed can hardly be said to exist: a perpetual spring, during which vegetation proceeds unchecked, connecting the autumn of one year with the summer of the next. The natives, fully alive to the delicious character of their climate, spend a large portion of their lives, and seek their amusements, in the open air; whilst many of the poor, the whole year through, care for no other bed than such as they can spread after nightfall upon the public walks. Spanish writers vie with each other in describing the praises of Malaga, which seems to them a species of paradise in Andalusia. This is the winter residence which seems to me pre-eminently, among the chosen places of Europe, to promise to the invalid who is threatened with, or already the subject of, pulmonary consumption, in its earlier stage, such relief as change of climate can accomplish for him."

Malaga is built upon a sandy soil that has been reclaimed from the sea, to which it is exposed on the south, having a more or less semicircle of mountains to shelter it in the opposite direction. The author considers the climate to hold an intermediate position, in respect to its effects upon the constitution, between the oppressive and subduing influence of Madeira and Rome, or the stimulating, bracing character of Nice:

"Temperature.—The mean annual temperature of Malaga is 66·11°, being warmer than Madeira by two degrees, than Rome and Pisa by six, than Nice by seven, than Pau by ten, than London by sixteen.

"On the other hand, it is colder than Malta by one, and Cairo by six degrees.

"Compared with other places in the Peninsula, it is warmer than Lisbon by five, and than Cadiz and Valencia by three degrees.

"This comparative result as to warmth is due, in some measure, to the intensity of the summer heat, but chiefly to the mildness of the winter.

"Thus the mean winter temperature of Malaga is 54·41°; being six degrees warmer than Rome, seven than Nice, eight than Pisa, thirteen than Pau, fifteen than London. It is, however, six degrees colder than Madeira, four than Cairo, three than Malta.

"It may give a clearer idea of the mildness of the winter of Malaga, if we bear in mind that, in regard to temperature, the month of January, in that place, corresponds with May in London, with June in Edinburgh, with April in Pisa and Rome.

"The mean temperature of spring is 62·55°, being identical with Madeira and Malta, but five degrees warmer than Rome and Pisa, and eight than Pau. The summer and autumn temperatures are 79·38° and 68·67° respectively.

"The mean annual range of temperature is 49°, being many degrees less than that of any other place on the continent of which we possess records; the range at Pau being 68°, at Rome 62°, at Nice 60°. It is surpassed, however, in this respect by Madeira, the range of which is only 31°.

"The mean daily range, which is a point of far greater importance to the invalid, inasmuch as it is that by which chiefly the essential feature of unchangeableness is to be tested, in Malaga amounts to 4·1° only. In this particular we find the climate superior to any of those that have been hitherto noticed; the daily range of Madeira being 9·4°, of Rome 10°, of Nice 9°. In connexion with this circum-
stance, it may be observed, that it is far easier for a person in delicate health to guard against variations of temperature from day to day, where they exist, than from similar variations at different periods of the same day.

"The mean difference between the temperature of successive months is 4-95° for the whole year. For the winter months only, in which we are chiefly concerned, it is 2-16."

The very slight variation, from day to day, of the temperature, of the winds, and of the barometer—the mean point of the latter lying between 27 and 28—and the recurrence of the same figures in the tables of the morning, noon, and evening observations, for twenty consecutive days, would apparently indicate that some error had crept into them. The observations, however, of other gentlemen, including the consul of the place, fully corroborate them. The author estimates the rainy days in the whole year to be 40. In general, the month of May has the largest share of them. Still, owing to other causes, the air is so far charged with moisture, that, in those periods of the year, when the evening temperature is more than usually cooler than the day, a copious fog is seen to cover the plain as the sun leaves the horizon. But Malaga is not perfect, any more than other terrestrial paradises. There is a wind which occasionally blows from an opening in the chain of mountains through which the river Guadalhorce enters the plain, three leagues from the town. This wind, called the "terral," is dry and stimulating, apt to be accompanied with dust, and depresses the sensible temperature, although it does not depress the thermometer. It gives rise to a feeling of restlessness, and of vague uneasiness in the chest, when that part of the body is predisposed to disturbance.

With the view of showing the advantages which the climate of Malaga possesses over that of Madeira for pulmonary consumption, the author observes:

"The prospect of discovering a climate that will fulfil all that can be desired is almost hopeless. Still it may be asserted that Malaga will not afford ground for disappointment, similar to those referred to in the following account, which was given me at Cadiz, in January, 1849, by Commodore B——, at that time commanding the American squadron in the Mediterranean. He had just arrived from Madeira, where he had passed not only the last three, but considerable portions of the last fifteen months, for the relief of slow consumption. He said that for three months past the weather at Funchal had been more frequently rainy and chilly than fine, besides being very changeable; and for several weeks the high mountains near Funchal had been covered with snow, the cold air descending from which influenced very considerably the temperature of the town. In summer the heat was unbearable in the low country. He also complained of the absence of level walking ground, and the general dulness of the place." (pp. 177, 178.)

Dr. Francis now proceeds to expatiate on the vegetation which he considers to have attained its culminating point at Malaga, as regards Europe. This is the only place on the continent of Europe where the sugar cane not only flourishes in the open air, but has long been a plant of extensive and profitable cultivation. The same may be said of the cotton plant. Throughout the winter, hedges of geraniums, as common there as the quickset with us, continue to blossom on the public walks, where they flourish with weed-like luxuriance.

"Malaga la hechicera,
La del eterno primavera,
La que baña dulce el mar
Entre jasmin y azahar."
The author cites the opinion of the late consul, Mr. Mark, in favour of the climate. Writing in 1829, the latter observes:

"The salubrity of Malaga is surprising and scarcely credible. The population is dense, there is a great deal of misery, the prisons are crowded, and with a depot of convicts (about six thousand), a badly conducted police, the wonder must be that it is not a sink of pestilence. Instead of that it is, under all these circumstances equally unfavourable, the healthiest place, perhaps, in the world. I speak from thirteen years' experience. Sometimes two or three days pass without a single death throughout the city."

In alluding to the extraordinary longevity of the people, the same writer says: "Ten died last year (1828) of 100, 102, and 105 years, and many others from 95 to 100. Persons of from 80 to 90 years of age may be seen going about the streets with the full use of all their faculties."

Diseases of the respiratory organs are those for which the climate of Malaga is best adapted. Dr. Francis considers it to be particularly suited for pulmonary consumption, and thinks when it is better known it will become the favourite resort abroad of phthisical invalids. Many persons suffering from incipient phthisis, who had visited Madeira and other highly lauded places throughout Europe, have expressed their preference for Malaga.

If a more bracing air than that of Malaga be required, it will be found about two leagues from this city, in the village of Torre Molinos, the climate of which possesses a more tonic quality. An agreeable summer residence may be found at Ronda, about eleven leagues from Malaga, and more than four thousand feet above the level of the sea.

Almiera, on the shore of the Mediterranean, possesses an extremely mild winter climate. Frost and snow are unknown, and the temperature rarely falls below 50°. The climate is one of the most healthy in Andalusia. The skies are remarkably clear and brilliant, and rarely obscured by clouds. Rain is for the most part of short duration. The air is dry, light, and calm.

CLIMATE OF ALICANTE.

The town of Alicante is situated in a tract of land along the Mediterranean coast, perhaps the driest in Europe. The whole district bears strong resemblance to Provence; but it fortunately has no mistral. The same arid, dust-covered plain, stunted vineyards, and sickly patches of vegetation, are common to both places; but the barrenness of the soil is in Provence the result of the drying character of the prevailing winds, whilst in the district of Alicante it is caused by the absence of rain.

"The principal circumstances by which Alicante recommends itself as a place of residence for invalids are, its mild, constant, dry climate, warm nights, comparative freedom from high winds, and general healthiness of the situation. Alicante is situate in the latitude 38° 20' N., and contains 20,000 inhabitants. There are no meteorological observations recorded upon which to form anything like a precise estimate of the qualities of

* Dr. Pinkerton has published an interesting article on the Climate of Malaga in the 'Monthly Journal of Medical Science,' for October, 1853, which modifies the statement of Dr. Francis; but, at the same time, Dr. Pinkerton admits that the Spanish climate possesses many advantages over that of Madeira, or the climates of Southern Italy.
the climate. The author is indebted to an English resident for some tables of the in-door temperature, the result of observations made twice a-day during three years. The mean annual temperature, ascertained in this way, is 63°7, which is probably below the mean external temperature. The mean temperature of winter is 52°1. The lowest point which the thermometer indicated during the three years was 46°, the highest 84°, the mean annual range being 36°7. Snow rarely falls in Alicante; and, although the early part of the day may be chilly, and unfit for the invalid to venture abroad, the middle and afternoon will be mild, calm, and genial. The quantity of rain is very small, and consists for the most part of light fleeting showers. From a series of observations of five years' duration, the average number of days and nights collectively on which rain falls annually is 45, but three days on which a single drop only was seen to fall are included in this number.

As might be inferred from the preceding remarks on the climate of Alicante, nervous diseases are those to which it is particularly obnoxious, and so we find, that apoplexy, the various forms of paralysis, and chronic cerebral diseases, are extremely common: and amongst females, hysteria of a convulsive character is almost universal. Pulmonary consumption is a common disease in Alicante: the local physicians consider that a fifteenth of all the deaths arise from this cause. The type of the disease is marked in the early stage by hemoptysis. The diseases for which the air of Alicante is most suited are, bronchitis accompanied with copious secretion, atomic dyspepsia, and rheumatism, provided the invalids are not of a nervous temperament, for in that case the air would be too exciting. Notwithstanding the peculiarities of this climate above mentioned, Dr. Francis says that it "offers advantages as a place of residence for persons with delicate chests far superior to any of the places at present resorted to for that purpose." We should be sorry to recommend phthisical patients to sojourn in this Spanish Provence.

CLIMATE OF VALENCIA.

The climate of Valencia affords a good illustration of the fallacy of judging of the salubrity of a place from luxuriant vegetation or warm temperature. If there is a paradise upon earth, Valencia must be that favoured spot, so far as scenery, brilliant skies, and vegetation, are concerned. A Spanish writer, Señor Mellado, says: "Here each church is a museum, each season another spring, each field a beautiful garden; whilst the united attractions suggest to us some happy spot in the lovely vale of Tempe." Cardinal de Retz, while travelling through the great plain of Valencia, two hundred years ago, wrote as follows:

"J'entrai de l'Aragon dans le royaume de Valence, qui se peut dire non pas seulement le pays le plus sain, mais encore le plus beau jardin du monde. Les grenadiers, les orangers, les limoniers y font les palissades des grands chemins. Les plus belles et les plus claires eaux du monde leur servent de canaux. Toute la campagne, qui est émaillée d'un million de différentes fleurs qui flattent la vue, y exhale un million d'odeurs différentes qui charment l'odorat."

According to Dr. Francis, the above descriptions convey a very inadequate idea of the surpassing attractions of the country to which they refer. He says: "The pleasing sensations which everything in external
nature is here calculated to excite, are further heightened by the brilliant skies, proverbial even among Spaniards, and by the glowing light that brightens up the whole." A large surface of evaporating water in the rice-grounds around Valencia, modify the natural dryness of the climate, and, indeed, render it decidedly humid. The prevailing winds also assist in rendering the air damp. They come from the east, over a long extent of sea, and are more or less charged with moisture. The average number of days on which rain fell, in a series of five years, was 38. The local physicians estimate it at 35. Valencia being in the latitude 39° 28', is considerably to the south of the ordinary wintering places for invalids. The mean annual temperature is 63° 5'; that of winter, 49° 7'; of spring, 60° 7'; of summer, 78° 8'; of autumn, 65° 7'. The mean annual range is 63° 8'; the mean extremes, 28° 9' and 92° 7'. The daily range is only 8° 7'. January is the coldest month. Snow seldom falls: only three times in fourteen years.

"The springs are delicious," says the author: "the burst of vegetation, the profusion of flowers, and the soft balmy air, both astonish and delight. Such winter as there may have been is suddenly arrested; and in March, vegetation is far advanced. Still the invalid will have to be on his guard against high winds, which in some seasons occur during this month."

Dr. Francis also describes the fertility of the soil, yielding four distinct crops in the year—as wheat, hemp, Indian corn, and beans; and then new crops of oranges.

As might naturally be expected from the vast evaporating surface of the rice-grounds, and consequent humidity of the atmosphere, agues, remittent fever, and rheumatism, are common in Valencia. "The relaxed state of the skin which is apt to occur during a large portion of the year, favours the occurrence of catarrhs, which are common in the summer, and frequently terminate, when neglected, in consumption." The author says that the latter disease is mostly confined to the poor; but Dr. Battles, a local physician, whom he quotes in the next page, says that—"A perceptible increase in the number of cases of phthisis had taken place since the formation of the fashionable garden, the Glorieta, which is much resorted to on summer nights," evidently not by the poor. The same local authority estimates the number of deaths from phthisis at three hundred annually.

The Spanish physicians regard phthisis, in the early stage, as a state of cachexy, in which relaxation forms a prominent feature; and believe the first hæmoptysis to be generally of a passive nature. On the manifestation of the earliest symptoms, they prescribe the removal of the invalid towards the mountains, where the air is more bracing, drier, and aromatized with wild herbs; where the waters are thought to be purer and more highly charged with gas, and therefore less stimulating; and the articles of food of a less watery and more nutritive kind than they conceive to be the case in the low country. The degree of approach to the mountains is made to depend on the season. In summer, they advance boldly amongst them; in colder seasons, favourable situations near their bases are selected. In the autumn, the patient is allowed to eat as many grapes, and as often during the day, as the stomach will bear. Goat's milk, whey, and mineral waters, are also had recourse to. Nervous diseases prevail in Valencia.
during the hot weather; and in autumn, fevers are amongst the most frequent causes of deaths. Cholera was extremely fatal in this town; many of the houses were quite depopulated. Valencia is not suited for foreign phthisical invalids. Chronic bronchitis and atomic dyspepsia are the complaints the author thinks most likely to be benefited by the climate.

In the north of Spain, Dr. Francis makes favourable mention of Barcelona, the chief city of Catalonia, and the second in Spain. The climate is temperate, the annual and winter temperature being warmer than that of Rome or Naples, although it lies in a degree of latitude between those places. The average degree of winter is 50°-18°; that of summer, 77°. The ordinary annual range is about 48°, the mean extremes being 37°-4° and 86°. In a series of fifty-five years, the lowest degree of cold was 24°; and during the same period, the mean annual temperature varied only 4½°. The average daily range is 7-2°, showing the steadiness of the climate. In January and December, it is 5-4°, and attains its maximum 8-6° in May and April. From twenty years’ observation, rain falls on an average of sixty-nine days, which is high, compared with that observed in other Spanish towns. Indeed, the inhabitants seem to consider their climate as damp and rainy. The months of April and May are very showery, and the most inconstant in the year. Continued fever, of a typhoid form, the author says, is one of the most common causes of death; and he estimates that about 20 per cent. of the fatal diseases are those of the chest. The climate is recommended for cases of atomic dyspepsia and hypochondriasis, but not for phthisis. Dr. Francis closes his statements of the Spanish climates with that of Barcelona. He recommends, in general terms, as summer residences, the towns of Vigo, Corunna, Gijon, Santander, St. Sebastian, &c.

CLIMATE OF ALGIERS.

If the climate of Malaga is good for cases of phthisis, that of Algiers is better, according to statements of an authentic character, by several observers. The author says: "The climate is very mild and healthy, and well adapted for chest complaints, both those of the heart and of the lungs." The latitude of Algiers is 36°-47°; the mean annual temperature, 64°, which is nearly identical with that of Madeira. The actual extremes were 97°, caused by the sirocco, and 32°, which occurred only once in seven years: the difference, 65°, represents the extreme range. The mean temperature of winter is 54°, nearly identical with that of Malaga. The mean of spring is 60°-5°; of summer, 74°; of autumn, 68°. Rain fell on fifty-seven days and fifty nights in the year. Sometimes the rain is very heavy, and lasts for thirty-six hours at a time. More falls by night than by day. The prevailing winds blow in two directions—a lower current from the north, an upper from the south.

In summer, the upper current, which is in fact the simoon or sirocco, descends to the surface, in some parts habitually, but at Algiers only occasionally. The effect of this wind upon the human health and upon vegetation is most pernicious. Of course no invalid should remain during the season of this pestilential blast. It would appear from the statements of several resident French physicians, that pulmonary consumption is a disease of extreme rarity in that tract of Algeria which
lies between the sea and the mountains. It is hardly to be met with
unless occasionally among the negroes who have migrated from a much
warmer climate, and the Jew tailors. Among 1480 patients in the
practice of M. Haspel, at Oran, 3 only had consumption: and out of
every 138 deaths, I only was attributable to that disease. M. Jourdain
met with but 13 cases in 8485 patients, and but ten deaths from phthisis
in 871 deaths. M. C. Broussaia, also, out of 41 deaths in Algeria, had
but 2 (1 in 20) from phthisis, while in Paris he met with 1 in 5 from
this cause.*

According to statistics furnished by MM. Guyon and Bonafond, it
appears that of the deaths which occurred among the civil (European)
population of Algiers, during six years, I only in 40 arose from con-
sumption. It results from the preceding statements that in every 622
cases of disease, 1 arises from consumption: and in every 75 deaths, 1 only
is due to this disease. In Paris and in London the deaths from phthisis
are nearly as 1 to 5.

"So that," the author observes, "it is fifteen times more probable that an
inhabitant of these cities will die of consumption, than one who resides in Algeria.
Even supposing that further experience should very considerably modify the
favourable character of these statistics, we should still look in vain in all that has
been written about Madeira, for any testimony in favour of its climate, of a nature
so comprehensive and so encouraging."

M. Martin, physician to the hospital of the Dey, speaks from long
experience:

"That pulmonary consumption experiences much more relief in the climate of
Algeria than that of Europe. Not only does it march with a slowness which
gives nature time to organize her means of defence, and therefore of cure; but
further, in modifying the constitution, it causes the latter to lose the tuberculous
susceptibility. Nothing, in fact, is more rare among acclimatized Europeans, than
consumption generated in Algiers."

The climate of Algiers is also recommended for cases of chronic
bronchitis, chronic diseases of the heart, gout, and rheumatism. All
nervous diseases become aggravated under its influence, and the uterine
system stimulated in a remarkable degree. The neighbouring climates of
Oran and Tangier are incidentally mentioned in a favourable point of
view; and the author concludes his volume with an appendix on the
mineral waters of the Pyrenees, Vichy, and Aix les Bains.

From the foregoing analysis of Dr. Francis's work, our readers will
be enabled to form a pretty accurate estimate of the value of its con-
tents. The author is entitled to the merit of being the first English
writer to point out the various qualities of the climates of the Peninsula,
in a tangible form; for hitherto our information on the subject was
vague and unsatisfactory. It has been long known to the profession that
Malaga, in the south of Spain, was considered by Spanish writers to afford
the best of winter climates for cases of pulmonary consumption; but
until the publication of Dr. Francis's work, the profession (at least those
unacquainted with the Spanish language) had nothing but hearsay to
guide them in forming an opinion upon the subject. It is to be regretted

* British and Foreign Medico-Chirurgical Review, 1852.
that the author could not obtain authentic and recorded meteorological observations as to the various cities in Spain whose climates he discusses; for, with the exception of Madrid (the worst climate in Europe for the consumptive), Malaga, and Algiers, the meteorological facts upon which the author’s opinions are founded are scanty and inconclusive. Indeed, in some instances, he is obliged to have recourse to the tropical vegetation of the soil as a testimony in favour of the salubrity of the climate, because he failed to obtain from the local physicians more substantial testimony; and this we consider to be the chief drawback in the work.

The author’s description of the climate of Malaga, and the data upon which his views in favour of its sanitary qualities are based, are, however, sufficiently precise to merit the attention of the profession. Indeed, if the statements made by Dr. Francis are further corroborated by subsequent observers, and become generally known amongst the profession, Malaga will become a formidable rival to Madeira, as an equable and genial climate, suited for consumptive invalids, if it does not eclipse it altogether. In taking leave of Dr. Francis’s book, it is only just to the author to state that we have derived both pleasure and information from its perusal.

Thomas H. Burgess.

Review II.

1. *Grundzüge der Pathologischen Histologie.* Von Dr. Carl Wedl.—Wien, 1854.

Outlines of Pathological Histology. By Dr. Charles Wedl.—Vienna, 1854. pp. 825.

2. *Kompendium der Pathologischen Anatomie, als Anleitung zum Selbststudium.* Von Dr. Theophil Wislocki.—Wien, 1853.

The appearance of these works, written by two Viennese physicians, one of whom (Wislocki) is junior assistant to Rokitansky, affords us an opportunity not only of glancing at the present doctrines of that celebrated school of medicine, but of describing the method in which the pathologic-anatomical and medico-legal inquiries are conducted. As the founder of the Viennese school, the name of Rokitansky is known even to the junior student; his work is referred to by the teacher and practitioner; his uninterrupted and successful search after truth has gained for him the highest honours the University can confer, and secured to him a reputation so wide as falls to the lot of but a few. Those who know him well, or can claim the high honour of his friendship, will agree with us, that Rokitansky as a professor is only inferior to Rokitansky as a man. With such a master, then, much should be expected from the Viennese school; and the works before us are the only ones that have issued from it on this subject since the publication of the ‘Handbuch der Pathologischen Anatomie.’

The extent of the subjects included under pathological anatomy and histology, renders it impossible for us to discuss the value of the opinions that our authors entertain on particular subjects. The different sections
of Dr. Wedl's work, together with articles by other observers, will form subjects for reviews on the different pathological changes which the tissues undergo. It is, however, our duty to give such a general idea of its contents, as will enable the reader to judge whether the opinion which a careful perusal has led us to form of this work as a whole be well-founded, or the contrary. But before doing this, we shall take the opportunity afforded to us of glancing at

The Pathologico-Anatomical School of Vienna, and the Austrian Regulations regarding Medico-Legal Inquiries.

A patient has just died in one of the wards of "das allgemeine Krankenhaus." The body must remain in the bed for two hours, during which time a physician of the second class has inspected it, to ensure that the individual is dead, before the porters are ordered to remove it to the dead-room. This is effected by placing it on a mattress in a cot, the shape of which is exactly similar to that of the cradles used in our hospitals to keep the weight of the bed coverings from injured limbs. Over the hoops that form the top, canvass is stretched, and as the entire top is attached to the bottom by hinges, it can be opened, and the body laid within. Two porters then carry it to the dead-room, and with it a ticket of this form:

<table>
<thead>
<tr>
<th>The dead body of</th>
<th>Hour of reception of the body.</th>
</tr>
</thead>
<tbody>
<tr>
<td>from ward No., bed No. .., at o'clock, died</td>
<td>.........................., dead-room porter.</td>
</tr>
<tr>
<td>at o'clock, inspected</td>
<td>.........................., signature of the physician who inspected the body.</td>
</tr>
<tr>
<td>is at o'clock, removed</td>
<td>.........................., th, 185.</td>
</tr>
<tr>
<td>to the dead-room. the th.</td>
<td></td>
</tr>
</tbody>
</table>

In the dead-room is a series of wooden couches, on one of which is laid the body, covered with a woollen cloak and cowl. Over the head of each rests a gong-bell, the hammer of which commences to strike as soon as a weight, attached to it, is thrown off its balance. A cord is so applied that the slightest touch removes the balance; the weight begins to descend, and the bell alarms loud and long. To the fingers of the right hand of the corpse the other end of the cord is fastened by loops; and any return of animation, such as could cause the least movement of the hand, would be followed by an alarm, in answer to which immediate assistance would be given by the porter, who is on the watch, night and day, in an adjoining room. For the past twenty-three years no hand, save that of a visitor or a porter, has ever moved these cords.

After having lain in the dead-room during twenty-four hours, the body is carried to the autopsy-house, situated at but a few yards from the room last described, placed upon a smooth stone table supported on a wooden frame. A ticket of the following kind, sent down from the ward in which the person died, is at the same time laid upon the desk.
At eight o'clock in the morning, Dr. Heschl, the senior assistant, commences the post-mortem examination. Every organ is examined, and that thoroughly, while the operator describes, and the junior assistant transcribes, the appearances. Should Dr. Heschl be absent, which very rarely occurs, one or other of the junior assistants, Drs. Planer and Wislocki, conducts the autopsies. On the table stands a basin of water, into which the operator constantly dips his hands and instruments; and a vessel of the form of a garden watering-pot, without the rose, is constantly in requisition, as by it a stream of water is poured over the cut surfaces of the visera, thereby removing all blood, &c. Unimportant as these details may seem to those who merely look on at the examination, they are most simple, cleanly, and useful adjuncts to the operator. The room (lit from the roof) in which these autopsies are made, is much too small, and so ill constructed that only those who stand near the table can see the morbid parts as they are taken from the body.

Should the English visitor have overslept himself on a morning when a body from one of the medical clinical wards is to be examined, the crowd of students who have followed Skoda, or Oppolzer, to the dead-room, is so great that the visitor had better pass on to the next door, and enter the smaller room in which Professor Rokitansky conducts the medico-legal autopsies. If a death has occurred in the city, or in the hospital, under circumstances such as render an inquiry necessary, the body is brought to this room, and is examined by Rokitansky, in the presence of the Professor of Medical Jurisprudence, and an officer appointed by the State to attend at such investigations. The students of
jurisprudence and medicine witness these autopsies, unless the death has been caused by hydrophobia, when, by an old statute, no students are allowed to be present. This ridiculous regulation was, we presume, founded on the belief that the disease could be communicated by contact with the body or the saliva, and is probably not enforced. Two assistants aid in making and recording these autopsies, the expense of which, when conducted *ex causâ publicâ*, is paid by the civil authorities. The account of the examination, written at the dictation of the professor, is read and signed by him, after which it is countersigned by the civil officer that is present, and is forwarded the same day to the authorities. The opinion thus given as to the cause of death, is final; and the civil authorities act according to it.

It matters not from what cause, or under whatever circumstances, a case of sudden or violent death occurs—a medico-legal inquiry is instituted, and a complete autopsy must be made; the examination is, however, deferred until forty-eight hours have elapsed after death, unless in a few exceptional cases. Further, it is required of every physician who, under any circumstances, examines the body of one that has died a violent or a sudden death, caused by an accident or otherwise, that he shall immediately inform the authorities of all the particulars connected with it—under a fine of from eight shillings to two pounds. In order to prevent an examination being made before the expiration of the legal time (forty-eight hours), it is enacted, that any one writing a false hour on the death-certificate, shall be liable to imprisonment for from one to six months.

Whenever any one dies in Vienna, or in any other part of the Austrian monarchy, the physician who has attended the case fills up a form similar to that given at page 312, the first two lines being, of course, altered to suit the name of the place where the death has occurred, which is sent to the police-office. In the event of a physician not having been in attendance, the relations of the dead, or those in whose house the body lies, must inform the authorities thereof. Thus the police get daily information of all the deaths occurring in their district; and a medical officer, appointed for the purpose, inspects the bodies, and reports upon them. Permission is then given to bury the body, and without it no one can be interred. In all cases, forty-eight hours must have elapsed before the interment can be made, but this interval can be shortened should an epidemic prevail. If there are marks of violence upon the body, or other suspicious circumstances in any way connected with the death, the inspecting physician reports accordingly, and precautions are immediately taken to prevent the body from being removed. An order is then given to convey the corpse to the hospital for legal dissection, whither, two hours after sunset, it is conveyed in a cot similar to that already described; and, after the autopsy has been completed, returned to the friends for burial. Under certain circumstances, this examination can be made in the house in which the body lies; but this applies to places only, near which there is no public hospital.

Has any one been received into hospital, and died there under circumstances which render it advisable that the cause of death be legally inquired into, the following note is sent to the authorities, and an order to make the examination is returned:
NOTE.

The honourable magistrate is respectfully requested to be pleased to authorize the legal examination of the body answering to the annexed official medical description.

......... (name), aged, born in, residing in, who, on the of, 185 , was received into this institution under journal No., died on the of, 185 , in ward No., and on account of, to legal examination.

Physician’s signature,
Royal Imperial Hospital Office,
Vienna,, 185 .

These are some of the most important regulations respecting the examination and burial of the dead; and, as far as regards the manner in which the medical part of the inquiry is conducted, the regulations in force in Austria are superior to those in this country.

There is evidently much that requires remodelling in the medical department of our coroners’ inquests. As regards the physician who had attended the case during life, and formed his opinion of its nature before death, the impropriety of allowing him to make the post-mortem examination must be evident, inasmuch as his preconceived opinions necessarily influence his view of the pathological appearances found in the dead body. Again, as the physician, engaged in everyday practice, but rarely conducts an autopsy, how incompetent must he be to give evidence in which is involved the best interests of society, as well as of the individual charged with the commission of a crime.

In a former number, we have endeavoured to show that prostitution calls urgently for legislation. A similar remark applies to medical evidence on legal inquiries into the cause of death. We can bring forward instances that have fallen under our immediate observation, in which but one of the great cavities of the body was opened, and the viscera contained therein looked at, not examined; cases in which the words “to the best of my opinion” expressed—as far, at least, as the medical witness was concerned—the truth of the evidence as to the cause of death, but in nowise corrected the misstatements he had made. We do not fear to state most deliberately, that the cause of justice is frequently frustrated at our coroners’ inquests—first, by the medical witness’s incompetency to judge of, or reason correctly on, the diseased appearances that may present themselves in the dead body; or, more frequently still, from the second cause—namely, his examining but one cavity, or not knowing the manner in which a complete autopsy ought to be made; and, lastly, from the coroners observing—“It is unnecessary to make a post-mortem examination, as the medical witness is of opinion that the injury visible on the surface of the body is sufficient to account for the death.” We do not assert that these exact words were ever used, but any one, whether professional or non-professional, who has attended two or three inquests, must have heard a similar observation, or noticed cases in which the propriety of making an autopsy never occurred to either the coroner, who was a lawyer, or to the most important witness, who was a physician or a surgeon.

It is certainly remarkable, that in this country, which has produced so many great medico-legal authorities, and in which the cause of death can, on occasion, be tracked out with such surpassing ingenuity, the greater
number of coroners' inquests should be so imperfectly conducted. The
same defect exists here as throughout the whole English system of
medico-legal police and state medicine. It is not too much to say, that
in these subjects, civilized England is semi-barbarous, and is infinitely
behind many of the continental nations whom we do not think at all our
equals in most of the arts of peace or war.

Whenever an official inquiry is made regarding coroners' inquests—and
the sooner such an investigation is begun the better will it be for humanity
and the credit of the country—the defects in the present system will, we
believe, become so evident, that the legislature and the public will wonder
how such things could be. If the causes of death under suspicious cir-
stances are to be inquired into, it is but reasonable to expect that such
investigations shall be made conformably with the spirit of the nineteenth
century, and not as in the seventeenth or eighteenth. Englishmen have
been touring it all over Europe, importing foreign goods and foreign
fashions, but the sanitary regulations of the Continent appear to be consi-
dered valueless, and unworthy of a place in their trunks. It is high time
to bring home some of the useful lessons that can be learned within a few
miles of London. War even can be no excuse for deferring our examina-
tion of the sanitary systems of the Continent; the materials are before us,
and to them we shall, at a future time, return. Meanwhile, time has been
passing; it is twelve o'clock in Vienna; and Rokitansky's lecture-room,
No. 78, in the first yard of the hospital, is filled with students. Here,
during the winter session, the professor, following the order of description
given in his great work, lectures on general pathological anatomy. In the
summer months, special pathological anatomy forms the subject of the
course. These lectures must be attended by all students of medicine; and
the fee is sixteen shillings. During the last quarter of the hour, the
professor demonstrates the abnormal parts found at the autopsies in the
morning. The pupils of this course attend in the dead-house on Mondays,
Wednesdays, and Fridays, at from three to four o'clock, when they, in
turn, make an autopsy, and describe aloud the condition of the organs,
receiving from Dr. Planer such direction and instructions as they require.
In this manner, the student acquires most valuable practical information.
In the winter session of 1851-52, the number of students attending this
course was 350; in the summer of 1852 it amounted to 342; and in
1852-53, there were 236 attending.

In addition to the official course just described, pathological anatomy
is taught privately by Dr. Heschl, in courses of from thirty to thirty-five
lectures. They are delivered five times a week in the dead-house, at from
ten to eleven o'clock during August and September, from half-past one to
half-after two during the other ten months. The course consists of a
series of demonstrations and observations on the diseased appearances found
at the mornings' dissections; and, under the direction of the lecturer, each
of the pupils—who are generally foreigners—makes a post-mortem exa-
namination. The last few days of the course are occupied in visiting the
pathological museum. Fifteen to eighteen persons attend each course—
the fee to which is thirty-four shillings.

To those who visit Vienna, and are desirous of studying pathological
and physiological histology, the course given by Dr. Wedl affords a good
opportunity. It is delivered at the lecturer's residence, No. 200, Alser-
gasse, near the hospital. The hour of attendance is regulated so as to suit
the majority of the class. The number of students in each course is
limited to five, each of whom is provided with a microscope. The supply
of specimens obtained from the hospital is almost unlimited. Each pupil
chooses the branch of histological research he desires to follow out; and a
fee of one pound is charged for fifteen lessons of about an hour each. Dr.
Wedl also gives a theoretical course as soon as a sufficient number enter to
form a class.

The following statistics, which we have obtained from the yearly reports
and manuscript records of the hospital, give an accurate idea of the vast
opportunities which this school affords for the study of pathological
anatomy:

<table>
<thead>
<tr>
<th>Year</th>
<th>Autopsies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1848</td>
<td>1069</td>
</tr>
<tr>
<td>1849</td>
<td>1366</td>
</tr>
<tr>
<td>1850</td>
<td>1414</td>
</tr>
<tr>
<td>1851</td>
<td>1434</td>
</tr>
<tr>
<td></td>
<td>From October 1st, 1852, to January 31st, 1853</td>
</tr>
<tr>
<td></td>
<td>From November 1st, 1817, to January 31st, 1853</td>
</tr>
</tbody>
</table>

The medico-legal autopsies, averaging two daily, are not included in this
report.

From a school so rich in materials has emanated Dr. Wedl's 'Outlines
of Pathological Histology,' which is divided into a general and special
part. The work opens with a definition of the objects of pathological
histology, its relations to pathology, and the means by which it is studied.
Under the latter head is given a concise description of the microscope, the
application and uses of the auxiliary instruments, together with some
general remarks on injecting, drawing, &c. The general pathological part
is considered under seven heads: first, alterations in the circulation;
second, alterations of normal cells; third, pathological new-formed cells;
fourth, formation of fibres; fifth, formation of areolar tissue and papillary
new formations; sixth, formation of vessels; seventh, formation of cysts.

In the first of these divisions are considered the results of experiments
upon animals, as affording a means of judging of alterations in the circula-
tion. Hypertrophy, atrophy, and congestion are next briefly noticed,
and then serous (hydropisches), fibrous, albuminous, and colloid exudations.
Next in order are the alterations which the products of exudation undergo,
considered in their re-absorption, the formation of pigment in it, fatty,
calcareous, gangrenous alteration of the exudation, and finally, increase of
the normal elements of the blood closes this first division of the general
pathological part. Under the second head, the author offers some general
observations on the atrophy and degeneration of the contents, wall, or
nucleus of cells, or of the intercellular substance, and concludes this
division of the subject with a few remarks on the theory of atrophy and
hypertrrophy. The development of new-formed cells, by division of the
cell wall and nucleus, their relative size, the atrophy of pathological cell-
structures, and the connexion which exists between new-formed cells and
the areolar type of tissue, express the most important divisions of the
third group. The subjects of the fourth, fifth, and sixth divisions have
been already mentioned; and with Rokitansky's views on the formation
of cysts, the first general part of this work closes.

From a careful perusal of the first hundred and four pages, we have
been confirmed in the opinion, that in the present state of science it is
premature to attempt to write a general pathological histology. So
Herculean a task requires, for its completion, not only a minute and
extensive knowledge of the microscopic alterations produced in all tissues
by diseased action, but it presupposes that their connexion and relation
to each other have been in some degree demonstrated. It implies that
the laws which regulate physiological formations have been proved to be
the same as those which regulate pathological productions, or that a new
series of laws have been discovered. The general tendency of histologic
research is to accumulate rather than to arrange; hence, were we in a
position such as would enable us to write a special pathological histology,
even so detailed a knowledge would be insufficient to enable us to lay
down the general principles of the science, unless the changes had been
observed seriatim, and a law had been deduced from these observations,
or a comprehensive theory formed, round which each pathological formation
would find its proper place. The time, then, for writing a general patho-
logical histology has not yet arrived, inasmuch as the raw materials
necessary for the completion of such a work have not yet issued from the
various workshops of histological science, while, in the work before us,
the author has not allowed himself space sufficient to enable him to notice
the opinions of even all the leading authorities.

To the student the perusal of this first part of the work will be highly
instructive, as it contains a readily understood expression of the leading
opinions of well-known pathologists. The practitioner will be pleased to
find by it that pathological anatomists generalize in a manner somewhat
similar to that pursued by his teachers of pathology. Many will, we
doubt not, consider that its perusal has satisfied them, that they have not
lost much by having ceased to read since they closed the, then just
published, master-works of Rokitansky, Vogel, Andral, or Cruveilhier.

Those who have kept pace with the pathological histology and
chemistry of the last few years, will find the second part of this work
much more valuable than the one just described. In the special part
all pathological formations are divided into six families. The first
of these, on "organic formation," includes the deposits that occur sponta-
neously, or can be produced, in urine; the oleaginous, the pigmen-
tary formations, together with concretions. The description is concise,
yet explicit, woodcuts give the characteristic forms, the action of re-
agents is fully given, and in most cases we find the quantity of the
angles of the crystals as given by C. Schmidt. We may here observe
that the value of goniometry appears to be lost sight of, at least in this
country, yet it supplies us with one of the most valuable means of
diagnosing the character of crystals. Under the second family we find
"the atrophies," including atrophy of the blood, or the changes which it
undergoes before being absorbed, after its escape from the vessels, or when
it becomes impoverished while passing through the system: atrophy of
fat cells of areolar tissue (bindegewebe), of cartilage, bone, muscle, vessels,
of skin and mucous membrane (the latter as described by Engel), atrophy
of lung, including emphysema and bronchiectasis, atrophy of the teeth, liver, blood-glands, kidney, female organs of generation, including the mammae, atrophy of the nerves and of the eye.

The third family includes "the hypertrophies" of the fatty tissues, with the microscopic appearances of warts, corns, navi, and ichthyosis, hypertrophy of areolar tissue of muscle, of the blood, forming lymphatic and other glands. The fourth family, "the exudations," comprises the products of exudative (Wedl expresses by this term inflammatory) action on serous membranes, on the skin, mucous membranes, vessels, bones, muscles, blood-glands, lungs, liver, kidneys, sexual organs, brain, spinal cord, and eye. According to Wedl "the most striking act of inflammation consists in the increased transudation of blood-plasma through the unwounded walls of the vessels of an organ. We call this process 'exudation,' and its product the 'exudate.'" Yet under this head we find pericarditis and peritonitis considered in the same category with ossific and calcareous exudations on serous membranes; variola and haemorrhoids are ranged under exudations on the skin; atheromatous deposits, endocarditis, and phlebitis, form another group; while ostitis, yellow atrophy of the liver, fatty degeneration of the epithelium of the kidney, yellow and red softening of brain, iritis, are all included under the general head "exudation." Such heterogeneous grouping may be found convenient for the purposes of description, but cannot be considered entitled to the denomination of a scientific classification.

The fifth family, "new formations," is arranged in ten subdivisions.
1st. Granular cells, granular bodies, and granular masses.

"From a comparison of these three categories it results, first, that the granular cells (Körnchenzellen) are a fatty degeneration of original or new-formed cells; the granular bodies (Körnerkörperehen) are a collection of fatty molecules around a previously formed nucleus; the granular masses (Körnerhaufen) are simple aggregations of fat granules. Second, that the granular cells, after the disintegration of their cell-walls, are no longer distinguishable from the granular bodies; and when the nucleus of the latter is no longer observable, it becomes identical with the granular masses." (p. 340.)

The second subdivision of the new formations is pus. The third, tubercle. The fourth, new formations in typhus products. Fifth, cellular (fibrous?) new formations as they occur on serous membranes, on the skin, as for example, in condylomata, elephantiasis, &c., in the intercellular tissue of muscle, on mucous membranes in the form of polypi, in the thyroid gland, in the liver and kidney under the form of cirrhosis, &c., in the bones as osteo-sarcoma, in the breast as cystic-sarcoma, &c. The sixth subdivision comprises the new formation of fatty tissue as in lipoma; the seventh, cholesteatoma; eighth, new formation of cartilaginous and bony structures, including enchondroma, the reparative process in cases of fracture, the changes which occur in exostosis, in calcareous formations, &c. Ninth, new formation of tooth substance. Tenth, cancer, under which will be found examples of this formation in almost all the tissues of the body, together with a description of their general and microscopic characters. Lastly, the sixth family includes the parasites, which are divided into vegetable and animal parasites, infusoria, arachnidae, and insectae.
Such is the general plan of the work. The reviewer’s task, of forming a general estimate of a scientific work, is rendered comparatively easy if he has had such a personal knowledge of its author as enables one man to form an opinion of the mental powers of another. Thus assisted, we entered upon the perusal of Dr. Wedl’s work, with the certain knowledge, that he had for years observed before he took pen in hand; not that this, though the most important, is the first addition he has made to histological science;* but those who study this work will, before they have turned many pages, perceive that they are following the observations of a practical histologist. Hence, the most prominent feature of the work is, that it is the offspring of the author’s carefully-made observations.

Those who expect to find it to be a manual of pathological histology will be disappointed, for its aim and character are much higher. Many British observers will look in vain for reference to their labours; while those who are engaged in the study of histology will find that this work’s proper place is on the table next their microscope, rather than on their library shelves. It is the first work of its kind that has, as far as we know, issued from the press; and it has gained for its author a prominent position in that most honourable corps, the German pathological histologists.

The woodcuts, two hundred and three in number, are excellent, for they are truthful; while the paper and type are so good, that the work forms one of the very best got-up books that have issued from the Viennese press, and yet it is without an index.

Should our Polish friend, Dr. Wislocki, glance over these pages, as before many weeks have passed they will be upon the table of the library of the Royal Society of Physicians of Vienna, he will fear that we have forgotten him, his work, and, what would be equally inexcusable, the many pleasant hours we spent in reading German and English together. Our memory is not so remiss. We have found his book to be what it professes, “a compendium of pathological anatomy as a guide to self-instruction.” As such it is eagerly bought by the students of Vienna, for Rokitansky’s great work, even were it not out of print, is too voluminous for their use; and Wislocki’s manual, translated into Polonaise, has become a class-book in Cracow. We recommend it strongly to those students who are acquainted with the German language. It is, perhaps, too elementary a work to be of much use to teachers of morbid anatomy.

T. S. Holland.

* Beiträge zur Lehre von den Hämatozoen, von Wedl. 1849.
Ueber die traubenförmigen Gallengangsdrusen. 1860.
Beiträge zur Anatomie des Zweibuckeligen Kamel (Camelus Bactrianus), von F. Müller und Wedl. 1852.

Besides the above reprints from the Transactions of the Royal Academy of Sciences of Vienna, many articles by Dr. Wedl are to be found in the Zeitschrift der k. k. Gesellschaft der Aerzte zu Wien.
Review III.

An Inquiry into the Pathological Importance of Ulceration of the Os Uteri; being the Crompton Lectures for 1854. By CHARLES WEST, M.D., Fellow of the College of Physicians, Physician-Accoucheur to St. Bartholomew’s Hospital, and Physician to the Hospital for Sick Children, &c.—London, 1854. pp. 95.

Of late years, diseases of the uterine system have attracted their full share of attention, and our knowledge of the subject has, doubtless, been very much increased, but it has been accompanied by one very serious drawback—viz., the conflicting opinions which have been put forth upon what seemed to be a very simple matter. Even when divested of the cloud which controversial acrimony has thrown over them, the statements are so positive, and yet so extremely divergent, that it is no easy thing for those whose experience has made them familiar with the subject to arrive at a satisfactory conclusion; and for ordinary practitioners it is all but impossible. In this confused state of affairs, the profession will welcome the labours of any man which may assist them to determine on the frequency, and appreciate the importance, of such diseases; much more so when that inquiry is conducted with calmness, with a freedom from personal acerbity, with a minute and careful investigation into all the circumstances of the case, and with an adequate knowledge of pathology generally, and of uterine pathology in particular. To this praise the work of Dr. West is fully entitled: we have derived both instruction and pleasure from its perusal, not merely on account of its scientific merits, but from the full, fair, and gentlemanly manner in which it is written. As its title indicates, it is confined to this one particular point in uterine pathology. In this present article, our space will permit little more than a brief abstract of Dr. West’s inquiries, with some comments thereupon.

The question to be examined, as stated by Dr. West, is—

"Whether ulceration of the os uteri is to be regarded as the first in a train of processes which are the direct or indirect occasion of by far the greater number of the ailments of the generative system; or whether, on the other hand, it is to be considered of slight pathological importance and of small semiological value—a casual concomitant, perhaps, of many disorders of the womb, but of itself giving rise to few symptoms, and rarely calling for special treatment." (p. 14.)

In thus stating the question, it will be observed that Dr. West follows the lead of the advocates of the first proposition, and regards what he and they call ulceration of the os uteri as not only a primary, but an isolated affection of this part; and further, it should be remembered that, in certain treatises, it has been latterly maintained that as many as 81 per cent. of all women presenting symptoms of uterine ailment are suffering from inflammatory disease of the tissue or canal of the cervix uteri, and 70.4 per cent. from ulceration of the os uteri. It may assist our readers if we state, at the outset, that Dr. West’s researches have led him to the second of these conclusions—viz., that the disease is neither so frequent nor of so much consequence as has been believed by many. We are not sure that his conclusions might not legitimately be pushed even further,
and the inference be fairly drawn from the data, that ulceration, &c., is scarcely of any consequence at all.

The steps by which Dr. West conducts the investigation seem very fair, and certainly the spirit in which it is pursued is candid and philosophical. The inquiry divides itself into four branches: first, how far the extreme views of the importance of ulceration of the cervix uteri are borne out by its anatomy and physiology when healthy; secondly, whether post-mortem examinations show the disease to be frequent and extensive, or the reverse, and with what changes in the cervix it is combined; thirdly, what are the results of ulceration in procidentia uteri, and how far they illustrate the present question; and fourthly, what conclusions are to be drawn from the clinical history of ulceration of the cervix uteri.

1. As to the inference from the anatomy and physiology of this portion of the uterus, Dr. West differs—and we think, rightly—from those who state that in health the cervix “receives a greater amount of blood, and that it is endowed with a higher degree of vitality than other parts of the organ.” We find that, at puberty, it is in the body and not the cervix that the greatest development takes place; and also during gestation and after delivery, it is in the body that the most striking changes occur; the cervix participating, doubtless, but in a secondary degree.

“The cervix is less sensitive than the body of the uterus; the sound which passes along the former, almost unfelt, generally finds the lining of the uterus acutely sensitive. The cervical canal has been forcibly dilated; it has been incised; the tissue of the cervix has been burnt with the strongest caustics, or with the actual cautery, or portions of it have been removed with the knife;—generally with no injurious consequences, often with so slight a degree of constitutional disturbance, or even of local suffering, as to surprise those who advocate, little less than those who condemn, such proceedings.”

Therefore, continues Dr. West—

“If structurally so lowly organized, if physiologically of such secondary importance, if so much less subject than the body of the uterus to alterations in its intimate structure, and if so comparatively insensible even to rude modes of therapeutical interference, it certainly does appear to me that the assumption, that some slight abrasion of the mucous membrane covering this part is capable of causing a list of ills so formidable as are attributed to it, ought to rest for its support upon some other and stronger foundation than any inference fairly deducible from anatomical or physiological data.” (p. 21.)

Dr. West, however, candidly admits that no inference from such data can be conclusive against positive facts; it may show the probability or improbability, but little more.

2. The results of indiscriminate post-mortem examinations of females have been variously stated. M. Lair found twelve ulcerations of the cervix uteri in 500 cases, and M. Pichard five in 300. The examinations at St. George’s Hospital are said to have yielded much the same proportion. Dr. West rejects these examples, on account of their indefinite-ness as to the character, extent, and nature of these lesions, and the absence of any information as to the age of the patient, and other matters which have an important bearing upon the question; stating, also, what is very true, that “appearances, the most striking characters of which consist in increased vascularity, and in that vital turgescence which disappears soon
after life has departed, cannot be expected to be very marked some days after death.” In this dilemma, Dr. West has recourse to sixty-two observations of his own, noted with great care; and though too few to justify an absolute conclusion, we are inclined to think they represent the usual proportion pretty fairly:

“Of the total number, 13 were above forty-five years of age, the remaining 49 between the ages of fifteen and forty-five. Concerning all of the former class and 30 of the latter, making a total of 43, it was either known with certainty, or concluded with great probability, that they were married, or had had sexual intercourse; the remaining 19 were believed to be virgins.”

Of the 62 cases, the uterus was healthy in 33, and diseased in 29, or somewhat less than one-half. Of these 29 cases, there was ulceration of the os uteri in 17—in e., it existed alone in 11, with diseased lining of the uterus in 3, and with induration of the walls of the uterus in 3 cases. Again, there was induration of the walls of the uterus without ulceration of the os, in 7 cases.

“The os uteri was abraded in 1 of the subjects above forty-five years of age, and the lining of its interior was diseased in 5 of that number. In 11 of the 19 patients, all under forty-five years old, who were virgins, the uterus was perfectly healthy; in 8 it presented some sign or other of disease. This consisted five times in slight abrasion of the os uteri, which existed alone in 3 cases, but was associated in the other 2 with some morbid state of the interior of the womb. Twice the interior of the uterus was the only part affected; and once the uterine walls were much harder than natural.” (p. 24)

It must be remembered that these were patients who had died without any complaint or suspicion of uterine disease; so that, far from being surprised, as Dr. West expresses himself, at more than one-half of the cases exhibiting no disease of the uterus, we think it remarkable that the proportion of disease was so great, so much beyond the results of any former examinations, and probably beyond what would be found to be the case with any other organ in the body. This table affords us no means of judging of the comparative frequency of ulceration and other diseases.

Dr. West regards the usual explanation of the mode in which induration of the cervix is produced as “purely imaginary;” and we are quite prepared to admit that it is unsatisfactory to regard it as the direct consequence of ulceration.

“It existed in 9 cases; in 5 of which it was not associated with any other disease of the uterine substance; in 3 it co-existed with ulceration of the os; and in 1 with a morbid state of the interior of the uterus. . . . It appears, then, that most marked induration of the tissue of the cervix and of part of the body may exist where there is no trace of inflammation, either past or present. It may also occur in connexion with inflammation and ulceration of the lining membrane of the cavity.”

Ulceration of the os uteri, and induration of the uterine walls, were associated in 3 instances; in one it was slight, in another extreme, and in a third considerable, with a distinct line of congestion about half a line in depth, between the ulcerated surface and the pale tissue of the indurated cervix.

From the results afforded by this branch of the inquiry, Dr. West rejects the opinion that ulceration is the frequent and formidable malady
it has been represented, and that it is the cause of the secondary alterations attributed to it.

"We have seen that, in by far the majority of cases, the ulceration, when present, was not merely trifling in extent, but that it had not given rise to so much irritation of the neighbouring tissues as to produce any appreciable congestion of the mucous membrane in its vicinity, while the changes in the uterine substance, alleged to depend upon it, were often present without, than in connexion with it; and, moreover, none of the alterations about the os and cervix of the womb were so considerable as those which were apparent in its cavity." (p. 31.)

3. But in cases of complete prolapse of the womb, we have an opportunity of witnessing not merely the existence and course of ulceration, but the inconveniences to which it gives rise. Now, do these inconveniences answer to the description given of those produced by ulceration in recent works on this subject? Let us hear Dr. West:

"These ulcerations are generally indolent, though by no means so much so as the ulcers of the inverted vagina itself, which are apt to become deep and excavated, with raised and callous edges, and exactly to resemble chronic ulcers of the skin of the other parts of the body. The abrasions of the os, however, after weeks or months, still retain much the same characters as they originally presented. They extend, indeed, at one time over a larger extent of surface than they occupy at another; but they very rarely increase in depth, or extend to the subjacent tissue. The ulcerated surface is denuded of epithelium; now and then it is partially covered by a thin layer of yellowish lymph, but usually it is of a rather vivid red colour, and of a granular appearance. This granular character is generally more marked in proportion to the age of the ulceration; while in a few instances the granulations are distinct from each other, rather elongated in form, and look like elongated papillae. A transparent albuminous secretion in general covers the ulcerated surface, and is sometimes poured out freely from it, but there is seldom any abundant secretion from the interior of the uterus, or even from the canal of the cervix." (p. 35.)

In addition to these superficial erosions, we occasionally find deeper ulcers; and where the prolapse has continued long, there is more or less hypertrophy, not from new tissue deposited, but simply from overgrowth of the old. Now, these changes neither give rise to the symptoms which have been attributed to ulceration, nor do they prevent, in certain cases, the fulfilment of the uterine functions of conception, gestation, and labour, with no increase of inconvenience.

So far these facts are opposed to the opinion of the frequency and importance of ulceration of the os uteri, so far as the illustration may be considered a fair one; but Dr. West, with great fairness, points out a modification of such a conclusion:

"But though it be conceded, as, I think, it must be by all observers, that the symptoms supposed to characterize inflammation of the neck of the womb and ulceration of its orifice are not met with either constantly, or in a special marked degree, in cases of prolapsus or procidentia uteri; still we should not be justified in drawing an absolute conclusion from what we observed in the misplaced uterus, as to the effects produced by similar ailments attacking the organ when in its natural position. It may be alleged, and with plausibility, that during the gradual process of its misplacement, the sympathies of the womb have been rendered less keen than they were while the organ retained its natural position; and that thus it comes to bear, with comparative impunity, injuries which might otherwise have produced great disorder of its functions, and great alteration of its tissue."
No one can doubt the truth of this remark who has witnessed the slight impression made by deep ulceration of the prolapsed organ: in a case which came under our care, there were five ulcers into which the point of the finger could be inserted, and which penetrated nearly through the walls of the uterus; yet the patient suffered nothing from them, and complained only of the mechanical inconvenience of the prolapse. We incline, therefore, to the opinion, that Dr. West’s admission neutralizes the force of the argument derived from the illustration he has brought forward.

4. Whatever value may be attributed to the preceding considerations—which are, in a sense, preliminary—it is quite clear that the question can only be decided by clinical observation. Men may talk learnedly about what ought or ought not to be, but the decision must rest upon what is, and to this point Dr. West next addresses himself; previously disposing of an argument drawn from the greater exposure of prostitutes to some, at least, of the supposed causes of ulceration of the cervix uteri. Of 40 cases examined by him, in 27 the os and cervix were healthy; in 10 of the remaining 13 the ulceration was a mere excoriation, not above a line in breadth; in 3 cases, the abrasion was more extensive; but in no instance was there any induration. Taking, now, two classes of cases—those in which ulceration was not present, and those in which it existed—Dr. West proposes to inquire—

“Whether sterility is more frequent, whether the rate of fecundity is lower, and whether abortion occurs oftener in the one class of cases than in the other? Whether menstrual disorder is more common, more severe, or different in kind; whether leucorrhæa is more abundant, or furnished from a different source; or whether pain is less tolerable when the os uteri is ulcerated than when that condition is absent? And lastly, whether similar or different causes produce the uterine affections in the two classes of cases; whether the duration of the illness is the same; whether the structural alterations of the womb are alike or diverse?”

The data upon which Dr. West founds his conclusions consist of 1,226 cases; 300 being in-patients of the Middlesex or St. Bartholomew’s Hospitals, and 926 out-patients. In 268 of the 1,226 cases, the speculum was used; and of these, 125, or nearly one-half, had ulceration of the cervix uteri; while in the remaining 143, this condition was absent. From these facts Dr. West has constructed a series of tables to work out the problems proposed; they are executed with great care, and will repay a careful study. Our space, however, will not permit our referring more minutely to them, but we shall content ourselves with giving the conclusions at which Dr. West has arrived on these various points:

1. Uterine pain, menstrual disorder, and leucorrhæal discharges—the symptoms ordinarily attributed to ulceration of the os uteri—are met with, independently of that condition, almost as often as in connexion with it. 2. These symptoms are observed in both classes of cases, with a vastly preponderating frequency at the time of the greatest vigour of the sexual functions, and no cause has so great a share in their production as the different incidents connected with the active exercise of the reproductive powers. But it does not appear that ulceration of the os uteri exerts any special influence either in causing sterility or inducing abortion. 3. While the symptoms are identical in character in the two classes of cases, they seem to present a slightly increased degree of intensity in those instances in which ulceration of the os uteri existed. 4. As far as could be ascertained by careful
examination, four-fifths of the cases of either class presented appreciable changes in the condition of the uterus—such as misplacement, enlargement and hardening of its tissue; while, frequently, several of these conditions co-existed. An indurated or hypertrophied state of the cervix uteri was, however, more frequent in connexion with ulceration of the os uteri, than independently of that condition. 5. The inference, however, to which the last-mentioned fact would seem to lead, as to the existence of some necessary relation—such as that of cause and effect—between ulceration of the os uteri and induration of its cervix, is, in a great measure, negatived by two circumstances—(1.) The number of instances in which an indurated cervix co-existed with a healthy os uteri; and (2.) The fact that, while induration of the cervix was present in 25 out of 46 cases in which ulceration of the os was very slight, it was altogether absent in 9 out of 16 cases in which the ulceration was noted as having been very extensive. These inferences sufficiently show that I do not subscribe to either the first or second of those three conclusions, one or other of which, it was stated at an early period of this lecture, would be found to represent the truth of the matter; that I do not regard ulceration of the os uteri either as the general cause of the symptoms which have been attributed to it, or even as a general concomitant of them, and index of their degree and severity.” (p. 58.)

Having arrived at this conclusion, Dr. West proceeds, in his third lecture, to inquire into the various causes, constitutional or sympathetic, of uterine ailments: a subject which would bear a fuller and more elaborate investigation than it has yet received, and which we hope may form the material of some future lectures from the same hand, but into which we do not propose at present to enter—our object having been limited to the inquiry into the pathological importance of ulceration of the os uteri.

We have given a brief, though, we trust, a fair and complete account of Dr. West’s views, and, as far as possible, in his own words: we have given him credit for the moderate and philosophical tone of his communications, and for the freedom from personal allusion which characterizes his book. But while agreeing with many of his deductions, and doing full justice to the care he has bestowed upon the investigation, we hesitate to adopt fully his conclusions, because we think that there are some considerations of importance which ought to modify them.

To some of these considerations we have already alluded, but we shall take the liberty of recapitulating them, and of adding some others, in the same spirit of frankness which has actuated Dr. West, being fully assured that truth, not victory, is his object not less than our own. Let us premise, however, that we have always objected, and do still strongly object, to the employment of the term “ulceration” to express abrasion or erosion of the os uteri. The two terms are not anatomically synonymous, they signify very different morbid states, they involve very different courses, they imply distinct and opposite consequences, they require different treatment, and their indiscriminate use tends to confuse the professional student as much as it alarms the patient.

1. Looking closely at the matter, we find that the course of Dr. West’s researches is framed especially to meet an assertion of certain writers, that abrasion of the os uteri is extremely frequent, that it gives rise to a formidable train of symptoms, and to certain organic changes; and in meeting this assertion he has so limited his ground, that his inquiry is rather into the pathological importance of this opinion, than that of abrasion of the os uteri in any exact and extended sense. In like manner
he seems to follow the assumption that abrasion of the os uteri is a primary and isolated disorder, as though it were established.

2. Taking this view, however, there are some considerations which materially qualify the value of the conclusions to be drawn from each branch of the inquiry, and the force of some of which Dr. West candidly admits. For example, it is clear that any inference from the anatomy and physiology of the cervix uteri in health, must be admitted with great caution as interpreting its liability in disease. The utmost argument we can derive from it is one of probability, and this can only be useful to meet an opposite conclusion based on similar grounds. We agree with Dr. West, that in health the cervix uteri is neither very sensitive nor very vascular, but this proves nothing as to its condition when diseased, for we know that then it may become hyper-sensitive, and give rise to profuse haemorrhage. The same may be said of other parts of the body, for example, the joints, serous membranes, &c.; pathology reveals conditions which could never have been anticipated from their anatomical and physiological characters in health.

3. The results of a series of general post-mortem examinations may be fairly admitted as one portion of the evidence as to the comparative frequency of uterine complaints. The value of Dr. West’s carefully recorded cases amounts to this, that the uterus was found diseased in nearly one-half of a given number of cases, in which no evidence had been given of such disease during life, and in which it had no share in causing death. The proportion is much greater than we should have anticipated, and we much doubt whether the same proportion would hold true of any other organ of the body. But still this is only a part of the numerical evidence we require to form an accurate judgment of the frequency of uterine disease: we require also the proportion of uterine diseases in a given number of cases, and a very large one, for which the patient had sought assistance during life. Surely, it would scarcely be fair to base our calculations as to the frequency of pericarditis, pneumonia, or even chronic diseases, upon the traces of such maladies found after death in the bodies of those who had died from other causes. Further, such observations can never satisfactorily establish the relative frequency of disease of the uterus as regards each other; this can only be done by a careful record of cases of the various forms noted during life, combined with the information afforded by post-mortem examinations. Dr. West has an ample field of observation, and we trust that in a future edition he will complete his numerical calculations in the way we have here ventured to suggest.

4. As we have already stated, we think that the analogy between abrasion of the os uteri in situ, and that which occurs in prolapsus uteri, proves too much, for it would equally establish the insignificance of hypertrophy and deep ulceration. Dr. West’s very candid observations, which we have quoted, state the incompleteness of this argument very clearly.

5. We quite agree with Dr. West, that, after all, clinical observation is the only tenable ground in this inquiry, and we are not disposed to dispute either the facts or conclusions embodied in, or deducible from, his tables, but merely their extension beyond the ground fairly covered by them.
That abrasion of the cervix uteri has been hastily assumed to be much more frequent than it really is; to give rise to a train of symptoms which may exist in its absence; and to consequences, as, for instance, sterility, disorders of menstruation, abortion, &c., which may accompany or follow it, but which may as frequently arise from other causes, may be quite true, and is deducible from the tables Dr. West has given; but we are not prepared to extend this conclusion so far as to decide that abrasion may not also give rise to these consequences, and that it is of "slight pathological value and rarely calling for special treatment." We shall very briefly state two reasons for our hesitation, without occupying the time of our readers with entering fully into the question.

6. However valuable, and we fully admit its value, the clinical record Dr. West has given us, there is yet a supplement of great importance which ought not to be excluded—viz., the carefully noted experience of those who are much occupied with the special diseases of women. No doubt special practice may lead to exaggeration, especially as regards numerical proportion, but with due care it also affords results attainable in no other way. Now we think that we express the experience of all men thus occupied, when we say that many cases do come before us, in which the utmost vigilance can detect no change beyond congestion and abrasion of the cervix uteri; that in these cases certain trains of symptoms do present themselves; a certain form of broken health does result, and a certain local treatment cures the local affection, and restores the health as a consequence. If these cases be sufficiently defined and sufficiently numerous, they must be admitted into our calculations, nor can they be disposed of by pointing to similar symptoms and consequences when abrasion does not exist. Instead of concluding, that, on this account, abrasion is of no consequence, it would be more scientific to admit the fact, that certain results may be common to different morbid conditions, and to leave it to careful examination to decide upon which they depend in each case. It will be admitted, therefore, we think, that the clinical record, to be complete, must include more than the data given by Dr. West.

7. We cannot but think, however, that an error, the fruitful parent of many others, lies at the bottom of much that has been written about ulceration or abrasion of the os uteri, and that in arguing on the opposite side, Dr. West has not altogether escaped its influence. Either expressly, or by implication, abrasion is treated as an isolated and a primary affection, but if our observation may be trusted, we should say that it is not necessarily either the one or the other. We have most generally found it in connexion with more or less congestion of the cervix or body of the uterus, which fully as often preceded the abrasion, by a distinct interval, as succeeded it: and we have noted that the severity of the symptoms had more relation to the amount of congestion than to the extent of abrasion. Again, we have known hypertrophy and induration to exist for some time before any erosion took place: so that the abrasion seemed to mark a certain stage in the progress of the disease. On the other hand, doubtless, cases do present themselves in which erosion is present, with but little congestion and no induration; and in these, after a time, congestion may, and probably will occur, whether from the
presence of the abrasion, or from a cause common to both, it may be difficult to decide.

We should be inclined to say, that erosion, primary and alone, is comparatively rare, that it is most frequently in conjunction with congestion, and that the symptoms common to this combination vary in intensity according to the amount of congestion and the extent of the abrasion, but more perhaps the former than the latter. Further, as abrasion may be secondary to congestion, the symptoms to which the latter gives rise will naturally be found in such cases without erosion, or before it exists, but will probably be increased after the complication. In order, therefore, to understand and treat each case, and still more to comprehend the entire subject, it is necessary to bear in mind that abrasion may be primary or secondary, and that whilst it may, at least for a time, exist alone, it is much more frequently found in combination with congestion or inflammation of the cervix.

We have ventured to offer these suggestions, not exactly in opposition to the view taken by Dr. West, but as slightly modifying it, and for the purpose of offering a moderate check to the disposition, which seems a part of human nature, to meet one extreme by another. Dr. West's book, we believe, will have a most beneficial effect in leading men to examine more carefully into the subject, and will, we trust, put an end to all unnecessary examinations, and the too frequent use, or rather abuse, of the speculum and certain heroic methods of treatment.

Fleetwood Churchill.

Review IV.

3. *Précis d'Anatomie Pathologique.* Par G. Andral, M.D.

4. *Pathological Anatomy.* By Robert Carswell, M.D.

5. *On Cancerous and Canceroid Growths.* By J. H. Bennett, M.D.

(Concluded from No. 27, p. 62.)

The fibroid changes which occur in the uterus are of special interest with regard to the subject we are now considering. They comprise the well-known fibrous tumours and partial hypertrophies of its structure. Dr. Frieger, of Kreuznach, describes the latter as separate hard knot-like portions, recognizable by the touch in the surrounding softer parts,
and often associated with a degree of general enlargement. He says they were in most cases the product of chronic inflammation, though the causes of these inflammations could not always be ascertained: often, however, they appeared to have resulted from some injury inflicted during labour. We shall not attempt to enter into any detailed account of fibrous tumours, but only remark that no one, we suppose, will contend that they are produced by inflammation of even the lowest degree. One instance of partial hypertrophy of the cervix uteri which we examined after it had been excised, consisted of a fibroid tissue quite similar to that of the uterus. Now, it is certainly a striking circumstance that the uterus is far the most frequent habitat of fibrous tumours, and that the structure of the normal organ and of the superadded growth is almost identical. What the microscope shows in both, is a vast number of round or elongated nuclei, lying in a solid blastema or basis substance, which shows more or less tendency to develop into fibre. It is worthy of notice that the fibres which form in some fibrous tumours are more like those of organic muscle (such as are found in the developed uterus) than those of white fibrous tissue. Dr. Bristowe has shown, in a very interesting communication to the Pathological Society, vol. iv. p. 218, that fibrous tumours developed in the walls of the uterus, if examined at the end of utero-gestation, consist of "muscular fibres, identical in shape, size, general appearance, and arrangement, with those of the uterine parietes."

Vogel states that "when fibrous tumours arise in parts where areolar tissue prevails, they consist principally of more or less fully developed fibres of areolar tissue; whilst tumours consisting of simple muscular fibre are only found in those parts which consist in the normal condition of simple muscular fibre." This circumstance is an example of what Vogel denominates "the law of analogous formation," which implies the influence exerted by the tissue in which an exudation takes place, in causing the exuded plasma to develop itself into tissue of a like kind. This influence in the lower animals is very energetic, so that whole parts can be reproduced; in the higher it is comparatively feeble. In the latter it rarely avails to the formation of the higher structural elements; fibrous tissue and bone are easily produced, but muscle, gland tissue, and brain almost never. We entirely agree with the following passage from Vogel, which sets forth a truth to which we may again have to refer. "The cytotblastema on the one hand, and the pre-existing tissue on the other, are each factors influencing the formation of organized morbid products, and it is on their different properties that these epigeneses are dependent, both for their mode of formation, and for their general characters."

We have had, through the kindness of Mr. Curling, the opportunity of examining a portion of a testis, which had been removed on account of haematocoele. There was manifest evidence of inflammatory effusion in the tunica vaginalis, and in the surrounding integument. The cut surface of the testis was of a whitish colour, and imperfectly lobulated aspect; and on minute inspection, opaque whitish streaks were visible to the naked eye, coursing through a more translucent greyish mass. The size of the organ was not apparently much increased. The white streaks were convoluted tubes filled with a very fatty epithelium; they were imbedded in induration matter, consisting of fibroid substance containing extremely
numerous nuclei or small cell particles. In this case it is clear that inflammatory action in the vicinity had been the cause of the intertubular exudation in the substance of the testis. This exudation, however, was so far organized, had increased to such an extent, pushing the tubes widely apart from each other, and appeared on the whole so decidedly in a condition of growth, while at the same time there was no appearance of hyperemia in or about it, that we cannot look upon it as simply and merely an inflammatory result. There seems to us sufficient evidence that there was more at work than mere inflammatory action, that the exudation was in a condition of growth and development, acting indeed much in the same way as the blastema of a new growth. Had it been left to itself, it might afterwards have retrograded, but it was clear to our examination that it was in a very different state from the exudation of simple inflammation, which usually tends to degeneration and absorption, or to change into cicatrix tissue.

We merely refer to the case of the enlarged prostate, lest any of our readers should think we were passing over a highly illustrative instance of fibroid change without notice. We were of opinion, till recently, that this enlargement depended simply on an increased formation of fibrous tissue; but by the kindness of Mr. Simon and Dr. Bristowe, we have had the opportunity of examining two specimens, which exhibited on the whole as much new glandular tissue as fibrous. Follicles with an epithelial lining, and concretions such as exist in the normal gland, were found in the most peripheral parts of the enlarged mass. In one of the specimens the third lobe was considerably enlarged, but it presented nothing different to the other parts. This glandular hypertrophy is certainly very remarkable, and has no exact parallel among organs of the same kind. The amount of fibroid tissue varied in different parts, in proportion to the glandular; its development was probably secondary to that of the gland tissue. Further observation must show whether the enlargement of the prostate is ever, as it has been regarded, due merely to fibroid hypertrophic formation.

The following account of fibroid degeneration in muscles is given by Rokitansky:

"Induration is a mode in which inflammation frequently terminates; it is often found to have occurred at some isolated spots, especially in the heart. The exudation in the inflamed part coagulates, and becomes converted into a whitish, lardaceous, firm callus, which assumes a fibroid structure, but is still traversed by a few pale and broken muscular fibres. The appearance of the callus varies according to the original quantity of exudation; at first it forms cords and streaks which ramify among the fibres and fasciculi of the muscle, or more extensively round, or nearly round masses, which may be tolerably circumscribed, or may branch out irregularly in various directions. In the course of time it may diminish in size considerably, partly from absorption, partly from its shrinking and becoming more dense, and from the disappearance of the muscular substance that still remains within it. As it thus diminishes in size, it draws in the surrounding tissue, and assumes the appearance of a deep cicatrix. In a few cases this mode of termination has been found throughout the whole of a large muscle, and even in all the muscles of one or more of the limbs, particularly of the lower extremities; they were changed into a white tendinous structure, and here and there into bone."
The foregoing account may be taken as a typical description of the progress of ordinary inflammatory exudation, ending in cicatrix tissue, in almost any part of the body. Only, we must remark, that in the cases mentioned in the last sentence, there must have been some peculiarity in the exudative process differentiating it from ordinary inflammation, and probably connected with some peculiar crisis of the blood. Andrall notices as follows the development of fibrous tissue in a muscle under different circumstances.

"There are other cases in which there is nothing at all to demonstrate that any process of irritation whatever has preceded the fibrous transformation. In this there is nothing surprising; have we not in fact recognised that in every alteration one cannot conceive irritation to play any other part than that of tending to turn aside the nutritive act from its normal type; but that, independently of this, this derangement may very easily take place; reason indicates this, and observation proves it. I have seen once, for example, the sternocleidomastoid muscle of the right side transformed in its whole extent into a perfect fibrous tissue, exactly similar to the broad tendon which terminates it below. Was it irritation which had presided over this transformation?—quite the reverse. The patient in question having suffered for a great number of years from hemiplegia, with permanent contraction of the left sternomastoid, the corresponding muscle of the other side had been condemned for a long time to absolute inaction; this muscle had become a fibrous organ, as in animals one sees certain parts become fibrous from having been fleshy, by reason of the single circumstance that a modification of function has rendered muscular contraction useless. Several facts lead me also to admit that in certain cases of atrophy of organs, fibrous tissue tends to develop itself where the proper parenchyma of the part tends to disappear."

It can scarcely be questioned that there was actual formation of new fibrous tissue in this instance, as occurs in analogous instances of equino-vavus; and from this it certainly follows that other causes besides hyperaemia may originate this change. Mr. Hancock's statement, that the columns of the dilated and hypertrophied bladder are not muscular, but composed for the most part of elastic cellular tissue, is also to the same effect.

We resort again to Andrall's storehouse for instances of change of the kind we are considering in the nervous centres. In his 'Anat. Path.' vol. i. p. 284, he speaks of cartilaginous transformation taking place in various parts. By this term we may safely account that he means fibroid development to a degree that closely resembles cartilage in outward appearance. Having questioned the production of cartilage in other localities, he proceeds:—

"If, however, there is a parenchyma in which my own researches lead me to admit the occurrence of cartilaginous transformation as a really observed fact, it is the brain; once, in fact, in a girl about twenty months old, I found several convolutions of the upper face of the two cerebral hemispheres, remarkable by their extreme hardness. Pressed strongly between the fingers they resisted like cartilage, of which they had the homogeneous texture, the ivory white colour, and the elasticity. Other similar indurations existed in the thickness of the hemispheres, and at their base."

The only symptom observed in this girl while in the hospital, was a continual rotatory movement of the head. In the chapter on Induration of the Nervous Centres, he assigns three degrees of this change, in the most extreme of which the nervous substance is as consistent and elastic
as fibro-cartilage. There can be no reasonable doubt that induration in this locality is essentially similar to induration in others, and that it depends on processes of a like kind. One of the most frequently operating of these is, no doubt, hyperemia, giving rise to exudation, which solidifies and passes into the condition of more or less perfect fibroid tissue. It is, however, a question whether exudations issuing in the formation of similar products may not take place independent of anything that we can recognise as inflammation, or even perceptible hyperemia. With regard to this, we shall first allow Andral to speak for himself.

"The causes under the influence of which the nervous centres augment in consistence to the different degrees which we have noticed are still obscure. Still, if one reflects that general induration in the first degree, either of the brain or of the cord, is most frequently accompanied during life with all the symptoms which characterize an irritation of the nervous centres: and that, besides, after death, one often finds traces of irritation of the membranes, and in short, a more or less vivid injection of the nervous substance itself, one is led to think that this induration is also a result of the irritation of this substance, or, if you will have it so, of a degree of encephalitis. As to partial induration, it may be like general induration, a result of irritation. The existence of this induration around old apoplectic foci, on several morbid productions, the state of the meninges, which have been found thickened and infiltrated near the indurated parts, and might be given as proofs of it. As to the rest, in the greater number of cases of partial induration observed hitherto, it is only as an hypothesis that we can admit as their cause an antecedent irritation. Here, then, we shall confine ourselves until more amply informed, to refer partial induration of the brain to a perversion of the nutritive act; all the while recognising that irritation may be one of the elements of its production, as it may concur in the development of all the possible alterations of nutrition or secretion."

We think there is great wisdom in the last paragraph; it is the view of a large-minded observer, who can see that Nature does not confine herself always to one exact mode of arriving at the same end.

It seems worth while to examine the cases which Andral has recorded of cerebral hypertrophy, for, though the idea may seem novel, we cannot but believe that this change must really consist in an exudation taking place throughout the nervous tissue, and not in a true increase and growth of the tissue itself. We regret that we have no microscopic evidence as yet to establish this view; but the weight of probability seems to us immensely in its favour, as well as the bearing of what is known concerning it. In the first case there was, during eleven years, intermittent headache, the paroxysms occurring about once in two months, and lasting about twenty-four hours. The headache was regarded as migraine. A year before he came under Andral's care, the pain in the head became constant, with exacerbations: after six months, convulsive attacks supervened, and became latterly more frequent; after a more severe attack than usual, coma came on, and the patient died. The pulse had been 55, the intelligence intact. There was no disease of the meninges. The cerebral substance was bloodless, of extraordinary density, like boiled white of egg; the convolutions were compressed together, and even the walls of the ventricles approximated. The grey matter of the corpus striatum, and of the thalamus opticus, as well as the cortical, was colourless. In the second case, epilepsy existed for fifteen years, and became more severe up
to the end of life. During the last six years there was severe pain of head, not associated with the epileptic attacks; latterly the intellect failed, and she became imbecile. Death took place in an epileptic fit. The morbid appearances were very similar to those in the preceding case.

In the third case, there existed for ten years intermittent pain of head, with occasional confusion of ideas. During a more severe attack of pain, convulsions came on, followed by loss of consciousness; he recovered partially for a time, but his intelligence failed more and more, muscular debility increased, and before long he sank. The pulse had been 56, the digestion good, the respiration tranquil. The morbid appearances were the same as in the two other cases, and it is remarkable that the cerebellum, pons Varolii, and spinal marrow were not affected. In M. Scoutetter's case, at 5½ years, the head increased gradually in size, till it was as large as an adult's. The intelligence was natural, and there was no morbid phenomenon, except the frequent tumbles occasioned by the weight of the head. The child died of acute enteritis. The parietes of the cranium were thicker than usual; the dura mater was firmly adherent to them (as it always is in children). The pia mater was very much injected, and of an opaque white in some points. Except the increase of size, the brain appeared healthy. Now, we do not suppose there can be much doubt that this case differs only from the preceding in the circumstance that the true nervous matter was not compressed by the unyielding cranial walls. It can hardly be thought that a true hypertrophy of the brain existed, otherwise surely there would have been some apparent superiority of intellect. The truth probably was, that there was just the ordinary amount of nervous matter plus a certain quantity of interstitial exudation. The thickening of the pia mater, and its injection, show that there had been an abnormally great supply of blood, but it seems scarce just to speak of the case as one of encephalitis, even of the most chronic kind. In the three cases quoted above from Andral, there was absolutely no trace whatever of inflammatory action; indeed, the condition of the membranes is almost conclusive evidence against the possibility that any had ever existed. Of the same kind as the foregoing we feel inclined to consider the case recorded by Dr. Sweetman, and quoted in Dr. Watson's lectures. The head gradually enlarged, as in chronic hydrocephalus, but there was nothing to indicate disease of the brain. Death occurred from pneumonia. The brain appeared healthy; there was a patch of false membrane as big as a crown-piece on the upper and anterior part of the dura mater, and some jelly-like effusion beneath the arachnoid at this part. The medullary matter in different sections displayed very unusual vascularity (probably the result of the pneumonia). Dr. Watson infers from these cases that such enlargement is not an indication of disease, not a cause for treatment. With some hesitation, we must say that we cannot view them in this light. Such increase of size, we must think, is with infinite more probability due to unreal than to real hypertrophy, and is an unquestionable evidence of morbid action. May we not fully compare such enlargement with that of the baconny liver, which may attain (as in a case recently in St. Mary's) a very great size, easily recognisable during life, but not producing any special symptoms, and not appearing manifestly diseased after death, except to the practised eye. In Dr. Sweetman's
case, there was further evidence of hyperemia, in the patch of false
membrane on the dura mater and the subarachnoid effusion, but we still
think the symptoms during life, as well as the post-mortem finding (we
borrow the German phrase “befund”), can hardly justify the view of
inflammation being the essential cause. We cannot but acknowledge the
force of Andrè's questionings in his remarks on the above cases.

"Anatomy," he says, "shows us but the last term of the disease, and does not
reveal to us all the shades, or all the degrees, through which the alteration must
pass from the moment when it evinced its existence only by a transient pain of
head, to that when serious disturbances attacked simultaneously intelligence,
motion, and sensation. What, for example, was the change which came on
suddenly in the brain the day when, with equal suddenness, the patient was seized
for the first time with an epileptiform attack? Did hypertrophy of the brain
already exist at this period? Was there as yet but mere cerebral congestion?
Did this congestion ever exist at any period of the disease? This congestion,
which is so convenient to serve as a means of explaining a great many cerebral
disturbances, is it as common as we imagine? It is certainly from views altogether
hypothetical, that we constantly make it come in to explain either most of the
disturbances of organization, or many functional disturbances."

We would offer the suggestion whether there may not be an analogy
between these cases of hypertrophy and those of chronic hydrocephalus.
The latter is an acknowledged dropsy, as much as in many instances
hydrocele is; inflammation, in the ordinary acceptance of the term, is not
of its essence. Neither do we think it is in the case of hypertrophy; but
that, in consequence of certain obscure conditions of the blood, and of the
affected part, the plasma which should simply nourish the nervous structure,
 deposits interstitially a substance which solidifies, and causes, if the walls
are unyielding, injurious pressure on the involved tissue; if they are not,
enlargement of the head without symptoms of disease. We fully grant
that careful examination is required to substantiate this view, but, on
account of the rarity of the cases, an opportunity of doing this may be
long delayed, and we have not thought it, therefore, too speculative to
notice as we have done the state of so-called hypertrophy of the brain.
True hypertrophy, without some special cause to call it forth, is a thing
so almost unknown, that we do not think we can err much in interpreting
the increase of size and weight in a different manner to that which has
hitherto been followed. After having written the above, we referred to
Dr. Todd’s article on the "Nervous Centres," and were glad to find that
he inclines to the same view. "It is most probable," he says, "that the
disease consists not merely in an increased, but also in a perverted nutrition,
and that new material is deposited between or in the proper anatomical
elements of the brain." This conclusion is, moreover, we think, really sup-
pported by Rokitansky's statement, who, though he asserts the disease to be
a genuine hypertrophy, immediately adds, that it consists not in an increase
of the number of nerve tubules, nor in an enlargement of the old ones, but
"in an excessive accumulation of the intervening and connecting nucleated
substance." Now as we have never seen in healthy brains this nucleated
substance, and no mention of it is made by the best observers, we think we
may safely conclude that it must be a new deposit. Rokitansky does not
think that congestion affords any satisfactory explanation of cerebral

* Abnormal Anatomy: Cyclopædia of Anatomy and Physiology.
hypertrophy, he connects it with "the excessive development of the
lymphatic system."

In some cases, at least, of atrophy of the brain, it is probable that the
essential cause is of a similar kind. The exudation seems, however, to
pass more decidedly into the form of fibroid tissue, and consequently
causes shrinking instead of enlargement, and greatly increases the firmness
and toughness of the affected part. Dr. Todd speaks of having observed
atrophy of the brain in epileptic cases of long standing, and in persons
habitually intemperate. He describes the condition as follows:—

"The brain has a shrunk appearance. Its texture feels firm, and on cutting,
the knife grates against it as in cutting cartilage. In point of colour, the grey
matter is frequently extremely pale, and scarcely to be distinguished from the
adjacent white substance: in some instances, however, it is of a dark brownish
hue. In all cases the layer of grey matter which covers the convolutions is less
deep than natural. The convolutions are evidently shrunk, and the sulci between
them have greatly increased in width. The white substance of the brain has
increased in density, and in the transverse section several vessels are cut across,
the section of which occasions numerous bloody points on the surface of the cen-
trum ovale. The corpora striata, optic thalami, pons, and medulla oblongata, are
all obviously shrunk, and firm in consistence. As a constant accompaniment of
the wasted brain, we find a more or less opaque condition of the arachnoid mem-
brane, with considerably enlarged Pacchionian bodies."

Dr. Corrigan* has shown that, in some cases, an alteration takes place
in the pulmonary tissue very analogous to that which constitutes the
essence of cirrhosis of the liver. After reviewing the changes which take
place in the latter condition, he goes on to say that the disease is in the
lung when it is in the liver; that it is occasioned by the contraction of the
interstitial fibrous tissue and the general fibrous envelope of the lung,
aided by the natural contraction of the elastic fibres which run longitudi-
nally along the bronchial tubes, and tend constantly to shorten them, and
draw all portions of the lung from its circumference towards its root.

"Of this peculiar diseased action in the matrix of the lung, consisting of a
gradual but certain contraction of the fibres of the cellular tissue, pathology furn-
ishes us with many instances, but why fibro- or fibro-cellular tissue should take
on this contractile action is, as yet, a mystery. It is probable that, in a great
number of such instances, the commencement is a slow inflammatory action,
causing some deposition of lymph in the tissue affected. This lymph then takes on the
nature and properties of the tissue which has secreted it; the diseased action,
however, does not stop at this point, but the tissue affected taking on a contractile
action, changes, and symptoms are then produced depending on the functions,
situation, &c. of the organ attacked."

The following case, which he quotes from Laennec, gives a good idea of
the changes produced by the process in an extreme degree. A man had
suffered twenty years from cough and muco-purulent expectoration; he
died suddenly, with symptoms of apoplexy. The right lung was sound,
and very large. The left lung was not larger than the size of two fists—it
was adherent nearly throughout to the pleura costalis. The whole
tissue of this lung was transformed into a substance of fibro-cartilaginous
appearance; the smaller bronchi and air-vesicles were obliterated; the
larger tubes were nearly all dilated. In this case, there is no mention of

an acute attack which may be supposed to have given rise to the exudation of lymph interstitially; the process seems to have been chronic throughout. In the first case, there was only slight pleuritis; and the commencement of the cirrhotic change does not appear to be at all definitely marked. In the second case, also, the disease seems to have commenced gradually. In a case recorded by Dr. Stokes, a woman, aet. 40, had for several months cough and disturbance of the breathing, which could not be accounted for satisfactorily; the left lung was much diminished in size, very irregular on its surface, contained numerous little hard, but not tubercular, bodies; the larger bronchi were dilated, the smaller obliterated, the pulmonary tissue indurated. In a case mentioned at the same time by Dr. Green, it is stated that a woman had for many years a very obstinate cough; after some time, emaciation took place, with night-sweats; hemoptysis occurred several times, with copious expectoration. The right pleura was much thickened; the lung shrunken and indurated; the diaphragm adhered to the liver. In an interesting case recorded by Dr. Law,* the left lung was found reduced to a mere rudimentary state, and formed a small mass of tough fibro-cellular structure, displaying, when cut into, the mouths of the dilated bronchial tubes, but no trace remained of its vesicular structure. The heart was found situated immediately under the left clavicle; the diaphragm was drawn upwards a considerable distance, so that the stomach reached above the fourth intercostal space. The margin of the right lung projected into the left side of the chest; and on examining this lung, it was found in a highly congested state, with a few tubercles scattered through it. The left lung presented no trace of tubercular disease. The patient was a girl, aet. 16; she had several attacks of bronchitis and pneumonia, affecting the right lung during the latter three years of her life, as well as hemoptysis, but the cirrhotic condition seems to have been formed prior to this period. It does not seem that, in any of the foregoing cases, the cirrhotic process was the result of ordinary pneumonia. This disease certainly does not in most cases produce any contraction of the lung; but Drs. Corrigan, Stokes, and Walsh agree, in opposition to M.M. Grisolle and Woillez, that in some cases it does do so. Dr. Walshe says—

"Why should not the same contraction (occurring as a law of its existence) of exudation, poured out into the substance of the lung, cause similar alteration in the form of the thorax? It appears curious that M. Grisolle, who professes to have seen the size of the lung, enlarged by interstitial exudation solely, gradually return to its natural state, should maintain depression of the surface to be impossible. What is to prevent the tendency to diminution of bulk from gradually bringing the lung to a less volume than in health?—and this once effected, will not depression of the parietes inevitably follow?"

The common hepatizing exudation of pneumonia has appeared to us to consist chiefly of a large quantity of granulous and oily matter, imbedding very numerous colloid particles, or granulous globules, and, at a later period, numerous glomeruli. This is an exudation which manifestly tends to liquefy and to be reabsorbed, not to remain, and to pass into the state of solidification, with fibroid development. Dr. Walshe, recognising the rarity of chronic pneumonia, except as an indurating process taking place

around tubercle, cancer, &c., speaks of it as that form of disease in which an impermeable tissue is infiltrated with toughly-solid exudation, and where there is no tendency to a softening process. Rokitansky says, that when the red inflammatory product becomes of a greyish-red tint, and finally grey, and also compact and indurated, it constitutes indurated hepatisation, which has sometimes been regarded, but incorrectly, as chronic pneumonia. Both Rokitansky and Walsh recognize a certain amount of shrinking of the lung as the result of such chronic pneumonia, but it never seems to arrive at anything like the degree which is seen in cirrhosis. Hasse, embodying in his description Andral's researches, has given a very good and full account of chronic pneumonia, which accords with our own observation, so far as it extends. He recognizes two forms—a grey and red induration; and inclines to Hope's opinion, that the difference of color is only the result of accidental circumstances, and does not indicate gradations of change:

"We meet most frequently," he says, "with the grey induration, or, as it is sometimes called, white hepatisation. It is mostly associated with the development of tubercle; and, in the few marked instances which came in my way, I was unable to draw the precise limit between pneumonic induration and grey tubercular infiltration. The former was distinctly distinguishable in the lower half of the lungs of the latter in the upper half; at the apex were several small cavities, precisely resembling those of tubercular phthisis. There were at the same time traces of the tubercular constitution in other organs. The transitions and combinations of the two diseases are probably numerous, whilst chronic pneumonia is sufficiently rare to render the discrimination in a given case a difficult task. At the part affected, the lungs are distended, preternaturally heavy, and completely impermeable to air; even the bronchial twigs are mostly choked up with a similar matter. Of the natural texture, nothing is distinctly traceable; the surface on incision looks grey, here and there inclining to yellow, diversified with separate white stripes and arborescent patches of black pigment. The whole mass is hard, incompressible, neither friable nor easily penetrable by the finger, but yet fragile and readily torn. It is mostly the inferior lobe of one or both lungs that is thus affected; and as the chronic inflammation proceeds from below upwards, it meets the tubercular process advancing in the opposite direction."

Hasse thinks that the chronic pneumonia, in cases where the two are coexisting, is the cause of the tubercular deposit: to us it has rather appeared that the exudation which takes place has itself more or less of tubercular nature. In a case which we have already mentioned, numerous absorbent glands were greatly enlarged by the deposition of firm, fibrinous blastema, while in the lungs there were numerous sub-pleural fibrinous nodules, and infiltration of the upper parts with grey tubercle-like matter, excavated by one or two small cavities at the apices. The other form, red or brown induration, "is far more rare, and apparently not necessarily connected with tubercular or other cachexia." It seems to be the consequence in several cases of extensive hypertrophy of the heart, the impulse of the ventricles aggravating the habitual congestion of the pulmonary vessels until a chronic inflammation was set up. "The diseased lobes (the lower) were but moderately distended; their colour was of a dark brownish-red; both their absolute and their specific gravity augmented; and their consistency greater than usual." Their parenchyma appeared consolidated, but not saturated with blood or serum; their cut surface was smooth and even.
“Andral and Hope describe chronic pneumonia as a slowly-developed hypertrophy of the septa of the lobules and cells, attended during the period of augmented vascular activity with a very gradual deposition of albuminous matter into the interstices of the pulmonary substance. In some instances, the cellular septa of the pulmonary vesicles are said to increase in consistency, so as to acquire a semi-cartilaginous character.”

We think with Rokitansky, that it is better to distinguish true chronic pneumonia, in which the air-cells are not compressed, but are filled up by exudation, from the cirrhotic process, which the German pathologist names interstitial pneumonia. Rokitansky says:

“The seat of this inflammation is the interstitial cellular tissue of the lungs, although the walls of the air-cells are often also implicated, in which case the pneumonia sometimes assumes the croupous form. Its course is, as a general rule, chronic; and it is only very rarely that we have the opportunity of studying it, except in its final effects. So far as we can conclude from our few observations, it appears to commence in the tissue lying in the interstices of the pulmonary lobules, and between the smaller groups of air-cells, which, if too much black lung-substance be not present, becomes of a pale-red colour, and is swollen by albuminous infiltration, while the air-cells are either pale, or more or less compressed in proportion to the swelling; or, if they are involved in the inflammation, they appear reddened, and, in accordance with what has been already stated, sometimes finely granular. In the progress of time, the infiltration within the interstitial tissue becomes organized, and coalesces with the latter so as to form a dense cellular-fibrous substance, which compresses and obliterates the air-cells, and finally converts them into a similar cellular tissue. We then find either whitish hard stripes, which not unfrequently grate under the knife, or irregular masses interwoven in the lung-substance. This is the ordinary metamorphosis consequent on chronic pneumonia; in some cases, however, it may terminate in suppuration, which isolates the individual lobules; and some pulmonary abscesses probably originate in this manner. It is not very unfrequently a spontaneous affection, insidiously spreading from one lobule to another; it is commonly seated in the apices of the upper lobes; and, as we may infer from the coexisting cellular adhesions, corresponding to their seat and distribution, it is frequently combined with circumscribed pleurisy. The affected portions of lung become depressed, and draw down the surrounding parenchyma in the form of cicatrix-like folds, which may sometimes be observed on the apices of the lungs in cases where there is no trace of the pre-existence of tubercle. A further consequence of this process is a depression of the thorax at the corresponding spot, and internally, a dilatation of the bronchial tubes.”

From all the above details, it seems pretty clear that we may distinguish the following typical conditions:—1. Ordinary hepatizing pneumonia, with granulous and cell-forming exudation filling the air-vesicles: in some cases, even this exudation is of a greyish appearance. 2. So-called chronic pneumonia, the air-vesicles filled with an exudation which varies in different instances, through all possible gradations, from solidified fibrinous to tuberculous matter. The colour of this is mostly grey, as if untinged by the colouring matter of the blood. 3. Cirrhosis, which essentially consists in the formation of fibroid substance interstitially throughout the lung, but may be combined with more or less of intra-cell exudation; just as, on the other hand, chronic pneumonia may be with some degree of cirrhosis. From a consideration of the structure of the lung, remembering how the close capillary network lies in a narrow interstice between gaping air-cells on both sides of it, it seems to us very reasonable that any amount of hyperemic stress should cause effusion to take place into the
air-cavities; and that it is only a very gradual and slow exudation, almost consumed as it takes place in fibroid formation, that can be confined to the interstices solely. Hence pure typical cirrhosis would always be a very slow gradual process, while it is conceivable that chronic pneumonic hepatization might take place much more rapidly. However, we would remark, that the grey colour, which is most usual in the latter state—except, as Hasse observes, when there is an absolute constantly congesting cause in operation (cardiac disease)—seems to indicate that the exudation takes place without much hyperemia. Exudations in most parts, and certainly in the lungs, which are poured out from inflamed and loaded vessels, generally, if not always, contain dissolved haematin. Those, on the other hand, which take place slowly—as tuberle, and bacoony matter—are usually pale. A partial amount of cirrhosis, as noticed by Rokitansky, is often seen, especially at the apices of the lungs, and is certainly often quite independent of tuberle, and, à fortiori, of caverns. Dr. Walsh has some very good observations in his article on Adventitious Bodies, in the 'Cyclopaedia of Anatomy and Physiology,' correcting the false conclusion of Laennec, that such thickenings and puckering indicate cicatrizcd vomicæ. The small sub-pleural nodules, as also deeper-seated ones, which are often met with, are manifestly the result of small separate exudations, of a fibrinous material, which contracts, after a time, into this form. They are the pulmonary granulations of Bayle. Laennec regarded them as a first degree in the development of tuberle; and, indeed, their form gives us a tolerably good hint as to the cause of the characteristic form of tuberculous deposit. Broussais imagined they were lymphatic glands engorged! Andrèa considers them as resulting merely from the existence of a great number of partial vesicular inflammations. We see so little evidence of any previous inflammation, that we look on them as simply exudations, and cannot find any more reason for considering them to originate in inflammation than we can for tuberle.

We have had two opportunities of observing a change in the placenta, which appears to us to belong very truly to the class we are now considering. The material portion in each was converted into a rather thin, leathery, firm, dense layer, while the fetal portion was more or less completely atrophied. The whole of the organ in these instances was affected, but a similar local change seems to have taken place in the cases recorded by Dr. Barnes, in his paper on 'Fatty Degeneration of the Placenta.' Whether general or local, we believe the morbid process to consist essentially in the exudation of fibrine in the substance of the placenta, which in the one case forms hard masses, subsequently undergoing fatty transformation, and in the other induces a general wasting and atrophy of the whole material structure, preventing the access of blood, and abolishing the function of the organ. In one of our cases, the movements of the child were felt for about a fortnight; at the end of this time, about the fifth month, they ceased, and signs of the death of the fetus were observed; abortion took place about the middle of the ninth month. The mother was a pallid, weakly person, who had borne living and healthy children before, but in consequence of a fever occurring in her family, and anxiety connected therewith, had become debilitated, and had miscarried two or three times.
When we presented the specimen to the Pathological Society, the following most interesting case was mentioned to us by Mr. W. Adams, whose sagacity in the management of it, and kindness in communicating its details to us, we highly appreciate:—A lady, tall, stout, muscular, of very healthy appearance, and of a healthy, long-lived family, rather disposed to get fat, and having a slow pulse of about 60, hardly disposed to vary even under excitement, miscarried three times at the seventh month. The placenta each time presented very similar appearances to those which are mentioned above, but much less advanced; the fœtuses were well-developed. On the occasion of the third pregnancy, a mild mercurial treatment was adopted, on the view that miscarriage had been produced the two first times by inflammation of the placenta; absolute rest on the sofs for two months was also enjoined. This plan had no good effect; the patient complained of great weakness, sense of fatigue, and debility, with much bearing-down pain. Miscarriage occurred about the same period, or possibly a little later, and the placenta was in the same state as the former ones. Mr. Adams examined this placenta carefully by the microscope, and observing the non-plastic character of the exudation, which exhibited no tendency to cell-development, he came to the conclusion that there was not sufficient evidence to justify the opinion that the changes were of inflammatory origin; he was disposed to think that congestion alone might lay the foundation of the mischief. To meet this, he proposed in the next pregnancy to employ at first a small bleeding, and afterwards to administer quinine and other nervine tonics. Bleeding was, however, omitted, and quinine given regularly in the form of pills, together with one or two glasses of port wine daily, for a long period. She observed moderate, but not absolute rest. This treatment agreed in every respect, and gestation proceeded to its full time, when she gave birth to a very fine boy, her first living child. The placenta was rather small, and presented only slight thickening and opacity on the uterine surface. In the succeeding pregnancy, very little quinine was given (for she did not feel to want it), but a good allowance of port wine and beer. The result this time was equally favourable; the placenta was of full size, and healthy in every respect. The moral of this most instructive case is obvious; and we recommend it especially to the consideration of those who may not have sufficiently considered the change in the type of disease since an earlier day. Rokitansky regards the process as inflammatory; he says:

"Inflammation of the placenta generally gives rise to a plastic fibrinous deposit, which is reddened by the colouring matter of the blood which it contains, and by which the diseased portion is rendered denser and more incrustable. This may be termed hepatization of the placenta; it may be recognised by the increased resistance, and nodulated tumefaction, presented to the touch. In the course of time the deposit assumes a pale red, greyish or yellowish red, or even yellowish white tinge; at the same time it becomes firmer, and, together with the included obliterated tissue, contracts and shrinks. The inflammation has thus terminated, as it usually does, in induration and obliteration of the placental tissue, which is converted into an ashy, tough, leathery callus, resembling elastic tissue. It appears an established fact that an adhesion may form between the placenta and the uterus, in consequence of this process of this kind."

In a note appended to Dr. Barnes’s paper* there is an interesting

instance recorded, in which a placenta, quite fresh, healthy-looking, of average size, was covered on its fetal surface, for about half its extent, with a layer of glistening yellowish-white substance, exactly resembling true fat. In parts it was nearly an inch thick; the basis of it was found to be fibrine, containing innumerable oil drops. The child was living and healthy; the mother had enjoyed good health throughout gestation. It seems almost impossible to suppose that this exudation of fibrine had taken place in consequence of inflammation; the process must surely have been of a much more gradual and tranquil kind, rather a mere exudation. Dr. Ogier Ward has recorded, in the report of the Pathological Society for 1850–51, some cases of diseased placenta, apparently of the same kind as those above quoted. "In the first case the placenta was very small, more than half being unfitted for its functions by deposits of masses of lymph in its substance; and along a part of its edge, on the fetal surface, it was studded with semi-transparent minute projections, closely resembling the deposits upon the peritoneum in scrofulous inflammation of that membrane." The fetus was between the sixth and seventh month, and lived only a few hours. "The mother had suffered severely during her pregnancy from vomiting, and the placenta adhered more firmly than usual." Other placentae, from different cases,

"Were exhibited in proof of the great frequency of the occurrence of lymph and bony deposits in their substance, and the little influence such changes usually have upon the fetus, except where they affect a considerable portion of the placenta. But it was remarked that they occurred more frequently in the subjects of lying-in charities than in women in better circumstances, though the cases hitherto observed were too few to warrant a conclusion upon that point."

In these cases, also, the only thing absolutely certain is, that exudation had taken place, but whether from inflammation, or independently of it, is not clear. Only there does not seem to have been any symptom indicative of inflammation which attracted attention.

It does not seem to us a thing at all unlikely, that in an organ so completely constructed upon Ruysch’s plan—i.e., made up of vessels, as the placenta, there should take place either exudations of fibrine under circumstances causing congestion, or coagulation of fibrine in some of the large uterine sinuses which invest and imbed the fetal villi. The organ is one which we should think even more liable to such occurrences than the spleen is to those fibrinous deposits which are so frequent in it. It seems probable, from the cases above-mentioned, that deterioration of health is a promoting cause of these changes in the placenta, and this may operate both by increasing the quantity of fibrine in the blood, and rendering it more prone to coagulate. Zimmermann has shown that debilitating influences increase the proportion of fibrine in the blood, and an increased tendency to coagulate is itself an indication of lowered vitality. For proof of this latter statement, we may refer to a case of spontaneous coagulation of the blood in the veins of both lower limbs occurring in a tuberculous subject, which we mentioned in the review on ‘Fatty Degeneration,’ as also to various instances of a similar event taking place in the arteries leading to a part, and producing mortification.

In approaching the question as to the nature of the changes which we have reviewed at length, we would express how completely we are aware
that our knowledge respecting them is extremely imperfect, and that any view we adopt can only be considered as hypothetical and provisional. The great difficulty to a correct appreciation of the real causative conditions of these changes is that we have so little knowledge of their existence during their earlier stages. They arise imperceptibly, and proceed silently in their increase, and our attention is scarcely aroused to them until their secondary effects begin to appear. When death has occurred, and the post-mortem examination gives certainty of their existence, the primary conditions cannot be detected among the secondary changes that have taken place. For instance, in a case of cardiac dropsy, when a patient has sunk with engorged lungs, and fluid gushing out into all the serous cavities and cellular texture, how shall we form the remotest idea of the state of the blood which existed while the obstructive disease of the mitral valve was in progress? Often do we sigh for the refined and improved diagnosis, or even for well-directed efforts towards it, that we hope may teach us some day invadenti occurrere malo. We do simply weary of descriptions of murmurs and râles, so destitute as they often are of true pathological significance. We do trust the highly educated physician will one day aim more earnestly to anticipate, and more effectually accomplish the arrest of, the now incurable changes which we have described. The power to do this must come from a thorough knowledge of their nature, of their probable causes, and of the usually coexisting bodily conditions. It will require a thorough experience of remedies in their so-called alterative action, a keen appreciation of the constitutional peculiarities of each individual case, and the utmost perseverance and patience. As we are touching on this subject, we cannot forbear adverting to the admirable lessons contained in Mr. Tyrrell's work on diseases of the eye, especially the chapter on scrofulous and malignant disease of the retina or optic nerve. It has always appeared to us an exercise of the highest medical skill to be able to await patiently for some weeks or months the commencement of any improvement from the use of a remedy, in the confidence that such gradual procedure is the only means to obtain ultimate success. Such men are the Fabii of our benevolent warfare against disease, and will repeatedly succeed in repelling Hannibal, when less patient and resolved minds would inevitably fail. It was once said to us by an experienced physician, "by diet and regimen you may turn a person inside out," and we believe if we did more thoroughly understand this, and act upon it, we should greatly diminish the number of the opprobria medicine. Do not (pudet fateri) the homeopathist and the hydropathist too often set us examples in this respect?

We have little to observe with respect to the general systemic conditions which give rise to fibroid changes, except the circumstance that they often occur in two or more parts simultaneously. It is no uncommon thing to find traces of the same process in the liver, the capsule of the spleen, the peri- or endo-cardium, the kidneys, and even other parts in the same subject. We have given examples of this in a paper containing some notices of the morbid conditions of the liver, in vol. xxxv. of the 'Medico-Chirurgical Transactions.' In case 69 of the first list, it is stated that the Glissonian sheaths of the liver were much thickened, the capsule also thickened considerably in two or three patches; the kidneys
were coarse, large, the surfaces markedly granular; the mitral and tricuspid valves were thickened; the surface of the lungs was puckered from induration around tubercles; the spleen was enlarged and firm, and its capsule thickened. Cases 3, 11, 27, 40, 44, 47, 49, 57, 67, 74, are all good instances of the same kind. Since the publication of this paper, we have met with the same condition not unfrequently, and will quote one more example of it, at rather more length. J. E., past middle age, a carpenter, of anemic cachectic aspect, gave no other account of himself than that he had suffered from fulness and pain in the left chest, after eating, for some years. Valvular disease of the aortic orifice was detected, he got weaker, and died suddenly without any other particular phenomenon having presented itself. The apices of both lungs were puckered around old tubercular deposit. The aortic valves were contracted, and hardened, and thickened. There was cartilaginoid deposit to a considerable extent in the coats of the aorta, which had produced some contraction of the orifices of the coronary arteries. The liver was abnormally firm, and there was marked thickening and condensation of the Glissonian sheaths. The kidneys were very hard, their capsules were thickened, and their matrix; the tubes were infarcted, and contained fibrinous casts. Here there was change of a gradual kind going on in four different localities, which was marked by no prominent symptom, and which may with much probability be regarded as of like, if not of the same, nature. The most probable inference from the non-limitation of a certain state to one part is that it depends on some circumstance or condition which is common to all affected. It seems, therefore, more reasonable to believe that these several changes in separate localities resulted rather from some unnatural state of the blood, giving rise to unhealthy exudations in these parts, than from so many separate simple inflammations. We do not at all mean to urge this as a conclusive argument, we know it is very far from such. Moreover, this concurrence of like changes in separate parts is by no means constant; it is not present, we think, in even the majority of cases; it oftener is confined to two or three, than extends to a greater number. Still, it is a truth, and one we think of much significance, that this concurrence not unfrequently appears in a very marked manner, as in the case related; and that there are often slight traces of change discernible, which indicate very manifestly a tendency to such concurrence, even when it does not exist decidedly. Thus, we think, it favours the idea that cirrhosis of the liver depends on a general unhealthy state of the blood, if we find in an incipient, or not far advanced case, some thickening of the capsule of the spleen, and a white patch on the pericardium. It does not, however, at all follow, if our view be admitted, that changes of the kind in question should take place always in several parts, any more than it does in the case of tubercle. Scarce any one doubts that tubercle is essentially an exudation of a peculiar unhealthy liquor sanguinis; ordinarily this is effused in the lungs, but if the diathesis is intense, it may be deposited in many different parts.

In all the foregoing, we have used the term inflammation repeatedly, and perhaps our readers may think, without sufficient discrimination of the degree in which the process exists. This omission, however, has not been without a purpose, as we wished to use the term in a very general
Fibroid and Allied Degeneration.

sense, and to reserve our more particular remarks upon it to the close. Inflammation, we know, is a very complex process, consisting essentially in a peculiar disturbance of healthy nutrition. This disturbance, if we take a typical case, affects the regular equable supply of blood, and hyperemic afflux and stagnation in the inflamed part result; it affects the nutrition and the vital endowments of the part, and they are suspended more or less completely; it causes increase of heat, pain or uneasiness in some degree, and swelling from exudation of serous and fibrinous fluid into the interstices of the tissue. Now, in a typical case of acute inflammation, occurring in a healthy person, all these several phenomena which we have enumerated will be well marked, and we can speak confidently of their presence. But when we descend the scale, and come to so-called chronic inflammation, the case is very different—one or other of the component phenomena, or parts of the process, is wanting, or scarcely discernible. Thus, the active hyperemia may cease, and change into a passive congestion; or, on the other hand, may continue in a degree supplying the materials of a copious flux, without any symptom of congestion. The nutrition of the part may no longer be suspended, but increased, so that some degree of hypertrophy takes place, or be variously altered. The vital qualities of the tissue may be more or less perfectly restored, or variously perverted. Heat and swelling may have altogether disappeared. Now, it seems to us to be true, in a great majority of cases, that, as we depart from the type—acute sthenic inflammation—and descend to the lower grades, the distinctive features of the process become gradually effaced, so that at length we have no longer to do with morbid action the same in nature though slower in course, but with one which is materially different in its principal character. Acute inflammation, as it declines, may thus pass into a mere passive congestion, or into a flux from a mucous surface, or into an hypertrophy of a tissue. Now, we contend that these conditions, when typical, are no longer inflammations—the characters of inflammation have faded away, and are replaced by others. They may have had their origin in inflammation, or they may not, but they are processes substantially different from it.* The one we are especially concerned with is hypertrophy, employing the term for the present not in its exact sense. This hypertrophy, causing the increase and thickening of fibrous tissues, goes on and on, as a substantive independent process totally unassociated with any trace of inflammation, even though it may by possibility have originated in it. This statement we mean to apply to all the following instances: 1. All the thickenings of serous membranes which we have noticed, and the Pacchionian bodies; 2. Thickening and contraction of the cardiac valves; 3. The granular form of hepatic cirrhosis; 4. Fibroid change in the mucous and submucous tissue of the stomach; 5. Fibroid production in the testis, as in the case described; 6. Cirrhosis of the lung; 7. Fibroid production in the uterus, either in the form of tumour, or partial hypertrophy. We feel convinced that, in all these instances, the process may be from the first non-inflammatory, depending, we conceive, on the exudation of blastema tending abnormally to fibre-development, and not simply maintaining the nutrition of the part. We do not mean to exclude as an operative cause a deranged state of the assimilative power

* See Remarks on Chronic Inflammation in the 'Association Journal,' Dec. 9, 1853.
of the tissues, though we do not know how much we ought to attribute to it. We have another class of instances, which seem to us to differ from the first chiefly in the circumstance that the exudation appears in greater mass, and shows less tendency to organize itself into fibre. Under this we include—1. The semi-cartilaginous patches in the aorta and elsewhere in the arterial system; 2. The less-markedly granular form of cirrhosis of the liver; 3. Hypertrophic induration of the lymphatic glands; 4. The nuclear formations which encroach on the gastric glandular tubes; 5. So-called hypertrophy and atrophy of the brain; 6. Chronic pneumonia, as we have distinguished it; 7. Fibroid change in the placenta. The exudation in these instances shows itself to be of a fibrinous nature by its tendency to fibrefy, its passing into the state of a solid stromal or basis-substance, and its being associated in some cases with manifest deposits of fibrine in the same or other parts. The occurrence of these deposits in two of the cases recorded—that of J. S. and of C. K.—was of great significance; it gave a key, as it were, to the interpretation of the phenomena, and, by analogy, some aid to the correct diagnosis of other cases. That the change in the second class of cases is closely allied to that in the first seems to us pretty certain, from the occurrence of transitional instances, from the increased firmness and toughness which are met with in both, and from their being both connected apparently with the same general conditions. In the second class of cases, we think the evidence of their non-inflammatory character is even more decided than in the first; they seem to us most clearly to be essentially dependent on exudation of bad, unhealthy plasma. We have not included granular degeneration of the kidney in the second class, because it seems to us that a failure in the assimilative power of the renal structure is in some material degree concerned in the production of the change, and that it does not solely depend on the supply of unhealthy fibrine and albumen. We regard it as a change allied to the others by pathological affinities, but not identical with them. The formation of a fibrous tumour in the uterus or elsewhere seems to be just a step further beyond that of fibroid thickening. In the former, the character of growth, independent active growth, is predominant—it is a new organ; in the latter, this character, though it has begun to manifest itself clearly, is not so marked. Between fibroid formations increasing by true growth, and by mere addition of exudation, there are, no doubt, all possible grades. Fibroid changes in muscle are either the result of inflammation, or of atrophy from altered function; they do not belong to the degenerations we have particularly in view.

We would say a few words respecting the general grounds on which our view seems to us very probable. One of the vital phenomena which the blood presents, and certainly a very remarkable one, is that its fibrine continues in a fluid state, traversing numberless minute and intricate channels in combination with the serum of the liquor sanguinis, giving off new material, and receiving back old, as well as raw, half-elaborated supplies from without. The living cells which float in the liquor sanguinis, the several living solids which it traverses, all exert an unquestionable influence upon the composition of the blood; and it is only when the normal action of each is maintained that the healthy state of the nutrient fluid can be secured.
While the frame is in its full vigour and activity, braced by healthful and animating exertion, there is little fear of the purity of the blood being impaired, the vital actions of all the organs depurating and assimilating are vigorous, and not only are all effete matters quickly eliminated, but its own proper constituents are kept up to that condition in which they ought to be. There is little probability that in such a system degraded fibrine will separate and be precipitated, or exude here and there. But how different must be the condition of the blood which circulates in the system of a jaded son or daughter of toil, struggling with poverty and mental depression, and scarce even cheered by the fresh gales of heaven! Insufficient nourishment poorly repairs the necessary waste, the functions of the depurating as well as of the assimilating organs are languidly and imperfectly performed, and the very life of the blood itself decays. Under such circumstances we may be sure that trifling causes will be sufficient either to cause exudations of unhealthy plasma, or in some cases even coagulations of fibrine within the blood-vessels. The marvel which we have to call in the aid of vitality to explain is, why the fibrine does not coagulate, both in the vessels, and in their interstices, when it exudes in the business of nutrition. That it should do so occasionally, especially in depressed states of system, can be no matter of surprise. That the existence of hyperemia, or any cause of irritation, will promote the occurrence of these unhealthy exudations there can be no question, but we conceive that we have ample evidence that it is nowise necessary. Of this the so-called baconny deposit affords a good example. This is a translucent, perfectly homogeneous, structureless substance, which is found infiltrating the liver and the spleen, and sometimes within the Malpighian tufts of the kidneys. It occurs in cases of marked cachexia from scrofula, syphilis, or morbus Brightii. One can only regard it as a form of unhealthy aplastic fibrinous matter, which exudes from the bloodvessels instead of the normal plasma, and solidifying in the interstices of the tissues, causes their atrophy, while itself goes on accumulating and causing great apparent increase in the size of the organ. Not even a zealous Broussaian could ascribe the exudation in this case to inflammation, the parts affected show no trace of it, and the history of the disease affords no symptom of its existence during life. Now it certainly does appear to us, judging both from the character of the process so far as we are able, and from the slowly organized nature of the exudation, that there is no very essential difference between the fibroid deposits of our second class, and those of baconny matter. The one is unorganized, the other is lowly organized, but this is the chief distinction between them.

The continuous uniform course of these affections is a point worthy of notice. We find them not unfrequently in what we must regard as a progressive state. For instance, we often see the liver in an early stage of cirrhosis, the characters of the change distinctly marked, but not in an extreme degree. Now, our observation of such cases has never shown us what the common account affirms, that the liver is, in the early period of the disease, much enlarged by the effusion of lymph and serum within it; all that we have seen in the early period is identical with what exists in the later, only that the amount of change is greater. The liver is indeed often enlarged in cirrhosis, but this is by the formation of much
fibroid tissue within it; at a later period this fibroid tissue shrinks, and contraction takes place, not, however, from absorption of the watery part of the effusion. So with regard to cerebral hypertrophy, it seems certain that the process is a continuous one, the symptoms of compression of the nervous structure become more severe to the last. Were the affection the result of a chronic inflammation, there would surely be a period at which exudation would appear to be taking place, and another in which that exudation would exercise compression. We could conceive atrophy of the brain much more than hypertrophy to be the result of chronic inflammation. Thickening of the cardiac valves, pulmonary cirrhosis, and fibroid hypertrophies of the gastric submucous tissue, appear to us to be continuous progressive changes, not only in the contraction which they induce, but in the formation of the cause of that contraction. The changes which take place in true inflammatory exudation contrast very strongly with those which belong to such as we have been considering. The matter exuded into a parenchyma either undergoes suppuration, or degenerates fatty, or in other cases forms a patch of induration never exceeding in size the original mass. If effused on a serous surface it forms adhesions which become delicate translucent bands of normal white filamentous tissue, and generally occasion no thickening of the serous membrane at the place of their attachment. Generally, the exudation in its progress diminishes and undergoes absorption, and does not continuously increase. How very wide the interval between such processes and that of cirrhosis, or extreme thickening of the gastric submucous tissue!

The case of fibroid degeneration of the placenta, communicated to us by Mr. Adams, is very suggestive as to the real nature of these exudations, and the kind of treatment most likely to prevent their occurrence. Most certainly no antiphlogistic regimen would ever avail in the least either to procure their removal, or to hinder their deposition. If there is any class of diseases to which we feel inclined to compare these changes, it is that of eruptions on the skin. We do not believe these to be purely eliminative disorders, like the sweats of acute rheumatism, on the excretion of lithates in excess by the kidney; but we think that the liquor sanguinis being itself unhealthy, occasions disordered nutrition in various parts. The matters thrown off from the skin contain nothing distinctive of the diseases, they are normal epithelial scales in the squamous disorders, and alkaline serum in the vesicular. Chemistry has hitherto discovered nothing particular in them. In the case where we have some knowledge of a materia morbi, viz., syphilitic infection, we can form no other conception of it than as a tainted and diseased form of animal matter, capable of communicating its unhealthy state to other animal fluids, and thus empoisoning the whole blood and system. If it were a distinct material thing dissolved in the liquor sanguinis, then one might conceive it possible to get rid of it solely by sweating, or purging, or some other way of elimination; but as every particle of matter is itself tainted, this is not possible, and hence we find our only efficient remedies are alteratives. It is not making a man spit a pint of saliva a-day that will get the virus out of his system, it is the long and steadily-sustained course of alterative treatment, by mercury and iodine, or both combined,
with care at the same time to raise or sustain the general power. This probably breaks up the morbid combinations, and creates healthy blood. The treatment of erysipelas by muriated tincture of iron, and that of low inflammation from poisoned wounds by bichloride of mercury, seems to have as its main object to exert a powerful alterative effect on the blood. When we cure non-inflammatory eczema by arsenic, as we can sometimes do in the most rapid manner, is it conceivable that we simply eliminate a materies morbi from the system? Must we not rather believe that we improve the quality of the blood, and change the nutrition of the skin for the better? Bichloride of mercury Sir A. Cooper is reported to have held as one of the best tonics; and certainly in the skilful hands of Mr. Startin we have witnessed abundant proofs of its efficiency in promoting the healthy nutrition of the skin when ulcerated, or otherwise diseased. This must be by its alterative action. In a different state of system, we think the internal organs may become the seats of exudations somewhat analogous to those which take place in skin diseases. We do not at all think there is any close similarity between the two classes; the one belongs to a much more impaired state of system, and to a later period of life than the other; but in the circumstance of both being in a measure dependent on the same cause, an unhealthy alteration of the liquor sanguinis, we think they are comparable.

We must now bring this rather tedious review to a close, and while we feel that we have been very unable to do adequate justice to the subject, and that our views may appear sometimes rather crude and unproven, we trust that we may have taken a step towards diffusing some more correct conceptions regarding a class of changes, which, though very common, have scarce ever been investigated from any general ground of view, but ascribed vaguely to "chronic inflammation," that general asylum ignorantiae.

Handfield Jones.

Review V.

There are two descriptions of monographs upon practical medicine, each offering its respective advantage. The one is the result of long experience or special opportunity, and, when executed by a man of talent, constitutes perhaps the most attractive of all professional reading. Graphic description, philosophic appreciation, happy generalization, or important therapeutic conclusions, may here come into play, and rivet attention; and the perusal of such works constitutes epochs in the life of the student, and offers no mean compensation to the habitual toils of the critic. And even when more enlarged experience and improved modes of research may have shown some of the ideas developed to be fallacious or incomplete, enough of sterling value will often remain to secure for the author his niche in the temple of science, there to receive, ever after, the faithful homage of the devout few, who well know how much present progress is due to prior
exertion. The other kind of monograph is too often slightly spoken of as a "mere compilation"—compilation being, in fact, in the present diffused state of medical science, one of the most useful works that can be undertaken, and requiring for its satisfactory execution great talent, though of a different order to that requisite for original production. To collect the *disjecta membra*, analyse and compare them, and often correct them by each other, and draw legitimate deductions from their consideration, is a task of no slight difficulty or mean utility. It is rendered all the more difficult by the dissimilarity of the materials, and the different powers of observation of, and amount of accuracy observed by, those who have recorded them; and, but for discrimination and care, unwarrantable conclusions may be paraded forth as based upon an imposing mass of facts, while want of skill or industry in the explorer may leave legitimate deductions undiscovered, or unseparated from the dross in which they are enveloped.

The writer of an original monograph, having observed all his facts from one point of view, and measured them by the same standard, is enabled to produce a very complete picture of what he wishes to represent; but he runs the risk of being dominated during his researches, and the exposition of their results, by one-sidedness. Could the compiler rely upon the exactitude of his materials he would be in a position to draw more impartial conclusions; but his danger arises from the comparison of facts which are not, or only imperfectly, comparable. M. Sestier, in the work we are about to notice, reiterates the complaint, that must so often arise to the lips of those who are engaged in examining the original records of cases, of the incompleteness with which the symptoms and pathological appearances are recorded, the observers usually noting only some of the positive appearances, and making little or no mention of the negative ones; so that he who wishes to compare these accounts does not know whether the omissions are due to the absence of the phenomena, or to the ignorance or carelessness of those who should have noted them.

Of the second class of monographs mentioned above, M. Sestier’s treatise is a most favourable specimen; as, indeed, might have been expected, from the fact of M. Louis’ *imprimatur* being affixed to it. The style is as unattractive as that of a manual, but the information conveyed is copious and valuable. To a few original cases (15), observed by or communicated to him, he has added the results of extensive reading, and has thus amassed a sum of 274 cases to work upon, 132 of which have furnished necropsy results. No indiscriminate use has been made of these facts; but they have been analyzed and re-analyzed, and cross-questioned in a way well calculated to extract all the truth they contain, and to eliminate sources of error as far as possible, many of them, only available from their incompleteness for the illustration of special points, being rejected as grounds for general deductions. It may seem a large book for the illustration of what is rather an epiphenomenon than a substantive disease, and perhaps some of the repetitions of summaries of results might have been advantageously omitted; but it will be easily seen this is an error on the right side. Of a work, so completely analytical itself, we can be expected to give no very detailed account; but we may place the general results before the reader.

Its essential character is an infiltration of the cellular tissue of the arytenoid-epiglottic folds. This rarely is found in a simple condition, independent of all local phlegmasia; but usually traces its origin to some acute, subacute, or chronic inflammation of the throat, larynx, or neighbouring parts. For the most part, too, besides the local phlegmasia, a spasmodic condition of the glottis is also present. M. Sestier considers the term *edema glottidis*, by which the affection has been usually designated, a faulty one, the upper orifice of the larynx being much oftener the seat of the effusion than the *corde vocales*. In going over published cases, he has, too, found considerable embarrassment produced by different authors designating various parts of the larynx as the glottis. The effusion is, however, not always confined to the arytenoid-epiglottic folds, and is frequently found under the epiglottis, the interior of the larynx and the fauces, extending in rare instances even to the trachea and bronchi. Each of these localities is passed in detailed review by M. Sestier.

Usually, both arytenoid-epiglottic folds are affected, and to the same extent, but occasionally only one side is so. More or less obstruction or deformity of the upper orifice of the larynx results; but this is by no means always found, after death, to be proportionate to the amount of difficulty of respiration; and that because the tumefaction may have in part subsided, while much of the difficulty during life may have been due to spasm. The effusion has been found to be scrous in seven-ninths of the cases, and sanguinolent or purulent in two-ninths.

In the 81 cases in which the condition of the epiglottis has been recorded, it has been infiltrated in 74, acquiring sometimes a very considerable size; and, as its tumefaction is almost always in direct relation to that of the arytenoid-epiglottic folds, its exploration may prove very useful in diagnosis and prognosis. *Intra-laryngeal* infiltration has been found, in 52 of the 72 cases in which the incision of the larynx has been noted, it being sometimes general, and at others only partial—the *corde vocales* usually being implicated, and a narrowing, or even obliteration of the glottis, resulting. As the obstruction of the *corde* is a fixed one, there is not merely an impediment to inspiration, as in the valvular obstruction offered by the arytenoid-epiglottic folds, but likewise of expiration; and the danger is proportionally increased by there being now two obstructions, and the more complete character this one assumes. *Edema* of the fauces is pretty frequently met with, but is often only partial: it is of importance as announcing the probability of intralaryngeal infiltration, especially in patients suffering from anasarca. Among 132 patients, edema of the trachea has been met with but six times, and of the bronchi but once.

II. Etiology.

1. Influence of Affections of the Throat, Larynx, and Neighbouring Parts.—Simple inflammation of the throat, independently of affections of the larynx, has been noted as preceding it in 56 cases, and especially
between twenty and fifty years of age. Of 54 cases, 36 occurred in men and 18 in women. Of persons attacked during health, however, 18 were men and 13 women; while there were 18 men to 5 women who were attacked while suffering under other diseases. Frequent as is the occurrence of diphtheritis, there are only 5 cases recorded in which it has accompanied this affection. Of cases in which laryngitis was the cause, 89 have been collected, in all but 13 of which prior guttural inflammation occurred. In only 3 cases of croup, from among a great number examined, was this lesion present. Acute necrosis of the larynx has been observed, in combination with the infiltration, 14 times; 12 of these cases occurring during the convalescence of typhoid fever. Chronic laryngitis was the cause in 45 cases, 14 of these occurring in phthisical, and 14 in syphilitic patients—17 not being specified. Of the circumlaryngeal affections capable of inducing this edema, may be mentioned cervical infiltrations of any kind, or cervical, glandular, or solid tumours.

2. The Influence of other Diseases, besides those of the Throat and Larynx.—M. Septier enumerates various diseases, which in a few cases seem to have contributed to the production of the affection—as pneumonia, erysipelas, rubeola, scarlatina, variola, &c.; but of all of these, typhoid fever has been most remarkably predisposing. Of 23 cases which have occurred during its course, 18 did so during convalescence, and in 12 of the number necrosis of the larynx existed. Among the 217 cases, only 20 examples of anasarca, or the serous diathesis, are noted; and then the co-operation of phlegmasia of the throat or larynx was almost constantly observed.

3. Influence of Sex, Age, and previous Health.—Two-thirds of the cases recorded were of the male sex. In none of the varieties of the disease have females exclusively suffered; but men have been exclusively the subjects of the angina when it has succeeded to necrosis of the larynx, disease of the heart, paludal cachexia, and wounds of the throat. Men have been almost exclusively attacked when it has followed typhoid fever, and their numbers have much preponderated after guttural angina or laryngitis, coming on during other diseases, in angina produced by solid tumours in the cervical region and in the serous diathesis. The sexes have been nearly equal when it has followed guttural inflammation in healthy subjects, syphilitic laryngitis, and the pressure of cervical glandular tumours. In one affection alone has it been oftener met with in females—viz., diphtheritis. As to age, the affection is very rare in infancy; less rare between five and fifteen; and attains its maximum between eighteen and fifty, but especially so between eighteen and thirty-five. After thirty-five it continues diminishing, and especially so after fifty-five. In a little less than one-fifth of the cases the attack occurred in full health; and in a little more than four-fifths, during the course of the convalescence of other diseases, especially typhoid fever.

4. Influence of Profession, Season, &c.—Among 99 cases in which the nature of the occupation is noted, this was active in 61, sedentary in 14, and mixed in 24. But of 21 patients in whom guttural inflammation had induced it, 15 had active, 1 sedentary, and 5 mixed occupations; while among 19 cases consecutive to chronic laryngitis, 8 followed active, 6 sedentary, and 5 mixed occupations. Among 17 cases preceded by typhoid fever, there were 10 soldiers. Among 111 cases, 66 occurred
during the winter, and 45 during the summer; but in 22 cases following guttural inflammation in healthy persons, 9 took place in winter and 13 in summer; while of 18 following guttural inflammation occurring in persons suffering from disease, 13 were observed in winter and 5 in summer. Of 20 cases from chronic laryngitis, 13 occurred in winter and 7 in summer. In 28 cases, the disease was referred to exposure to cold.

III. Symptoms and Course of the Disease.

In four-fifths of the cases some degree of pain, or of the feeling of a moveable foreign body at the top of the larynx, was early complained of. The voice is noted as altered, being at first feeble and hoarse, and becoming at last nearly or quite extinct. The respiration is always embarrassed, suffocative paroxysms occurring at intervals. The inspiratory movements are especially laboured; but when the interior of the larynx is also affected, expiration may be equally difficult. The cough is short and stifled, and is preceded by the sensation of a foreign body in the larynx. By auscultation we find the pulmonary murmur is much enfeebled, and masked by the abnormal souffles and râles heard in the region of the larynx. Deglutition is usually difficult, and sometimes impossible. On inspection, oedema of the uvula and of the velum palati will often be observed, the epiglottis being also much swollen, and sometimes rolled back on itself. The pathognomonic indication of the disease is obtained by passing the forefinger to the seat of the effusion; but although most valuable information may be thus obtained, it often happens, from the inflamed state of the throat, or the spasmotic resistance of the muscles, the attempt even cannot be made; or if the finger is passed down, its contact is too transient to obtain the desired information. In many cases it is not mentioned whether such passage had been attempted; but in 44 at least it was performed with success. The patient usually remains seated on his bed, his face being of a leaden pallor, his lips violaceous, and his expression exquisitely anxious. Fever is absent, or present in variable degrees. Sleep is difficult or impossible. In relation to the invasion of the disease, it is to be borne in mind, it often comes on during other affections, and is not unfrequently preceded by oedema of the fauces. In some cases it comes on quite gradually, but in others almost suddenly. In 30 out of 35 in which the time was noted, it came on in the evening or at night. The dyspnoea, which is the dominant characteristic of the disease, is sometimes continuous, but in about three-fifths of the cases it occurred in paroxysms of varying violence, which were especially induced by the horizontal posture, attempts to swallow or speak, coughing, emotions, and the evasion of sleep at night. In the intervals the larynx never regains its normal conditions. The duration of the disease is very variable, from some minutes to several weeks—the mean duration being about 4 days, in cases dying without operation. The form of the disease following guttural inflammation is remarkable for the rapidity of its termination, as is that connected with anasarca. The cases connected with laryngitis are often of slower progress. The fatal termination sometimes occurs during or just after a paroxysm, and at others during a deceptive calm, it being not seldom sudden and unexpected. Of 51 deaths, 35 occurred between 10 p.m. and 10 a.m., and 16 between 10 a.m. and 10 p.m.
IV. Diagnosis.

This is sometimes rendered difficult by the absence of symptoms which are usually present, and especially when the affection occurs during diseases inducing coma or adynamia. The larynx should be carefully ausculted, and on any souffle being heard, tactile exploration should be resorted to. The presence of intra-laryngeal oedema both obscures the diagnosis and adds to the danger. It, however, is never met with except in patients suffering from other diseases at the time of the attack, nor in healthy individuals attacked with guttural inflammation. In the few cases of this last in which it has occurred at all, the patients have been already ill. In laryngitis this form is to be expected, and especially when it occurs in the serous diathesis. If there is marked difficulty of expiration, this form is very probably present, and especially if there be not prior laryngeal disease explaining this. The fauces should also be inspected, as in 15 out of 17 cases in which they were oedematous, intra-laryngeal oedema was present. The diagnosis of this angina from the different affections of the throat and larynx is given in considerable detail.

V. Prognosis.

Of 213 patients, 158 succumbed, 30 of them in spite of bronchotomy. There were 55 recoveries, bronchotomy being resorted to 20 times. Among the circumstances influencing the mortality are—

1. The Origin of the Angina.—That following guttural inflammation is the least dangerous, the recoveries amounting in previously healthy subjects to one-half, and in slight inflammation to three-quarters; but when this occurs in the subjects of other diseases, only a quarter recover, and if the inflammation is intense the angina always proves fatal. The whole of the 14 cases of angina consequent on necrosis of the larynx occurring in typhoid fever died, notwithstanding bronchotomy was performed in several. In chronic laryngitis three-quarters died, bronchotomy often failing—the mortality being three-fifths in syphilitic laryngitis, and six-sevenths in tubercular.

2. Condition of the Larynx.—The mortality is much less when the larynx is previously healthy than when it is the seat of important lesions—death occurring in about two-thirds of the former cases, bronchotomy then often succeeding; while in the latter it occurred to five-sixths, bronchotomy almost always failing.

3. Prior Condition of the Patient.—When the patient has been in previous good health, the mortality has only been half, and bronchotomy has often succeeded; while in persons suffering from other diseases it has risen to five-sixths, bronchotomy almost always failing.

4. Age and Sex.—The mortality has been much less from 30 to 40 and 40 to 50 than from 50 to 70—its maximum occurring between 10 and 30. That of males has been four-fifths, and of females three-fifths. Bronchotomy has failed much oftener in males than in females. These differences as to age and sex are due to the unequal occurrence of the mild and severe forms of the disease in the two sexes and at different ages.
VI. Treatment.

This requires to be resorted to with promptitude, and where it has been so rapid cures have sometimes resulted. Insidious remissions are, however, especially to be guarded against. No one remedial agent can be relied upon, but a variety must be employed simultaneously or in quick succession. As a general rule, the more direct the infiltration can be attacked the better; general therapeutical agents being employed chiefly as preparatory and adjutant to this.

In the indirect or medical treatment of these cases, blood-letting is an important agent. But even in cases in which it is distinctly indicated it is alone insufficient, and the attempt to vanquish the disease by its reiterated employment fails, and only exhausts the powers of the patient. A large blister applied over the front of the neck should hardly be ever omitted, it being as important an agent here as is free vomiting in croup. When the patient can swallow, and is not in too prostrate a condition, emetics are often of service; and purgatives, especially croton oil, have proved of great service. Mercurials, too, are well spoken of. It is, however, from direct or surgical means our chief hopes are to be derived; and passing by the application of alum and nitrate of silver, each of which appears to have been useful in a few cases, we come to scarification of the infiltrated parts, when accessible. Of 17 cases in which this was resorted to, 12 recovered, and 2 were ameliorated, other means being also employed in most of them. In 23 instances in which incisions, combined with pressure, were made experimentally after death, the fluid was easily discharged in 10, with difficulty in 6, while in 7 none flowed out. The scarifications are more likely to prove useful the nearer the edema approaches the passive condition, less likely when it is dependent upon inflammation of the larynx or throat, especially if this last is violent. They are particularly indicated in the angina coming on in individuals already much debilitated, in which case other means have so little field for employment. Unfortunately they are inapplicable to the intra-laryngeal form, which is so fatal. M. Sestier describes the mode of scarifying pursued by Lisfranc and Buck; and he proposes two new instruments for facilitating the operation. One of these consists in a myrtle-leaf scarificator cutting at each edge, and the other combines a scarificator and flattened forceps, by means of which scarification and compression of the parts are simultaneously accomplished. He gives representations of these instruments as they are made by Charrière.

When, in spite of all means employed, the disease, as is usually the case, gets progressively worse, time should be endeavoured to be gained by having recourse to bronchotomy. This has succeeded in two-fifths (20 out of 50) of the cases in which it has been resorted to, while the recoveries of cases in which it has not been had recourse to have amounted to less than a quarter; while, however, it succeeded in little less than two-thirds of the cases occurring in healthy individuals, it saved little more than one-sixth of those already suffering from disease. The chapter upon the application and mode of performing this operation is full of interesting details; but we must pass them by, not only because our space is exhausted, but also because we have already given some account
of this part of the subject, when noticing a former publication by M. Sestier, in which it was treated apart.*

M. Sestier devotes a good deal of space to the examination of the question, whether, in urgent cases, a gum-elastic tube should not be passed into the larynx. Although he does not consider that this would form a proper substitute for bronchotomy where this operation can be performed, yet, when the patient refuses to submit to it, or from the tumefaction of the neck, &c., its performance is impossible, he thinks the tube should be passed. In like manner it should be employed if the patient has just fallen into a state of exhaustion, rendering it doubtful whether he is dead or not.

John Chatto.

Review VI.

Not a few of the most ardent admirers of Professor Faraday are inclined to think that his public lectures are among the most useful as well as brilliant of all his labours; for although the masterly researches of this great philosopher have done much for the adept, by elucidating some of the most obscure points in natural philosophy, yet his oral discourses have accomplished an equally grand result, by instructing the people in the great truths of science, and diffusing a taste for the cultivation of the higher faculties with which man is endowed. Many, indeed, have felt the powerful influence of his teaching, and have thought, while listening to his orations, how glorious must be the study of nature, even for its own sake.

We doubt not that this volume will be very generally read, in the hope that it may give some idea, if but an imperfect one, of the eloquence of the lecturer, and of the lucid and admirable manner in which he is accustomed to treat the most difficult and abstruse points of chemical philosophy; but we fear, with the editor, "that a mere verbatim report of an experimental course of lectures will by no means render, under a literary aspect, the spirit in which these lectures were delivered;" for they are necessarily deficient in one great essential, namely, "the demonstration of experiment, that mute eloquence of action which silently compresses whole pages of written lore into one short act of manipulation, and renders verbal explanation unnecessary." This deficiency the editor has endeavourd to supply in the form of copious notes, but it must be admitted that they fall very far short of accomplishing the object intended.

Our readers will be able to judge of the scope of these lectures from the following quotation:

"I do not propose to treat the subject in a purely chemical sense; to discuss the non-metallic elements in the order of their discovery; to pass under notice the various theories of which these elements have been the subjects; or even to make

known all their minute characteristics. My object is rather to treat of them broadly; to point out their more striking features; to consider them not only as chemical agents, but as fulfilling each its appointed function in the material universe.” (p. 66.)

Among the many facts which are thus broadly depicted by Professor Faraday, there is one which is beginning to assume considerable importance. For a long time past the chemist has been aware that the same substance may present itself in different aspects—as in the form of a solid, a liquid, or a gas; and it may even exhibit different chemical as well as physical properties. This is the case with sulphur, which may be either yellow, crystalline, and brittle, or brown, amorphous, and elastic; with carbon, which may be black and formless, as in charcoal,—opaque and crystalline, in plumbago,—or colourless and pellucid, as in the diamond; with phosphorus, which may be white, black, or colourless; and with iron, which may rapidly dissolve in nitric acid, or remain passive therein. In most of these cases, the difference of property was thought to be referable to a difference of temperature, or to a difference in crystalline structure. Sir Humphrey Davy thought it might be due to a difference in electrical condition; and Professor Graham hazarded an opinion that it might be dependent on a difference in the proportion of combined heat. With these vague speculations the subject was dismissed; and the facts relating to it were not considered to be of sufficient interest to demand especial attention. By degrees, however, they have grown into importance. The investigations of Frankenheim into the peculiar dimorphic forms of sulphur, and a few other substances; those of Thenard, Rose, Marchand, and Schröter, into the different modifications of phosphorus; those of Mercer into the active and passive states of chlorine; and above all, those of Schönbein, Marignac, De la Rive, Williamson, and Osann, into the properties of that remarkable body, ozone, have given a new aspect to the whole subject. It is proper, however, to state that, as early as 1842, Berzelius entertained an opinion that these peculiarities of property were deserving of attention; he therefore collected the facts which had reference to them, and published a list of those elementary substances which had the power of assuming two or more forms. The result of his investigations was, that this faculty, hitherto thought to be so rare, was of such common occurrence, that it must be regarded as the rule rather than the exception. He gave the name of Allotropism to the subject—choosing this term, which is derived from ἀλλας, another, and προτερής, change, because the word isomerism, which had been hitherto used, was already engaged to denote a similar quality possessed by certain compound substances. He also took advantage of a suggestion offered by Frankenheim, and employed the Greek letters α, β, γ, &c., to designate the several varieties of form assumed by the same element.

We will now follow the lectures of Professor Faraday, and review the facts of Allotropism in the order in which they are there discussed.

1. Oxygen.—This element has the power of assuming three distinct conditions: it may be passive, as we find it in the atmosphere; extremely active, as it is during combustion; and semi-active, as when in the form of ozone. The history of the discovery of this body is full of interest. About ten or twelve years ago, Professor Schönbein, of Bale, was induced
to investigate the cause and nature of the peculiar smell emitted during
the voltaic decomposition of water, and during the excitation of an
electrical machine. It had been observed that the same odour was often
manifested during a thunderstorm, and that it was generally evolved
from bodies which had been struck by lightning. Schönbein soon found
that the principle was material; for he could collect it in bottles, and
preserve it for a considerable time. He noticed, however, that it was
quickly destroyed by heat, and that it had the property of oxydizing most
of the common metals. He next remarked that it was liberated only
at the positive pole of the battery; and then he discovered that he could
manufacture it in large quantity by exposing a stick of moistened phos-
phorus to the action of atmospheric air. Pursuing his investigations, he
observed that it was produced under a variety of circumstances—that it
was formed when atmospheric air, mixed with the vapour of ether or
turpentine, was exposed to the rays of solar light, or to the influence of
a hot glass rod; that it was also developed when the red fumes of hypo-
nitrous acid were brought into contact with water or aqueous vapour;
and that it was likewise formed during the action of dilute nitric acid on
all the common metals except tin. He found it in the atmosphere, in
the rain that fell during thunderstorms, and also in the morning dew:
so that ozone appeared to have a very universal existence.

Schönbein's papers on the subject awakened attention, and Marignac,
among other chemists, took up the inquiry. He showed that the
best mode of generating ozone was to pass atmospheric air through a
glass tube, containing fragments of phosphorus moistened with water.
In determining the circumstances under which it is produced, he noticed
that it is not developed in dry air, in air deprived of oxygen, or even in
pure oxygen itself; but it is generated in artificial mixtures of oxygen
with carbonic acid, nitrogen, or hydrogen. He found also that very
minute traces of nitrous acid, hyponitrous acid, olefiant gas, or ether,
entirely prevent its formation.

The properties of ozone are very characteristic. It is a gaseous body,
having a peculiar odour, which, in a concentrated state, resembles that of
chlorine, but when diluted with atmospheric air it is similar to that of phos-
phorus. It is an irritating substance, producing pain and inflammation of the
bronchial membrane, and acting as an energetic poison on small animals.
It is not very soluble in water; and is not decomposed by chloride of
calcium or strong oil of vitriol. It discharges the blue colour of litmus
or indigo with the energy of chlorine. It oxydizes most substances with
great rapidity—converting phosphorus, arsenic, antimony, lead, iron, and
silver into their highest states of oxydation; changing the protosalts of
tin, iron, lead, and manganese into the persalts or peroxides; transform-
ing nitrous and sulphurous acids, whether free or combined, into nitric
and sulphuric; and it even has the power, in the presence of a fixed
alkali, of oxydizing nitrogen itself, and generating nitric acid. It rapidly
destroyes the compounds of hydrogen with sulphur, selenium, phosphorus,
iodine, arsenic, and antimony. It changes many metallic sulphurets into
sulphates, and iodides into iodes. It converts yellow prussiate of potash
into red; and, finally, it produces oxydizing effects upon most organic
substances.
The test which has been recommended for discovering the presence of ozone is the following: Dissolve 1 part of iodide of potassium in 200 parts of water, then add 10 parts of white starch, and boil for a few minutes. Saturate white filtering paper with this solution, dry it, cut into strips, and preserve in a stoppered bottle ready for use. When the test paper is exposed to an ozonized atmosphere, and then moistened with water, it turns blue.

There have been many curious speculations concerning the nature of this body. Schönbein at first supposed that it was a new element, analogous to chlorine, iodine, and bromine; he even thought it resulted from the decomposition of nitrogen; and many opinions were hastily advanced respecting the probable influence of Schönbein’s discovery on the sciences of chemistry and meteorology. “The part,” said one author, “which nitrogen takes in meteorological phenomena would become important, and the production of atmospheric electricity itself might be brought into connexion with the decomposition of that gas.” Another chemist supposed that ozone was an oxide of nitrogen, isomeric with nitric acid; but when it was shown that it might be generated under circumstances which excluded the access of nitrogen; then it was regarded as a compound of oxygen and hydrogen—homologous to Thenard’s peroxide, but not identical with it. This was the view which Schönbein advanced at the meeting of the British Association in 1845; but the researches of Marignac and De la Rive proved that it consisted of oxygen only, and that it was, therefore, an allotropic form of this gas. Schönbein was for a long time unwilling to admit the truth of this statement, and hence the chemical world was divided in its opinion concerning the nature of ozone. Marignac, De la Rive, Berzelius, and Faraday considered it to be allotropic oxygen, while Schönbein, Williamson, and some others thought it was a peroxide of hydrogen; but it appears from a paper which has been recently published by M. Baument, in Poggendorf’s ‘Annalen,’ that both of these opinions are founded in truth; for he states that when water is submitted to voltaic decomposition, the ozone which appears at the positive pole is a tetroxide of hydrogen, similar in its constitution to hypoparous acid, and probably produced by the union of nascent oxygen with water; but that when pure dry oxygen is submitted to the influence of the electric spark, the ozone, which is then generated, is allotropic oxygen, so that two things have evidently been confounded under one name.

And now let us ask what are the uses of this body in the great economy of nature, and what are the functions which it usually performs? It exists in the atmosphere at all times, and, during cold weather, it is developed therein to a considerable extent. Schönbein thinks that it is frequently the cause of epidemic disease. In the winter of 1847 he noticed that catarrhal affections were very prevalent at Bâle; and he likewise observed that ozone was very abundant in the atmosphere. Subsequent investigations have led him to believe that there is a direct relation between the amount of ozone in the air and the extent of catarrhal disease. This opinion has been put to the test by several physicians, and it has been affirmed by Polli, Heidenrich, Spenglers, Quetelet, and Moffatt that it is founded on fact; but it requires a great number of independent researches before the truth of such an hypothesis can be
fully admitted. That ozone plays a very important part in the economy of nature there cannot be a doubt; for its powerful oxydizing influence must be exerted wherever it abounds; and it is worthy of remark that ozone is more abundant in the air of the ocean than in that of the country, and in the atmosphere of the country, than in that of large towns. This seems to prove that it is employed in oxydizing the products of living beings. In fact, it is probable that that kind of change which we denominate decay, or eremacausis, is the result of its action on dead organic matter; and when we contemplate the enormous extent and importance of this kind of slow combustion which is constantly going on over the whole surface of the globe, we cannot hesitate to admit that this function performed by ozone is highly beneficial.

"And here let us reflect awhile on the fallacious interpretations we give to the phenomena of nature. The majestic phenomena of combustion bespeak our observation and rivet our attention, because of their imposing grandeur; yet these are but spasmodic efforts in the grand economy of the material world,—occurrences of now and then. The slower, but continuous progress of the elements to their appointed resting-place,—the silent, tranquil, ever-progressing metamorphic changes involved in the phenomena of decomposition and decay, these count for nothing and pass unheeded by. Yet with all their majesty—with all their brilliance—all their development of tremendous energy, what are the phenomena of combustion in the grand scheme of the universe compared with these? When the loud crash of thunder, or the lightning's flash, awakens us from our thoughtless abstractions or our reveries, our feelings become impressed with the grandeur of Omnipotence, and the might of the elements he wields; yet the whole fury of thunderstorms—what is this in comparison with those electric energies which silently and continuously exert themselves in every chemical change! Why, the electric force residing in a single drop of water, and disturbed when that water is decomposed, is, of itself, greater than the electricity of a whole thunderstorm. Those of us who merely look to the brilliant phenomena of nature appreciate but little the grandeur of her forces! Those of us who limit our appreciation of the powers of oxygen to the energies displayed by this element in its fully active state, form but a very inadequate idea of the aggregate results accomplished by it in the economy of the world! Let us for an instant contemplate the enormous amount of oxygen employed in the function of respiration, which may be considered in the light of a slow combustion. For the respiration of human beings, it has been calculated that no less than one thousand millions of pounds of oxygen are daily required, and double that quantity for the respiration of animals, whilst the processes of combustion and fermentation have been calculated to require one thousand millions of pounds,—that is to say, twice four thousand millions of pounds of oxygen have been calculated to be necessary altogether—including the amount necessary in the accomplishment of the never-ceasing functions of decay. As stated in pounds, we can hardly create to ourselves any definite idea of this enormous amount; the aggregate is too vast, too overpowering. It is scarcely to be grasped by our senses when reduced to tons, of which it corresponds with no less than 7,142,847 per day." (p. 111.)

This leads us to ask whether it is not probable that the oxygen admitted into the animal economy during respiration does not become changed into its allotropic or semi-active state before it performs the function assigned to it, and whether the affinity which is exerted between such oxygen and the effete tissues of the body, may not, as Dr. Draper supposes, assist in the circulation of the blood through the capillaries? We perceive here a wide field for investigation, and expect that ere long it will be productive of important results.
2. Chlorine.—For some time past it has been known that this element has the power of displacing hydrogen in many organic compounds without destroying their integrity, or even altering their leading chemical and physical properties, notwithstanding that the two gases are as much opposed as possible in their electro-chemical relations. To account for this extraordinary fact, it was surmised that chlorine might be an allotropic body, having the power, like oxygen, of assuming two conditions, namely, the active and passive. The truth of this supposition has recently been demonstrated by Professor Draper, of New York, who has shown that ordinary chlorine, which is generally passive, may be rendered active, or may become tithonized, as he expresses it, by exposure to heat, to the sun's rays, or to spongy platinum; and it then possesses properties which indicate a great exaltation in its combining energies. In the case that we have just referred to, it is probable that those particles of chlorine which remove the hydrogen from the organic compound are in an active state, while those which take its place therein are passive.

3. Sulphur.—This substance has the power of assuming three different aspects. In one it is transparent, pale yellow, and is crystallized in right rhomboidal pyramids or rhombic octahedra; in another it is opaque, deep yellow, and is crystallized in oblique rhombic prisms; and in the third it is opaque, amorphous deep brown, and has the consistence and elasticity of India rubber or thick glue. These remarkable changes of property are occasioned by differences in the temperature of the body at the moment that it solidifies, for the first form is produced when sulphur is crystallized from a cold solution, and the other states are brought about in the following manner:

"Taking a little common yellow sulphur, I melt it in a Florence oil flask, by means of a spirit lamp. Carefully applying the heat, it fuses, and the liquid of fusion is then pellucid and transparent. If I pour a portion of this into some cold water, it condenses into the state which it had before melting—that is to say, of common yellow brittle sulphur. I now apply a stronger amount of heat, and the transparent, colourless liquid matter suddenly thickens and becomes black; so that the Florence flask may now be inverted without any of the sulphur coming out. If, however, the heat be still increased, the black, tenacious sulphur once more becomes liquid and gives off a vapour. Now, the vapour of sulphur from this black compound, and its effects, I shall have to bring under your notice by and by. It appears to be endowed with properties different from those possessed by common yellow sulphur—more powerful, more exalted, more energetic; its tendency to react chemically being increased—just as in the chemical tendency of oxygen when it assumes the peculiar state of ozone.

"If sulphur in this black liquid state be suddenly poured into cold water, it assumes and retains a very peculiar condition. No longer yellow and brittle, like ordinary sulphur—like the result of pouring into water the first product of fusion—we, however, now produce a substance like strips of India rubber, or gutta-percha, in its external characteristics, which may be, and is, applied whilst in this condition to take impression of seals, and which may continue in this second state for days, or even longer." (p. 232.)

4. Phosphorus presents itself in four different forms. It is colourless and transparent in common phosphorus, white and opaque in that variety described by Rose and Marchand, black and opaque in that by Thenard and Osann, and dark red in the variety recently obtained by Schrötter. These different conditions are, as in the case of sulphur, produced by
alterations of temperature; and the general physical and chemical properties of the first and last varieties are very peculiar.

"Common phosphorus is remarkably combustible; tending to burst into flame on the application of very slight friction or a low degree of heat; a quality which renders it well adapted to the purpose of forming lucifer matches. The quality of its colour, and its physical condition as to softness, are also points of comparison. Well, here is a lump of allotropic phosphorus, and you will observe the difference between the two. In the first place, the colour is totally different, that of the allotropic variety being dark;—then the fracture is different, that of allotropic phosphorus being harshly brittle;—but the most striking difference between the two varieties of phosphorus is brought out by the application of friction, or of heat. Common phosphorus we are obliged to keep in water, for the purpose of guarding against spontaneous combustion; allotrophic phosphorus, however, may be kept unchanged in atmospheric air; indeed, it may be wrapped up in paper, and carried in the pocket even, with the most perfect impunity; and in this way Professor Schrotter quite surprised us by his temerity, until we at length gained confidence, and became acquainted with the real qualities of the new substance. Common phosphorus when rubbed takes fire; the allotrophic variety, however, may be rubbed with impunity up to a certain point, after which its combustible qualities are brought out. But the extreme use of allotropic phosphorus in the arts will not be comprehended until you are informed of the frightful ravages produced by the vapours of common phosphorus on those who are subjected to their influence, as is the case in manufactories of lucifer matches. Persons thus situated are afflicted with a disease which corrodes, ulcerates, and destroys their bones, causing the most horrible torture, and frequently death. The employment of allotropic phosphorus is attended with no such calamitous results; and being capable of changing into ordinary phosphorus on the application of an adequate amount of heat or friction, it answers perfectly well for lucifer matches, and indeed for most of the ordinary applications of phosphorus.

"In many other respects these two conditions of phosphorus present differences. Thus, for instance, the power of solution in menstrua is different. Common phosphorus readily dissolves in bisulphuret of carbon, whereas allotropic phosphorus does not." (p. 241.)

Besides this, it is stated by Dr. Devry that Schrötter's phosphorus is not poisonous, like ordinary phosphorus, when it is administered internally. He has given as much as 46 grains of this substance to animals, without other effect than that of relaxing the bowels.

This variety of phosphorus is produced by exposing ordinary phosphorus to a temperature of from 420° to 480°. The experiment is conducted in an atmosphere of nitrogen, hydrogen, or carbonic acid; and the result is more speedily effected if the sublimed phosphorus is at the same time exposed to the influence of solar light. Mr. Albright, of Birmingham, possesses the patent for the manufacture of this substance on a large scale.

5. Carbon.—Chemists have long been acquainted with the three different aspects assumed by this element. As common charcoal it is amorphous, opaque, and very combustible; as plumbago, it is crystalline, opaque, semi-metallic, and not very combustible; and as the diamond it is brilliant, pellucid, colourless, and very incombustible. Besides which there are differences in specific gravity, specific heat, and in other properties, which would be sufficient. were it not for the results of analysis, to support the opinion that these three varieties of matter are composed of elements essentially different.
Lastly.—Examples might be furnished of the allotropic states of selenium, arsenic, antimony, tellurium, silicium, chromium, titanium, uranium, tin, copper, iron, nickel, and manganese; but sufficient has been advanced to demonstrate the leading facts of the subject, and to establish their importance.

It will be evident, from a little consideration, that there are two kinds of allotropism manifested by elementary bodies. In one there is merely an exaltation of property, already possessed, and not a new condition; this is the case with chlorine, oxygen, and iron—elements which present themselves to us in two states—namely, the active and passive. In the other, the property of the substance is entirely changed, and the body presents itself to us in an altogether different aspect. This is exemplified by sulphur, phosphorus, and carbon; and it is, of the two kinds of allotropism, by far the most important.

And here we may inquire, whether that peculiar activity displayed by substances, when in their nascent state, may not be dependent on allotropism. It is known, for example, that nitrogen and oxygen may remain mixed together in their gaseous forms for any length of time without uniting; but let them be brought into contact at the moment that they are set free from any compound, and then they combine and produce nitric acid. A change of this kind is going on at all times in certain localities, and causing the formation of nitre—the only source of our aquafortis and saltpetre. Again, when a current of hydrogen gas is made to traverse a solution of arsenic or antimony, the elements show no sign of entering into combination; but if the experiment is performed in such a manner as to bring the metallic solutions into contact with the hydrogen at the moment it is liberated, then a union is effected, and we obtain the gaseous compounds of hydrogen and the metal. Such curious results as these can hardly be explained without supposing that the nascent elements are allotropically active, and that they lose this condition and become passive soon after their liberation from a compound.

Another question which presents itself is this. May not the several allotropic states of an element be transferred to its compounds, and thus be the cause of secondary forms of allotropism? We know that there are different varieties of phosphoric acid, of arsenious acid, of silicic acid; and of the oxides of tin, alumina, chromium, nickel, cobalt, iron, and tellurium; and why may not the different aspects of these substances be dependent on the allotropic states of their respective elements? Here, however, we approach a class of facts which have hitherto been regarded in an altogether different light; and it may be profitable to review them.

Long ago, the investigations of chemists taught them that the same elements may often be united in exactly the same proportions, and yet produce compounds of entirely different properties. This fact was first examined and generalized upon by Berzelius, and he gave it the name of isomerism. At first sight it appears to be distinguished from allotropism only in this—that the one has reference to the dissimilarity of property exhibited by an element, and the other, by that of a compound. As examples of the last, we may refer to the different varieties of carbonate of lime—aragonite and calc-spar; to the various forms of garnet; to the
green and blue carbonates of copper; to the black and red sulphurets of mercury and antimony; to the yellow and red varieties of iodide of mercury; to the inflammable and non-inflammable forms of phosphuretted hydrogen; and indeed to a number of other examples, which belong to the mineral kingdom. But it is among organic bodies that we find the most striking illustrations of isomerism. The non-nitrogenous compounds, for instance, present the following:—Butyril, and the aldehyde of buteric acid, although exceedingly different in properties, consist of the same elements in the same proportions—namely, $C_4H_8O_2$; formic ether, acet-methylic ether, and metacetonic acid, consist, in each case, of $C_4H_8O_2$; valerianic ether, acet-anmylic ether, cupro-methylc ether, and eicathalic acid, are severally composed of $C_4H_8O_2$; and we might, were it necessary, multiply such examples, by citing the isomeric conditions of the other fatty acids and fatty ethers. Again, it is a singular fact, that there is a large number of the volatile oils which consist of carbon and hydrogen united in the same proportion—viz., in the proportion of five of the former to four of the latter; and yet the physical and chemical properties of these liquids are most dissimilar. This is the case with the oils of lemon, citron, laurel, bergamot, turpentine, juniper, elemi, copaiva, pepper, cloves, cumin, parsley, wormwood, ginger, coriander, &c. And again, the substrata of vegetables—namely, sugar, starch, gum, dextrine, and cellulose, are also identical in chemical composition, notwithstanding that their properties are very different; and it is a curious fact, that each of the organic principles peculiar to animals, as albumen, fibrin, gelatine, and casein, has the power of assuming at least two forms—namely, the solid and liquid. Chemists and physiologists are now beginning to direct their attention to these singular properties, and are endeavouring to ascertain the circumstances under which they are manifested. Dr. Parkes, M. Melsens, and M. Panum, have each noticed that albumen may or may not be precipitated from its solutions by means of an acid and a neutral salt; and the first-named physician has ascertained that the albumen contained in the serum of the blood is usually in that condition in which it is most easily precipitated by an acid and chloride of sodium; but he states that it very readily passes out of this condition under the continued influence of acids and alkalies, and he hazards a conjecture, that these singular properties may perhaps have something to do with the processes of nutrition and absorption. Dr. Draper is of opinion that the effete particles of tissues are prone to seize oxygen from the blood, by reason of their being in an active allotropic state. We are accustomed, he says, to refer all such phenomena to the influence of the vital force; but what do we know of this power? Shall we be contented with the use of such an empty phrase, or shall we push our investigations further, in the hope of arriving at a satisfactory explanation?—

“'The three leading neutral, nitrogenized bodies, fibrin, albumen, and casein, are characterized by exhibiting allotropicism in a most marked degree, and that in a double sense: for, 1st, though so different from one another in their physical and chemical relations, it is admitted on all hands that they must be convertible. The albumen of the egg during incubation gives rise to fibrin and other allied bodies. From casein in the milk, with which the young mammal is nourished, the albumen and fibrin of its system arise; and the nurse, fed on fibrine and albumen, secretes
cascia from the mammary gland. Indeed, there is no more reason to regard these three bodies as essentially distinct substances, than there is to apply the same conclusion to charcoal, plumbago, and diamond. And, 2ndly, each of these three compounds betrays a disposition, under trivial circumstances, to assume new forms—namely, a soluble and an insoluble."

In the inorganic kingdom it is found that the imponderable agents—namely, light, heat, and electricity—are the agents which bring about these changes; and, says Dr. Draper, "I infer that the nervous system has the power of throwing organized atoms into the active and passive state. That this is the fundamental fact on which all the laws of interstitial death depend; and upon this principle—namely, its existing allotropic condition—an organized molecule either submits to the oxydizing influence of arterial blood, or successfully resists that action."

Certain pathological states may also be explained by reference to these views:—

"In inflammation there has been that allotropic change in the soft solids involved, that they have assumed a disposition for rapid oxydation—they are active; their relation with arterial blood has become exalted, and the blood flows to the affected part with energy: redness of the part, and a higher temperature are the result. Oxydation goes on with promptness; and urea and sulphuric acid begin to accumulate in the urine. But in congestion it is the reverse: the parts are then thrown into a more passive state; oxydation goes on reluctantly; the amount of tissue metamorphosed diminishes; and the quantity of urea and sulphuric acid in the urine is lessened."

These opinions are, perhaps, a little in advance of the present facts of the case; but they indicate in a very forcible manner the tendency of the speculations which are just beginning to arise out of this curious condition of things; and we cannot but remark that, while on one hand they urge the physiologist forward into new tracts of inquiry, which promise much for the future; on the other, they carry the chemist back into old paths of investigation that have long been deserted. In fact, he is unconsciously brought into trains of thought and action which bear considerable resemblance to the doctrines of alchemy; and often does he ask these questions:—

"In what does chemical identity consist? In what will these wonderful developments of allotropism end? Whether the so-called elements may not be, after all, mere allotropic conditions of fewer universal essences? Whether, to renew the speculations of the alchemists, the metals may not be so many mutations of each other, by the power of science mutually convertible? There was a time when this fundamental doctrine of the alchemists was opposed to known analogies; it is now no longer opposed to them, but only some stages beyond their present development." (p. 105.)

Davy, the illustrious predecessor of Faraday, was not indisposed to entertain a similar opinion; for, at the end of his chapter on the analogies between the undecompounded substances, he says:

"There is no impossibility in the supposition that the same ponderable matter, in different electrical states, or in different arrangements, may constitute substances chemically different;" and he goes on to remark that "even if it should be ultimately found that oxygen and hydrogen are the same matter in different states of electricity, or that two or three elements in different proportions constitute all bodies, the great doctrines of chemistry, the theory of definite proportions, and the specific attractions of bodies, must remain immutable; the causes
of the differences of form of the bodies supposed to be elementary, if such a step
were made, must be ascertained; and the only change in the science would be,
that those substances now considered as primary elements must be considered as
secondary; but the numbers representing them would be the same, and they
would probably be all found to be produced by the additions of multiples of some
simple numbers or fractional parts."

The analogies which exist between many of the elementary bodies have
also led Dumas into a train of speculations which have not yet assumed
the consistence of a theory; and which, says Professor Faraday, are only
at the present time to be ranged amongst the poetic day-dreams of a
philosopher—to be regarded as some of the poetic illuminations of the
mental horizon, which possibly may be the harbinger of a new law.

"Regarding chlorine, bromine, and iodine as one triad, it will be seen, as we
have observed, that between the first and the last there is recognisable a well-
marked progression of properties. Thus, chlorine is a gas under ordinary tem-
peratures and pressures; bromine, a fluid; iodine, a solid; in this manner dis-
playing a progression in the difference of cohesive force. Again, chlorine is yellow,
bromine red, iodine black, or, in vapour, a reddish violet. Here we have a chro-
matic progression;—and, strange to say, if we refer to the atomic or equivalent
weights of the three, a numerical progression will also be observable. Thus, the
atomic weight of chlorine is 35, of bromine 80, and of iodine 125. And now, if
the atomic weights of chlorine and iodine be added together, and divided by 2,
the result will be the atomic number for bromine." (p. 159.)

Similar triads exist in the case of potassium, sodium, and lithium;
calcium, strontium, and barium; and sulphur, selenium, and tellurium: in
each of which set of substances there is a similar progression in prop-
erty and equivalent weight; for the sum of the atomic weights of po-
tassium and lithium, divided by two, give the equivalent of sodium; those
of calcium and barium give that of strontium; and those of sulphur and
tellurium produce the combining proportion of selenium. So that, if it
were possible to effect the combination of half an atom of each of the
extreme elements in these series, the intermediate one would, perhaps,
be the product, and an elementary body, as it is now called, might be
produced.

Lastly, we may refer to the facts of isomorphism, as having a tendency
to support the same general conclusions which flow from the study of
allotropism and isomerism. Here we find that elements of the most
dissimilar character may be made to displace each other, and to perform
identically the same functions. In the various alums for example, we
notice that iron, alumina, chromium, and manganese, may be used indif-
ferently without affecting the form or chemical property of the crystal.
The same is true of selenium, sulphur, manganese, and chromium, in their
acid combinations; and of magnesium, zinc, and cadmium, in their basic
relations. The application of this fact to mineralogy has already been very
extensive; for it has been the means of accounting for the great variety
of minerals in which small proportions of the isomorphic elements have
displaced each other. And now it is also beginning to be applied in
physiology. The researches of Dr. Blake have led him to conclude that
isomorphic bodies produce the same set of effects when introduced into
the living animal economy. This he has shown to be the case with the
 salts of magnesia and lime; of manganese, cobalt, iron, and nickel; of
those of zinc and cadmium; of bismuth and lead; of soda and silver; of
potash and ammonia; and of palladium, platinum, osmium, and iridium. The same is also true of the acids of phosphorus and arsenic; of the salts of bromine, chlorine, and iodine; and of those of selenium and sulphur. And it is a singular circumstance that those bodies which have their homologues in the blood are not poisonous, while those which have not such a relationship are: thus it is that arsenic acid is not pernicious, because it is allied to phosphoric acid; while arsenious and phosphorous acids are extremely dangerous. Oxide of silver also may replace soda, although the oxides of other metals are for the most part injurious.

To review, therefore, the facts which have recently been developed, we find that there are four classes of phenomena which have a tendency to favour the belief that the elements may yet be decomposed, and, perhaps, in some cases, transmuted into each other. These are, 1st, the facts of "allotropism", which show that the same elements may assume different aspects; 2ndly, those of "isomerism", which prove that compound substances, having identically the same composition, may yet be endowed with different properties; 3rdly, the peculiar relationship observed between certain groups of elements, as in the "triads of Dumas"; and 4thly, the facts of "isomorphism", which indicate the power which one element has of performing the function of another.

In alluding to the first and third of these, Professor Faraday remarks that,

"We have here one of the many scientific developments of late origin, which tend to lead us back into speculations analogous to those of the alchemists. Already have we seen that it is possible for one body to assume, without combination, two distinct phases of manifestation; therefore, such of the so-called elements as are subject to allotropism, are not the unchanging entities they were once assumed to be; and now we find, after our attention has been led in the direction, that the triad of chlorine, bromine, and iodine, not only offer a well-marked progression of chemical manifestations, but that the same progression is accordant with the numeral exponents of their combining weights. We seem here to have the dawning of a new light, indicative of the mutual convertibility of certain groups of elements, although under conditions which are as yet hidden from our scrutiny." (p. 159.)

But who knows how soon the knowledge of these conditions may be brought to light? and then what a field will be thrown open for new investigation. Professor Faraday is of opinion that, in pursuing this train of inquiry, much useful information as to the intimate nature of the elements would be derived from the liquefaction or solidification of hydrogen or nitrogen.

"Hydrogen, in many of its relations, acts as though it were a metal; could it be obtained in a liquid or solid condition, the doubt might be settled. This great problem, however, has yet to be solved; nor should we look with hopelessness on this solution, when we reflect with wonder, and, as I do, almost with fear and trembling, on the powers of investigating the hidden qualities of these elements—of questioning them, making them disclose their secrets, and tell their tales—given by the Almighty to man!" (p. 293.)

May the gifted teacher whose labours we have just reviewed, and whose contributions towards the solution of this grand problem have been so great, may he be spared to realize the truth of all the wonderful speculations which are here advanced!

H. Leatheby.
Dr. Cless's attention was directed to the subject of the formation of gas in the blood, causing sudden death, by the following case:

A woman, twenty-one years of age, was admitted into the Katherine Hospital at Stuttgart on the 29th of July, 1851, with symptoms of a "gastric fever," of medium intensity, and with some catarrhal affection. At the commencement of the second week the cough was well, the fever trivial, and with a tendency to an intermittent type. Sulphate of quinine was ordered. Three days later, on the 10th of August, the patient was suddenly seized with a convulsive affection, without perfect loss of consciousness; the convulsion lasted about fifteen minutes, and was followed by shivering, heat, and sweating. About an hour afterwards there was bilious vomiting, and a lumbrious was thrown up. The next three days and nights she was tranquil. On the morning of the 12th of August, when visited by the physician, she expressed herself as feeling comfortable; she had eaten her breakfast with some appetite; she was rather giddy when she went to stool, but otherwise had no head-symptoms; the tongue was cleaner than the day before; the respiration was perfectly easy; the face was a little flushed; the pulse quick (100), full, and weak. A quarter of an hour later the physician was sent for by the nurse: on his arrival the patient was dead. It appears that the adjoining patients saw her suddenly move in the bed, then become convulsed (apparently like opisthotonos), gasp for breath, sigh, and sink down in bed: all this occurred in about two minutes; she was seen the moment after, but was without sign of life.

The body was opened thirty hours after death, in very hot weather. There was no sign of commencing putrefaction. The brain was quite normal; there was no air in the vessels of the pia mater; there was no fluid in the pleura; the lungs were emphysematous, with some lobular collapse; there was no trace of decomposition. In the pericardium there was a little serum. When the heart was laid bare, a remarkable globular distension and bulging of the right auricle and ventricle was observed; when the operator rather hastily cut into the ventricle, to all appearance a gas issued out, with a hissing noise, as in pneumothorax, and the ventricle collapsed. The ventricle and auricle being fully opened, was found to contain a moderate quantity of coagulated blood in which were no air-bubbles; the endocardium was stained deeply red. The left ventricle showed no distension with gas like the right side, but there were some little bubbles of gas in the partly coagulated blood. The heart was healthy; in none of the vessels was there any appearance of air. A little frothy blood exuded from the liver on section, but the blood from the other organs was not frothy. The spleen was enlarged and soft. In the ilium there were numerous nodules from infiltration of the solitary glands; Peyer's patches were not much infiltrated, but were
rather swollen, and had many dark points. There were many lumbrici in the intestines; the mesenteric glands were generally normal; three or four, corresponding to the lower part of the ilium, were swollen, and had a dark colour. Kidneys, uterus, and ovaries, were normal.

Dr. Cless believes the case to have been one of mild typhus abdominalis (typhoid fever). He remarks that sudden death, with apparently slight symptoms, is not excessively uncommon in this disease, and after death nothing may be found except the usual indications of typhus abdominalis. But in more than 1200 examinations of bodies, in various diseases, he never saw such a collection of air in the heart. This air could scarcely be a product of decomposition, as there was no evidence of such taking place in any other part of the body, and as local decomposition in the heart alone is a thing unknown in the records of post-mortem examinations.

A year after this case, a second exactly similar one occurred in the same hospital:

A girl, fourteen years of age, was admitted on the 16th July, with typhus abdominalis (typhoid fever); the bronchitic complication was severe. Seventeen days after her admission she appeared extremely well; when visited on the morning of the 2nd of August, she was found to have slept well, and to have no trace of breathlessness or other noticeable symptom. At 7 A.M. she coughed a little, as usual, and put out her hand to take the spitting cup; suddenly, she breathed with great difficulty, became livid in the face, stretched out her arms and fingers spasmodically, and fell back dead. All this did not occupy more than from one to two minutes. On section, twenty-six hours after death, in moderately warm weather, there was no trace of decomposition. Besides the customary appearances of typhoid fever (infiltration of Peyer’s patches, enlargement of the spleen), there was air in the large veins of the neck, in the right auricle and ventricle, and in the blood exuding from the liver; and the blood on the right side of the heart also contained air. In the veins of the pia mater there was also air, but Dr. Cless attaches no importance to this common phenomenon. The blood throughout the whole body was fluid.

Dr. Cless relates a third case, in a tuberculous subject, communicated to him by Dr. Hedinger. This appears, however, to have some doubtful points about it, and is omitted from consideration.

After narrating these cases, Dr. Cless refers to the literature of the subject. Starting from Wunderlich, who, in his Handbook, lately published, speaks with doubt of such an occurrence, and refers to Otto for further particulars, Dr. Cless has apparently traced all reported cases to their original sources, and has subjected them to a very critical analysis. Some of them, especially the earliest cases, are rendered doubtful by one or other circumstance; but after eliminating all these, Dr. Cless believes that 13 undoubted cases of sudden death from rapid development of gas in the heart, are upon record. He gives a table of these cases, which we subjoin:
<table>
<thead>
<tr>
<th>Name of observer and year in which observed</th>
<th>Sex of patient</th>
<th>Age</th>
<th>Previous disease</th>
<th>Kind of death</th>
<th>Discovery of air in the vascular system</th>
<th>Other post-mortem appearances</th>
<th>Condition of blood in the body</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pechin (1861)</td>
<td>M</td>
<td></td>
<td>Pain in the chest and great dyspnea.</td>
<td>Sudden death</td>
<td>Great distension of the entire heart with gas; most marked on the right side; gas in almost all the veins.</td>
<td>Typhlitis of the intestines.</td>
<td></td>
</tr>
<tr>
<td>... Gratz (in Morgagni)</td>
<td>F</td>
<td></td>
<td>Painting, breathlessness, suffocation.</td>
<td>Sudden death</td>
<td>The entire heart greatly distended with gas; no blood in it.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruyssch (1737)</td>
<td>F</td>
<td></td>
<td>Periodic asthma.</td>
<td>Death in an asthmatic attack</td>
<td>Enormous distension of the heart with gas; very little blood in heart.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>... De Jaer and Nysten (1811)</td>
<td>M</td>
<td>45</td>
<td>Periodic asthma.</td>
<td>Death in an asthmatic attack</td>
<td>The right heart and the whole venous system distended with blood, and a great quantity of gas.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasse (1821)</td>
<td>M</td>
<td></td>
<td>Delirium tremens.</td>
<td>Sudden death in sleep, without convulsions or dyspnea.</td>
<td>The right heart enormously distended with air; the left much less so; air in the larger veins above the heart.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olliver (1833)</td>
<td>M</td>
<td></td>
<td>Measles</td>
<td>Sudden death with screaming.</td>
<td>The heart and vessels opening into it distended with air.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>... Olliver (1833)</td>
<td>M</td>
<td></td>
<td>No previous disease.</td>
<td>Sudden death</td>
<td>Same as above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olliver (1838)</td>
<td>F</td>
<td>22</td>
<td>Convalescence</td>
<td>Sudden death, with a scream of pain & fear.</td>
<td>Distension of the right heart with gas; no gas in the left; frothy blood in the pulmonary arteries.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>... Herrich and Popp (1848)</td>
<td>M</td>
<td>19</td>
<td>Slight typhus; almost convalescent.</td>
<td>Sudden death, with screaming, groaning, and convulsions.</td>
<td>Many air bubbles in the blood of the right auricle and in the cardiac veins.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>... Adelmann (1851)</td>
<td>M</td>
<td>50</td>
<td>Carbuncle</td>
<td>Death after cramps and rattling breathing for one hour.</td>
<td>Gas in both jugular veins and in the heart.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>... Durand-Fardel (1851)</td>
<td>F</td>
<td>56</td>
<td>Habitual breathlessness; otherwise healthy.</td>
<td>Sudden death, after previous oppression.</td>
<td>Gas in the blood of the median veins of the arm at the moment of death (V.S.) gas in the right heart and in the abdominal veins.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cless (1851)</td>
<td>F</td>
<td>21</td>
<td>Early stage of mild typhus (typhoid).</td>
<td>Sudden death, with breathlessness and convulsions.</td>
<td>Distension of the right heart with gas; small air bubbles in blood of left ventricle; frothy blood in hepatic veins.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cless (1852)</td>
<td>F</td>
<td>14</td>
<td>Convalescent typhus (typhoid).</td>
<td>Sudden death, with breathlessness and cramps.</td>
<td>Gas in the jugular veins and in the right heart; frothy blood in the hepatic veins.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

... Collection of fluid in the ventricles of the brain.

... Emphysema of the walls of the heart; air under skin of body formed after death.

... General emphysema occurred after death.

... Nothing abnormal.

... Black fluid blood.

... Fluid blood and fibrinous coagula.

... Large coagula.

... Fluid blood everywhere.

... Dark and fibrinous clots.
Dr. Cless then discusses the following points:—

1. In all these cases an accumulation of gas in the right heart, and in other parts of the vascular system, was noticed. Did this development occur after death, and is it to be considered as a product of decomposition?

As conclusive against this suggestion, he remarks, that in only one case (Nasse’s) was there decided evidence of some amount of decomposition, and in the two other cases (Ollivier’s), in which there was emphysema of the cellular tissue after death, the observer expressly states, that otherwise there was no trace of decomposition. Also Durand-Fardel’s case, in which a vein was opened during life, and frothy blood issued, may be considered as conclusive that gas can form during life in the blood. Again, the fact that, in ten of these thirteen cases (and in other more doubtful cases not included in the table), there was sudden death, without sufficient lesion to account for it, unless the gas in the heart be supposed to have been formed before death, must be allowed to have considerable weight. In the other three cases, the duration of the incidents preceding death is not given in two (Pechlin and Gratz), and in the third case (Adelmann) the death was almost sudden—viz., it occurred after an hour of cramps and dyspnea.

Again, another argument is drawn from the analogy of these cases with those in which air enters the veins during operations and experiments, and causes death by distension of the right heart.

All these arguments brought together, lead to the conclusion that the air present in the heart was really formed during life, and was the cause of the sudden death from mechanical impediment, and abolition by distension of the contractility of the right heart.

2. Admitting the foregoing conclusion, what may be the source and mode of origin of this gas?

Two hypotheses present themselves. Either it was atmospheric air entering from without, or it had been spontaneously formed from the blood. In all these thirteen cases there was no wound or point of entrance for the air, and it can hardly be supposed to have entered by absorption through unbroken mucous membranes. Moreover, as remarked by Dechambre, in his comments on Durand-Fardel’s case, if no air be found in the arterial system, but only in the veins and in the right heart, it could not have entered the circulation through the pulmonary mucous membrane and the pulmonary veins. It would appear, then, certain that the gas was spontaneously developed in the blood. If so, where was it produced? In by far the greatest number of cases the venous system was the one affected. If we take Ollivier’s loose expression, “the vessels opening into the heart were distended with air,” to refer to the veins only, as is most probable, then in no single case was the arterial system implicated, except that there was in some cases gas in the left ventricle. The venous blood, then, was the origin of the gas, and Dr. Cless thinks that it was developed in the peripheral part of the venous system, and brought to the heart. As to the mode of its formation, nothing at present is known.

3. As to the chemical nature, nothing definite can at present be said. Ollivier thought it was nitrogen, but this was an inference merely from Dr. John Davy’s analysis of the gas found in a case of pneumo-thorax.
Dr. Cless devotes a page or two to the consideration of whether there may not be such a development of gas without fatal issue. No exact data exist for determining this point, but he directs attention to De Jacer's case, in which there were repeated attacks of spasmodic asthma. The man dying in one of these, gas was found in the right heart; were the previous attacks connected with a similar, but less development of gas?

As to the frequency of deaths from this cause, it is remarked that these thirteen cases are not the only ones discoverable in medical literature. Several others are imperfectly recorded—viz., Otto (two), Valsalva (one), Testa (two), Kerrick and Popp (two), and Morgagni (one). It would appear likely, in fact, that this kind of death is much more frequent than is supposed.

Dr. Cless alludes to a common post-mortem appearance, the presence of a little air in the veins of the pia mater. This need not detain us. We pass on to a brief statement of the development of gas in the blood from certain poisons.

(a) In hydrophobia, gas has been noted in the blood. (See Morgagni, Ploucquet, Struthers.)

(b) In poisoning by strychnine, gas has been noted twice in the blood; once in a man (Blumhardt), once in a dog (Griesinger).

(c) In a case of sudden death from chloroform, Dr. Major found that gas was in considerable quantity in the blood, and both sides of the heart were distended with it. Death seemed to have been produced by this mechanical impediment. Berend records five such cases: and Dr. Cless thinks it likely that others are on record, but has not perused all the literature of deaths from chloroform.

Dr. Cless alludes to a late observation of Maisonneuve (September, 1853), who describes a form of gangrene in which rapid decomposition occurs, gases are formed in the interior of the veins, circulate with the blood, and lead to rapid death (gangrène, foulroyante); and then finishes his interesting little treatise with a suggestion, that the name "Pneumasthemia" may be properly applied to the important disease to which he has now given a place in pathology.

Review VIII.

The Pathology and Treatment of Stricture of the Urethra, both in the male and female, being the Treatise for which the Jacksonian Prize for the year 1852 was awarded by the College of Surgeons of England.

By Henry Thompson, F.R.C.S., M.B., Lond.—London, 1854.

It were vain to attempt to lay before our readers anything approaching to a detailed and critical analysis of Mr. Thompson's very meritorious volume. Much of it is, of course, a compilation, and in noticing it we shall, therefore, restrict ourselves very much to those points in which the author has original investigations to offer.

* Initia Bibliothecae Medico Practice, 1793, tom. i. p. 55. † Monthly Journal, 1851.
Wells on Gout.

4.

The recollection of the general law, that all the solid parts of the body may be considered as precipitates from the blood, which are constantly deposited, and as constantly dissolved or renewed. While the form of each remains unaltered, the material particles composing it are so constantly being renewed, that the solid parts of the body must be regarded as almost as changeable as blood itself."

He then proceeds to speak of the power of certain medicines in penetrating the different parts of the body, and especially refers to iodide of arium, which, he says, has been detected in almost every animal and fluid, and from thence draws the deduction,

That the hope of acting upon a salt deposited in some of the tissues of the body is not unfounded, for in the iodide of potassium we have a soluble substance which is rapidly absorbed with the blood, and may be detected in the tissues of the body, and in the excretions long after administration, proving that it can exert a persistent influence; and as this salt has the power of dissolving the lithate of a, the material which is the principal cause of the stiffening of the joints, by being deposited in and around them, we can understand that the benefit experience shown to follow the use of the iodide may be explained by established laws of physiology and pathology, and by the chemical properties of the remedy."

The amount of this remedy which Mr. Wells recommends is from one to three grains a day, given in divided doses. Along with this salt, attention is laid down in the chapter on the 'Natural Treatment' for local application, as the ioduretted and nitro-muriatic baths, painting the parts with tincture of iodine, friction, percussion, douches, and so forth. We have not been able to agree with the author in very many points contained in this chapter. In the first place, we cannot think that purges of urate of soda can be at all likened to the solid portions of the body; they consist essentially of extraneous matter, removed, from the sphere of vital influences, and in amount as non-absorbable as a bullet lodged in any situation; at the same time, we do not think it to be understood as considering that chalky deposits are never removed, but that, when such occurs, it is by other methods rather than by purgation. Again, as to the solvent influence of iodide of potassium, we are not aware that it possessed any peculiar power in dissolving urate of a, and seeing it so confidently stated, we were induced to make several dyes to ascertain the truth of this point. Solutions of iodide of potassium, chloride of potassium, and chloride of sodium, in distilled water, of an equal strength, were employed, and made to act upon urate of soda for 24 hours, at the temperature of 100° Fahr. It was found that chloride of potassium had the greater power, next the iodide of potassium, then the iodide of sodium; the reason for the differences was obvious: urate of potash is a much more soluble salt than urate of soda, and therefore, when potash salt acts upon urate of soda, it dissolves that body in proportion to the amount of potash contained in a given quantity, by converting a portion of the urate of soda into urate of potash, hence the chloride of potassium is a more potent salt than the iodide, and the iodide than the salts, but the carbonate of potash would be found still more potent; we have, therefore, no hesitation in stating that we consider the above views of action of the iodide as altogether erroneous, and that the power of this medicine in dissolving gouty concretions is no greater than that possessed by...
other salts; still we do not assert that iodide of potassium is not a useful remedy in old gouty cases, far otherwise, having been in the habit, for many years, of administering it in small doses in these cases; but we believe that its action is not upon the deposits themselves, but upon the surrounding tissues, which are apt to remain for a long time in a chronically inflamed condition; and we have found the salt equally efficacious in chronic rheumatic cases where no such urate deposits are present.

We have now given a short abstract, with comments, upon that portion of Mr. Wells’ book relating to gout; an appendix is added, containing reprints of different papers which he has communicated to the ‘Medical Times and Gazette,’ but having no reference to the main subject of the work, we shall not allude to them. In conclusion, we would add that, although we have selected various parts of the author’s work, and have commented freely upon them, we hope in a fair and open manner, and have in many points differed from his views, yet that we do not wish that our remarks should appear in the least degree depreciatory of the volume before us; most of the opinions we have criticized are, in fact, not held by Mr. Wells only, but by most authors on the subject, and therefore it is to the commonly received ideas, rather than to the author’s views, that we wish our remarks to apply. We consider that this work contains both sound and rational views as to the pathology and judicious instructions as to treatment of gout; and we therefore believe that it ought to be perused by all who are engaged in the practice of medicine. The style and manner of the work are easy and attractive.

Alfred B. Garrod.

Review XI.

Nutriments. By F. C. Donders, M.D., Professor at Utrecht. Translated from the Dutch.

4. *Einfluss des Kochsalzes auf die Harnstoffentleerung.* Von Professor Th. Bischoff, zu Giessen. (‘Annalen der Chemie und Pharmacie,’ 1xxxvii. 109.)

Influence of Common Salt on the Excretion of Urea. By Professor Bischoff, of Giessen. (Liebig’s ‘Annals,’ &c.)

6. Ueber die Wirkung des Biers. Von Dr. Böcker. (‘Archiv des Vereins für gemeinschaftlichen Arbeiten zur Förderung der wissenschaftlichen Heilkunde.’ 1854.)

On the Action of Beer. By Dr. Böcker. (‘Transactions of the Association for Promoting Scientific Medicine.’ 1854.)

7. Versuche über die Wirkung des Thees. Von Dr. Böcker. (‘Archiv des Vereins,’ &c. 1853.)

Researches on the Action of Tea. By Dr. Böcker. (‘Transactions of the Association,’ &c. 1853.)

A Chemical and Physiological View of the Effects of Drinking Coffee. By Dr. J. Lehmann.

How is a man to know when he has got enough to eat?—enough in quantity? and enough in quality? These are indeed most vital questions, especially when we ask not for ourselves alone, but for dependents whose existence hangs on our right use of our reason,—for our prisoners, our servants, our paupers, our children.

Dr. Frerichs, in his well-known article on "Digestion," in 'Wagner's Physiological Dictionary,' has endeavoured to give us a way of finding an answer by the chemical analysis of the excretions. He reckons up how much urea, how much carbonic acid, and what salts are separated from the organism during the entire deprivation of food. He argues, that such is the necessary loss of substance in the body, and such must be the necessary supply. If by lungs, kidneys, skin, &c., so much carbon, nitrogen, hydrogen, &c., is given off, the amount of aliment required to be made into blood is that which contains an equal weight of those principles, in order that life may be maintained in the same theoretical stationary condition. Such a method of interrogating nature has been adopted also by Drs. Bidder and Schmidt, as may be seen in a recent article in this review, on 'Metamorphosis of Tissue.'

Dr. Donders objects to this indirect mode of computation, and compares Dr. Frerichs to a grocer, who, in order to estimate his stock of sugar, burns some of it, and weighs the ashes, instead of directly weighing the whole. We must demur to this comparison; the philosopher is not in the position of a shopkeeper, who, in taking stock, has everything under his thumb, and has only to produce his scales and to measure right on end: he is rather like an income-tax commissioner, with an uncommonly refractory return before him—an obstinate, sly fellow, who has kept no books and gives evasive answers;—such, with reverence be it said, is nature. The commissioner acts just like Dr. Frerichs: he says, "you have expended so much in improving your premises, so much in household expenses, &c., so your income must be at least equal to that amount." There does not appear any possibility of applying the direct method to the discovery of the exact quantity of food required to be made into blood, for the very obvious reason that we cannot ascertain how much of that put into our mouth is wasted; and it is probable that, if not by this, at any rate by some similarly indirect method, our future knowledge of the subject will be elicited.
It must be observed, however, that in Dr. Frerichs’ argument it is assumed that in the starving condition the organs will still continue to remove from the body, in a minimum quantity, those effete particles which are no longer capable of life; and that the metamorphoses of tissue which then take place are all that are absolutely requisite for keeping together mind and matter. Here, if anywhere, lies the fallacy: we have no proof that in deprivation of nutriment the ultimate particles are not abnormally retained in the organism, and that starvation is not, in fact, a gradual interstitial death, as well as an exhaustion by unreplaced secretion. An architect might say, “I will calculate the quantity of stone and timber washed away by weather and wear from a building, and will send in so much to replace it,”—but no, that would not do; he must supply new timber and new stone in full quantity to push out that which is becoming injurious by decomposition—the renewal must be an active leading process, or the building goes to ruin. It is not stated that such is the state of the case in our animal body; but there is no proof that it is not; and if it is, then clearly enough the excreta are not a measure of the required ingerenda. If, however, the point can be made, that the removal of substance by secretion, up to a degree inconsistent with life, is the sole cause of death by starving,—that the necessary interstitial disorganizations go on without food as quick as with it,—this indirect mode of reckoning the amount of elements which must daily become blood will be of great theoretical importance.

An immediate application of this argument to practical matters was, of course, not contemplated by the author. Dr. Donders need not be afraid that he will be “unmercifully condemned to death by hunger,” which he represents as the result of Dr. Frerichs’ idea. Even if it is proved correct, there remains to be solved, before it is practically applicable, this further most difficult question,—In what form the elementary principles must be supplied so as to be capable of being made blood. Although a substance contains all the elementary atoms necessary to supply the waste of the body—carbon, hydrogen, nitrogen, sulphur, salts, water, and so on—and at the same time is perfectly capable of absorption and conversion into blood, yet it does not follow that it is sufficient to sustain life. In fact, though it is capable of absorption, it may be limited in capability as regards quantity; it may have the power of entering into assimilation only in a certain definite amount, and that amount may be more or less than sufficient for the wants of the organism. This seems to be the case with all the substances that form our aliments; pure albumen, pure gelatine, pure chondrine, cannot separately be taken up in sufficient quantity to sustain life, however much of them be passed through the alimentary canal. A combination of aliments is necessary, and what quantity of each is required to form the combination cannot be learned by finding the amount of carbon, hydrogen, &c., which they jointly have contained.

It is proper here to make a cursory mention of the division of aliments by Baron Liebig into supporters of respiratory combustion, and replacers of the tissues,—into “fuel,” and “building materials.” The striking simplicity of the theory involved, so like one of the great laws of nature, and the attractive style of the justly honoured author, has made this
classification very popular, and raised hopes that it would explain many things to which it is not applicable. But the fact is, it is not itself by any means tenable as a division. The building materials may be, and are, used as fuel, and the fuel as building materials. Flesh is to many carnivorous animals the only possible source of carbon, yet if anything has a title to be considered a pure replacer of tissue, it is this substance. Oil is considered by Baron Liebig as fuel, and to justify this assumption, he has to carry à l'outrance an unfortunate saying of John Hunter's, that fat was "no part of the animal body," and to describe it as "only mechanically infiltrated with oil and water, like a sponge," and to state that those constituents possess no organic form, no vital characteristics. But what organic form would there be in the globe of the eye, what in the muscles even, without water? What would the brain and nerves, the very characterizers of vitality, if anything is, what would they be without fat?—not nervous matter at all. There, at any rate, fuel is used for building materials; and as other hydrocarbons seem capable of conversion into fat, they may become building materials too. Another objection to the theory is, that it represents oxygen as an inimical power, a sort of destructive Ahriman, against whose invasions it is necessary to have a guard in these supporters of combustion—a fire which tends to burn our house down if we do not feed it with other prey; whereas, in fact, oxygen is itself a building material, it unites with the albumen of the blood to form the fibrine of the muscles, the casein of the yellow elastic tissue, the substance of the skin, &c., &c. So far from there being any real opposition between oxygenation and nutrition, it is itself nutrition. In fact, the only truth which the theory expresses is, that in proportion to the expenditure of carbon, so must be the supply of the same material in some form or another. Great and important this truth is, and perhaps it was right in Baron Liebig to call attention to it by such bold expressions as the calling animals "locomotive furnaces," and the rough division of aliments above-mentioned; but they must not be carried further than the intention of the original author, and applied to subject matters for which they are unfitted.

Perchance the time may come when we shall be able to deduce, on purely scientific grounds, what the due admixture, and due quantity of such admixture, should be to supply an animal with sufficient nutriment. Perchance it is not far distant, but it is certainly still future. As yet our only practicable means of coming to any conclusion on the point, is to take a typical article of food, which we find by experience is capable of nourishing an animal for a considerable period, and make that the measure of what is required by the organism. Of course the article which answers our purpose best is milk, and we may fairly consider all the kinds of aliments contained therein as necessary to, and sufficient for, the sustenance of animal life. The protein compounds, hydrocarbons, and oils—represented in milk by casein, sugar, butter—with water and salts, may be viewed as comprising the whole of the supply of alimentary substances necessary to pure existence. All these substances are found again in some part of the body, are required to replace the continually decaying organs, and the relics of the decomposed tissues which they replace form the excretions. On these substances, without any others,
experience shows that life may be, and is, carried on in the greater part of the animal creation; they fill up the blanks occasioned by wear, and may be called, for the nonce, Complementary Foods.

But not satisfied with these bare necessaries, we find that in practice our own species chiefly, but animals also to a certain extent, are inclined by a soi-disant instinct to feed on a variety of articles, the use of which cannot be explained as above; they cannot be refound in the organism; they cannot, apparently without dissolution, be employed to build up the body. Without compromising ourselves by pre-judging any question, these may be fairly called, as they are at the head of this review, Extra Diet, or Accessory Foods. It is scarcely necessary to say, that by this expression is meant alcohol, flavouring athers, essential oils, perhaps gelatine, tea, coffee, pepper, tobacco, spices, opium, Indian hemp, &c. &c., which are absolutely in themselves accessory. And there is intended to be included also the great excess above what is to be found in milk, or required to replace secretion, which instinct leads us to take of such substances as water and salt, for example, which are, absolutely speaking, complementary.*

These are what man does not want, if the protracting from day to day his existence on earth be the sole end of his feeding. He could live without them, grow without them, think without them—a baby does. Would he be wise to try and imitate it? The answer to the foregoing question must lie first in an accurate scientific observation of the true physiological effect of these substances on the human frame; and the knowledge thus gained must precede any balance of the advantage accruing from them with their social or political results. With such a feeling it is intended in the present article to narrate the chief recent advances which have been made in that direction.

Let us at once take a cold plunge into the subject, and begin with Water.

Dr. Bücker has published some observations made on himself to show the effect of different quantities of water drunk. The experimenter appears to have used the utmost precision, and details so conscientiously the mode adopted of making his estimates, that additional knowledge may in future times perhaps alter the conclusions drawn, but can never lessen the value of the experiments. After he had determined, by some preliminary trials, what quantity of food and drink was just sufficient to satisfy his appetite without causing the body to diminish in weight—that is to say, to cover the necessary outgoings of the organism—he proceeded to special experiments, in which he took the ascertained quota of victuals in periods of twenty-four hours. These special experiments are in two sets. The first set extend over seven days, in each of which the experimenter took, on the average, 1260 grammes (2·66 pints imp.) of water; the second set also over seven days, in which he took 3360 grammes (7·11 pints) of water. The urine made during the twenty-four hours was collected as follows: it was passed on first rising in the morning, and to

* Should any of our readers object to the division of foods into "complementary" and "accessory," it is fair to the works named at the head of this article to say that it is not derived from them, and simply used in this place to make the object of the present writer more clear, and to point out unmistakably of what class of bodies he is speaking.
that quantity was added all that was secreted up to the same hour on the
day succeeding, and then weighed and analyzed. After emptying the
bladder, he took his weight naked, and repeated the weighing at definite
periods during the day, allowing for the ingesta. The amount also of
solid and liquid matter in the faeces was directly weighed, and the in-
sensible perspiration estimated. The results of these two series of expe-
riments exhibited the following mean numbers:

In the first series, with 1260 grammes of water, 84·14 minutes,

In the second series, with 3360 grammes of water,

and the daily loss of weight was 90·14 minutes,

539 grammes. 834 grammes.

The faeces daily excreted amounted to

178·3 grammes, 219·5 grammes,

of which the water was 129·6 grammes, 170·5 grammes,

and the solid portion 48·7 grammes. 49·0 grammes.

The urine daily excreted was

2621·143 grammes. 4994·000 grammes.

He felt during the days when the larger quantity of water was taken,
more desire for food, and more languor after exercise, though, as may be
seen, it exceeded by six minutes only that taken on the other days. No
other subjective observations of any importance appear to have been made.

This sketch of Dr. Böcker's experiments is taken from the periodical
published by the Imperial Medical Society of Vienna, and it is to be
regretted that it has been found impossible to obtain in time access to the
original paper. The consequence is, that the analysis of the urine con-
taining the exact difference in the amount of urea excreted on the several
days is not known to us. Thus far, however, partly the numbers above
given, and partly the account by Dr. Weinberger in the periodical quoted,
enable us to go, viz.:

1. That water increases the interstitial metamorphosis of tissue and con-
sequent loss of weight.
2. That the decomposed tissue is excreted partly by urine and partly in
the solid faeces.
3. That the water formed in the organism by the change of tissue is
augmented, as well as the nitrogenous constituents of the excretions.

It will be seen by the table above, that on the full water days
4994 + 170 grammes are excreted, being an excess of 1804 grammes
over the quantity drunk; whereas on the ordinary water days 2621 + 129,
being an excess of 1490 over the quantity drunk. The quantity of water,
however, in the solid food, which of course constitutes some of the excess
of secretion, was the same under both circumstances.

4. The excretion of carbon by the lungs, the quickness of pulse or of
respiration, is not affected.
5. The necessity for food keeps pace with the metamorphosis of tissue.

The increased rapidity in the metamorphosis of the solid parts of the
body, from the use of a quantity of water exceeding that which the thirst
and necessary excretions demand, is a most important fact. Its full application belongs to our reflections on medicinal discipline for abnormal states of body, but yet, as an accessory food for the healthy, it should not be passed over. Metamorphosis of tissue is life, or an inseparable part of life, and there is reason to believe that, where it goes on quickly, and there is the possibility of a supply of new matter equal to the exhaustion of the old, the tissue changed is in a more perfect state, more able to resist external noxious influences, and therefore more likely to last long than when the exchange is slow. When, then, a man is able to get as much as he wants to eat, is able to carry it without inconvenience in his alimentary canal, and to absorb it to an indefinite amount, the extra quantity of water is wisdom on his part, for it makes him more lively and active. But not all are habitually in this typical condition; to many of our readers the latter clauses are probably unattainable—an extra quantity of food is a trouble to them, and the absorption of it painful or impossible; while those who mix much with the masses of their fellow-countrymen find a large multitude whose social circumstances prevent the fulfilment of the first requirement. To all of these, an extra allowance of water as a habit can only be viewed in the light of an extravagance.

The use of Salt as a solvent to albumen is of great importance in economical cookery or dietetics, for without it much of that material would run a chance of being wasted for want of absorption. It is more required for vegetable than for animal diet on two grounds—first, because there is in the former so small a quantity of albumen that we cannot afford to lose any of it; and secondly, because plants contain but a small proportion, not nearly as much as is wanted for the solution: while flesh, on the other hand, especially when the gravy is retained in it, already possesses a large allowance.

It is stated by those who have had an opportunity of seeing individuals of our species in the unfortunate condition of a deficiency of kitchen salt, that, under such circumstances, a sort of scurvy is generated, that a low state of system arises, leading to the growth of parasitic animals in the bowels, especially tape-worms. Nay, so refined has been the cruelty of man to his brother, that a torture has actually been devised consisting of the deprivation of salt under a vegetable diet, the consequence of which was intended to be that the wretched victim should be devoured by self-engendered worms.* The more vegetable a diet is, then, the more is salt required by our species.

Acting either on this principle or on empirical observation, it has long been the custom to mix salt with the fodder of domestic animals, and inasmuch as some expense is involved in this proceeding, it is interesting to know whether it is really of any use or not. To determine this, M. Boussingault tried a series of experiments on steers, which led to the conclusion that it in no degree contributed to their condition.† A long series of similar experiments on cavalry horses‡ have been tried also in France,

† Annales de Chimie et de Physique. 1847, p. 117 et seq.
‡ Recueil de Mémoires et Observations sur l'Hygiène et la Médecine Vétérinaire Militaires. 1851, tom. iii. p. 509. The horses in prime condition were not improved, and the thin ill-conditioned animals were if anything deteriorated after the use of salt.
with a similar conclusion; so that from them we should say, that salt used in this way by the farmer or the groom was unjustifiable on scientific grounds, whether agreeable or not to the animal. But it is to be remarked, in the first place, that the experiments were tried with hay, which in itself contains more salt than most vegetables, so that they prove nothing against its advantageous use with other fodder; then, again, only the external condition of the animals is noticed, and if that was good to begin upon, no very obvious improvement could be expected to be visible to the eye. To afford a satisfactory test, the solid contents of the blood at the commencement and end of the trial on healthy horses should have been observed; in fact, these experiments do not militate at all against salt being with most diet, and under most circumstances, a valuable accessory.

The recent experiments which best show the influence of salt over the destruction and removal of effete tissues are contained in Dr. Bischoff's 'Harnstoff als Maas des Stoffwechsels.' In a recent paper published in Liebig's 'Annalen,' he has somewhat corrected and explained certain statements therein made, and from it, therefore, the citation will be made. We read here that a dog taking daily a pound of beef without salt, excreted 22.50 grammes of urea, while with the addition of salt to the drink he excreted 28.34, showing an increase in the chief evidence of the metamorphosis of nitrogenous matter of 5.84 grammes daily when this accessory was taken.*

Now solely on this information we should not know whether the final result of taking an accessory quantity of salt was injurious or beneficial. It might appear at first sight only to have an exhaustive interference, taking away that which an effort of the organism is required to replace. But it must be remembered that it is in that effort that life consists, and that within the limits of health the more metamorphic action there is going on, the more truly a tissue may be said to live, the more perfect it is and is likely to become. So that we may on these grounds rather anticipate an augmented efficiency and a nearer approach to typical perfection from this increased action, in the same way as a muscle grows by fair use. Such a hope seems confirmed by some experiments detailed in the 'Comptes rendus de l'Academie des Sciences,' vol. xxxv. p. 109. M. Plouviez, a strong healthy man, took, in addition to his ordinary food, two and a half drachms (English) of common salt every day for three months. Analyses of his blood made by M. Poggiale showed the carbonates of soda and potass as constituting 0.48 part in 1000 before the experiment, and 0.56 after its conclusion. This increase of salts moreover was not due to an augmentation of the fluids and substances soluble therein, but was coincident with a proportionate increase of globules, fibrine, and fat, the proportion of water in a thousand parts having sunk from 779.92 to 767.60.

* With respect to the urea being taken as a test of metamorphosis, it is to be remarked that it is probably a fair comparative, but not an absolute measure. The above-named dog, for instance, took 6000 grammes of flesh, containing 180.60 grammes of nitrogen, in 11 days, but the urine excreted contained but 159.20 grammes of nitrogen, so that 21.40 grammes are unaccounted for, and must have been got rid of in other ways, for the animal did not increase in weight. The salt also is not all excreted by the kidneys. The dog took 158.82 grammes of chloride of sodium, and passed in urine 145 grammes, so that 13.82 remain to be accounted for, the chlorine being probably united to other bases, and the sodium to other acids.
The effect, therefore, of salt is very analogous to that of water, and the same remarks might be made upon it. Where food is deficient in quantity or quality, it is evidently improper that an excess of salt should be used beyond that which is just sufficient to act as a complementary aliment and to dissolve the albumen; all beyond this is waste or worse. Encouragement should be given to employ instead other spicy flavourings which have not this tendency, or which have even a contrary tendency, as we shall see further on there is reason to believe is the case with several accessory aliments.

Without entirely anticipating all that is going to be exhibited by a detail of the valuable observations of the experimenters before-mentioned and others, it may be as well to state that the accessory aliments alluded to as possessing powers antagonistic to or contrasted with those of water and salt, are those which now follow, namely, alcoholic drinks, sugar, and theoid infusions.

The experiments of Dr. Böcker on the actions of Alcohol appear to have been made as carefully as those already detailed on the effects of water. He lived as usual, and took seven or eight times a-day a teaspoonful of spirits of wine. The immediate results may be stated in the five following deductions:

1. Alcohol diminishes the excretion both of the solid and fluid constituents of the urine.

 The following table exhibits the daily difference between the ordinary excretion and that which took place under the influence of alcohol, taking a mean of 9 days of the former and 6 days of the latter.

 Grammes.

 Under the use of alcohol there were excreted 1151:739 less urine.

 " " " " 1115:493 " water in it.

 " " " " 36:246 " solid constituents.

 " " " " 13:366 " urea.

 " " " " 0:091 " uric acid.

 " " " " 0:093 " mucus.

 " " " " 9:351 " fire-proof salts.

 " " " " 0:278 " earthy phosphates.

 " " " " 13:359 " { salts decomposed by heat and extractive matter.

2. Alcohol does not increase the cutaneous perspiration.

 This is not measured, but judged by experience. Dr. Böcker found that at night indeed he perspired somewhat more than usual, but by day much less. This shows, at any rate, that the skin does not take the place of the kidneys in exhaling water under the circumstances experimented upon, for had it done so, the body would evidently have been bathed in perspiration all the 24 hours.

3. Alcohol does not augment the fecal excretion.

4. Alcohol diminishes not only the absolute quantity of carbonic acid exhaled by the lungs, but also the relative proportion of it in the products of respiration.

 The experimenter calculates that when using alcohol he excreted daily
165744 cubic centimetres less than his ordinary quantity. It is no doubt open to conjecture that there occurred a compensatory increase in the carbonic acid excreted by the skin, but as that is reckoned by Dr. Hannover to be at most only one-twenty-fifth of the excretion of the lungs, it is difficult to imagine it could to any practical extent take their place. As to any compensatory excretion of the gas by the bowels, that would be obvious enough to the senses.

5. The excretion of water by the lungs is unaffected.

The observations on the blood which follow in the original essay relate to the chronic and not the immediate effects of alcohol. They compare the circulating fluid of the habitual temperate brandy drinker with that of a typical man, and find it deficient in solid organic constituents as a whole, deficient in fibrine as compared with albumen, and with the red particles apparently more carbonized, at least more black, than in perfect health. Two circumstances, however, must be considered before we allow these phenomena to be the pure results of alcohol; in the first place, the subjects were not in perfect health; one had tumbled down in going to church on a dark Christmas morning, another had headache, and so on; and, secondly, the mere fact of their habitual brandy-drinking shows a deficient energy of constitution arising perhaps from the very anaemia described—the state of blood may have been the cause, not the consequence, of the instinctive resort to a stimulant.

What now are the deductions from the above-detailed immediate physiological actions as to the right use of alcohol in diet?

"Alcohol," says Dr. Moleschott, "is a box for savings. A man who eats little and drinks moderately of alcohol retains in his tissues and blood more than he who, under corresponding circumstances, eats more without taking beer, wine, or brandy. Clearly then it is hard to rob the labourer, who in the sweat of his brow eats but a slender meal, of a means by which his deficient food is made to last him a longer time."

This is a little one-sided. When alcohol limits the consumption of tissue by metamorphic secretion, and so the requirement of aliments, while at the same time the man goes on working, it is right to inquire whence comes this new strength. It is supplied by something which is not decomposition of tissue—what is it then? A truly vital question, but one that must be answered before the above-quoted arguments can be allowed full sway, for on it depends the knowledge whether a man is only gaining additional strength or wasting his body, spending his income or diminishing his capital.

However, there is also a middle road: a man may so spend his capital as to enable him to replace it with interest afterwards, and be in a more prosperous condition than if he had not speculated. And such may possibly be really the state of the case as respects alcohol: it may, by its raising of the nervous energy, enable a man so to use his body, that during the consequent rest he absorbs or fixes enough to place himself in a better state than before. It is possible that by its purely physical consequences it may enable the body to make up for the immediate primary loss which it entails. But this is only a possibility, it cannot yet be used as a fact in favour of alcohol.

The really strong point is one grounded not on physical agency at all;
and it is one which curiously enough seems to have been quite passed over by Dr. Donders, Dr. Moleschott, Baron Liebig, Dr. Pereira, and all other modern dieticians, viz., the effect of alcohol as a prophylactic against the destructive energies of the mind. It is unnecessary to quote here proverbs in all tongues to show how work purely mental exhausts the body; how, for instance, not only the painful emotions, care, sorrow, anxiety, but the nobler enthusiasms, the afflatus of the poet, the ambition of the patriot, the fixed attention of the student, the abstraction of the lover, fret to dust their tenement of clay. Whether this arises from defective assimilation or increased destruction in the tissues is not known, and does not affect the argument. Animals, so far as we know, have not these causes of friction in their machinery, and require no defence against them. But we, thanks to the tree of knowledge, all of us daily experience them more or less, sometimes in a pleasant, sometimes in a painful degree, and to soothe our moved minds instinctively or rationally adopt some of the remedies which nature and art afford. "Then alcohol is a medicine, not a food!" Really it does not seem of any importance which you call it. If the passions instanced above are natural and normal, then it is a "natural and normal medicine;" and between that term and "food" the boundaries are too fine for practical purposes. With those who deny that the higher employments of the soul are natural, no arguments will avail.

Hitherto, that abstract being, an average healthy man, has been considered the representative of his class; but such is not the real subject matter either of the political economist or of the physician. A great crowd of those with whom we are in daily converse, useful working members of society, are either from birth or external causes under the necessity of accommodating the defects of their body to their circumstances by the exercise of reason. If they were mere animals, they would soon die; but being men, and able to adopt what are sometimes called "unnatural" habits, they live. Among these there are a great many who have found that they are the healthier when entirely abstaining from alcohol; but there are also many more who find that such a course would infallibly shorten their days and make them miserable. They exist by making a medicine (if we like to call it so) part of their food. It will not do in the present day of practice as opposed to theory, to ignore these weaker vessels, as Plato does in his model republic, and say, "let them die;" for there is just a possibility that they may constitute a majority, and at all events, they are an important minority. Alcohol they must and will have, for they have a right to demand it.

The reader must believe that it is under a great sense of responsibility that these few sentences in favour of the use of alcoholized stimulants are laid before him. It is superfluous to say how the use is defiled by the abuse, how the curse rings out so loud that the quiet blessings are unheard. A Silenos may well cry, in merited repentance—

"Ω Βρομίς, διὰ εἰ μνήμα τοῦ πονοῦς,"

but a thoughtful, reverent mind may discover sufficient evidence that the good outweighs the ill, and instead of condemning with superficial haste as an enemy the powerful agent he sees before him, will try and make it
more and more friendly to his species. To such a mind the following considerations will possess much interest.

Alcoholized stimulants are not all alcohol. Their power over the nervous system and mind does not bear even a direct ratio to the quantity they contain. Many other ingredients certainly contribute much to their gladdening of the heart, and very probably, also, to their benefit to the body. Sugars, acids, essential oils in great variety, fruity ethers constituting the flavours or "bouquets" of wines, tar, turpentine, &c. are the differences between one and another. A certain quantity of alcohol seems, indeed, essential to their wholesomeness and popularity; but experience shows that many of these compounds which contain almost a minimum amount of it, are most beneficial to the individual, and therefore to the nation. In using these the temperate man is less likely to exceed by error, and the indiscreet is under less temptation. They have the same advantage as finely graduated scales over coarse ones, they are a better measure. As a rough rule, it may be said, that those fermented drinks are most worthy of approbation which produce the greatest amount of comforting and exhilarating effect with the least amount of alcohol, reserving, however, the possibility that there is a certain minimum, beneath which the alcohol should not descend.

Instances will bring this subject most home to our feelings, at the same time as they will enable a few cautions to be given concerning the application of the general law, and circumstances which may modify it.

Beer, perhaps, fulfils the above-named desiderata better than any of the accessory drinks of our country; a small amount of alcohol is mixed with a still smaller amount of narcotic, the whole diluted with water, sugar, and flavouring substances, the products of the semi-combustion of the malt. The sum total of health and happiness derived from a moderate allowance of beer with the mid-day meal, can only be appreciated by those who have thought seriously on this subject, and made special inquiry among our quiet, temperate countrymen.

At the same time, it must be fairly conceded, that the classes which exceed in beer, do appear to suffer in constitution more from their folly than those that exceed in wine. Perhaps this arises from their station in life preventing them from otherwise defending themselves against disease, but partly, also, it is due to the frequently adulterated nature of the liquid they consume. The term "adulterated" is not intended to be restricted to that product of deliberate wickedness by which the simple public is induced to drink cocculus indicus, burnt sugar, quassia, &c., but also to the consequences of thoughtless stinginess on the part of manufacturers of high standing. The writer has had occasion to descend into a vat at one of our great metropolitan breweries, prepared for the immediate reception of porter, and found it so saturated with volatile acetic acid, that he could not keep his eyes open, so sharp was the vapour. In half an hour this was all mixed with the beer, and in ten days was probably all drank. Now a simple washing with water would have made the vat capable of giving birth to a pleasant and wholesome beverage, instead of one undergoing the kind of fermentation most noxious to the system. Surely there would be no tyranny in the appointment of a tribunal which should care for these things. The principle of inspection of private pro-
property which may peril human health on a large scale has long been conceded. "If there be any meaning in this legislation—if it imply any principle, the meaning and the principle require to be developed into a general law, that every establishment employing labour liable to inspection and regulation in regard of whatever acts and conditions are detrimental or hazardous to life."* What can be more so than the selling a noxious article cheap, under the name of a wholesome one worth a higher price?

The real effects of beer, taken in somewhat greater excess than we should recommend, are well exhibited in some experiments published by Dr. Böcker, and named at the head of this article. The experimenter took, during the observation of the urine, his ordinary diet, except that he added to it at breakfast half a maass (about 1 imperial pint) of sound home-brewed beer, containing 47·2 parts per 1000 alcohol. When observing the variations of the pulse, and excretion of carbonic acid, he took various recorded quantities, from one to as much as five maass.† The result of these experiments is, that there is a general resemblance between them and those with pure spirit, modified apparently in close proportion to the smaller quantity of alcohol contained in the drink under discussion, and to the amount of the antagonistic agent—water—therein absorbed. The only well-established particular which is not explicable on these grounds, is the much greater quantity of chloride of sodium excreted in the urine under the use of beer than of alcohol; a difference, for the cause of which we must look to the other substances contained in the compound—viz., to the extracts of hops and of malt, the sugar, athers, &c., or to their combined action. According to the analyses of Herr von der Marek, beer contains scarce a trace of chloride of sodium, and very little chloride of potassium; yet on the beer days, the experimenter found three grammes more of the former salt were in his urine than on the other days. So that there is no doubt about a physiological action of this aliment independent of the alcohol and water it contains.

In the above-named paper, the experimenter has not wholly confined his attention to the excretions; the variation in which from beer, being so analogous to those induced by alcohol in a dilute degree, need not be here repeated. But he has also noted the immediate changes wrought in the circulating blood. It must be allowed, however, that nothing very decisive comes out of these observations. Three persons in good health were bled, and the blood analyzed, first, after a fortnight's course of teetotalism, and secondly, after a diet of eight, fourteen, and fourteen days' duration respectively, taking from two to three maass of beer daily. The result was a decrease of water, an increase of fibrin, an increase of coloured clot. The clot, however, reddened with exposure to air much less rapidly than in quite normal blood, and contained many more of the pale, unucleated globules than is usual in the condition of perfect health. These

* Preface to Reports relating to the Sanitary Condition of the City of London. By John Simon, F.R.S.
† In estimating the accuracy of Dr. Böcker's powers of observation, it is necessary to remember that the beer was mild. London porter contains from 65 to 80 parts, and "Bass" as much as even 120 parts in a 1000 of alcohol, that is, is nearly three times as strong as the German. The maass varies in different parts of Germany from 2 to 3½ pints; it is probably the smaller measure that is used at Radervonswald.
paler globules, it is to be observed, Dr. Böcker holds with Dr. Virchow, to be defunct bodies, no longer capable of performing their duty of absorbing oxygen; a view which has received strong confirmation from some experiments of Dr. Moleschott’s, published in ‘Müller’s Archiv,’ in which he found that frogs, from whom the liver had been excised, lost their powers of expiring carbonic acid and absorbing oxygen in the proportion as those cloudy-tinted globules increased in number. The inference, therefore, which he draws, is, that the augmentation of solid matter in the sanguineous system from the drinking of beer is no evidence of increased vital powers, but merely a retention of partially effete matter. The observations, though not very conclusive, are, at all events, a correction of what might be inferred from the previously-quoted analyses of blood from brandy drinkers. They show, in fact, that the immediate consequence of alcoholic drinks is not the diminution of the solids in the blood.

As in the case of beer, so, too, of wine, experiment shows a considerable resemblance in its effects to those of pure alcohol modified by dilution; while, at the same time, there are certain differences from both liquids, important in a practical and scientific point of view.* The wines employed by Dr. Böcker were Niersteiner, a good second-class white Rhenish wine, and Walportzheimer, a red wine, made indeed in the Rhine country, but from the Burgundy grape. From one and a half to two and a half bottles were drunk daily, without otherwise altering the diet. The results were in both cases a diminution of the quantity of carbonic acid expired, more marked, however, in the Walportzheimer than the Niersteiner; a striking diminution in the loss by earthy phosphates, and a scarcely perceptible alteration in the cutaneous, urinary, and faecal excretions. The author proposes, at a future opportunity, to try the effects of effervescing and foreign wines,—experiments which will possess more interest for our countrymen than those made on the insufficiently appreciated German grape.

The mention made of the peculiar limitation of the loss of earthy phosphates by wine, leads us to the mention of another accessory food of wide-spread use—sugar. The result of observations made on the excretions during the use of it by Dr. Böcker,† show that it, too, restricts the waste of the body by decomposition, and that its effects are most marked on these products of the destruction of bone. The mean of eleven days exhibit, under the use of sugar, in the amount of earthy phosphates in the urine of twenty-four hours, for each kilogramme of bodily weight, a change from 0.0263 grammes to 0.0250, and a proportionate decrease in the phosphate of lime and magnesia respectively. The dietetic and medical deductions from these facts demand a separate consideration at a future time, and it is mentioned here simply to give an illustration of one of the complications which the presence of this substance in mixed drinks induces.

Another complication arises from the salts contained in them, especially in the German wines experimented upon. Observations made by the

* Dr. Böcker’s Beiträge zur Heilkunde, Band i. † Ibid.
same indefatigable physician who has been so often quoted lead to the conclusion, that acetate of potass, while it augments the general amount of solid constituents in the urine, owes that augmentation chiefly to the chlorides, and that it, like sugar, diminishes the loss of phosphates. Here, however, we are getting into the domain of materia medica, rather than of diet, and would merely remark, that the tartaric and acetic salts of wine must not be left out of consideration, till we know by experience their real physiological value.

There are, then, to be found in alcohol real uses—it is a defence against the evils of defective nutrition dependent on either social or pathological causes, as well as a defence against the wear of the body by that immortal part which is indeed the end of our being. And in mixed alcoholic drinks we have presented to us modes of modifying these defences, so as to suit each particular case, whether national or individual. Surely then that is a truer philanthropy which turns its attention to increasing the variety and quantity of wholesome fermented liquors, than that which, by precept or example, endeavours to deter men from them altogether.

Tea, Coffee, and Chocolate, have a much less suspected character than alcohol: it is only as medical men, and in exceptional cases, that we can be called upon to say anything against them. And even then we can often avoid a direct condemnation by modifying the times and modes of taking them. No accusation having been made of social or individual injury of calculable extent resulting, and a very decided gratification occurring, there can be no doubt of their use being a gain to the nation. They are a pleasure without consequent pain.

But shall we attribute no further value to these articles? Shall we say that money to the amount of twenty-six million sterling, annually spent by our country in their purchase, is laid out on a temporary titillation of the nerves, and that just as much has to be expended on other food as if this luxury had not been imported?

Such questions are answered by an equally elaborate and self-sacrificing collection of experiments upon himself by Dr. Böcker, and detailed in the paper named at the head of this article, for the purpose of testing the effects of Tea on the organism. The first set of the first series consists of seven observations of twenty-four hours' duration each, in the months of July and August, with three barely sufficient meals per diem, in quantities as nearly equal each day as could be managed, and with only spring-water to drink. The second set comprises the same number of observations in August, September, and October, under similar circumstances, except that infusion of tea, drank cold, was taken instead of plain water. Each day there are carefully recorded the quantity of urine, of eighteen of its ingredients separately, the weight of faces and of the water and solid matter contained therein, with the degree of alkaline reaction, colour, and odour, the amount of insensible respiration and of expired carbonic acid, the quickness of respiration, the beats of the pulse, together with accurate notes of the duration of bodily exercise in the open air, the loss of weight in the whole body, the general feelings, and the circumstances, thermometric, barometric, and meteoric, under which the observations are taken.
It was desirable, for the accurate comparison of the results, that a nearly equal (and that necessarily a limited) quantity of food should be eaten daily; and, in consequence, there was a certain loss of weight entailed. This might seem to some persons to vitiate the conclusions, inasmuch as the body was not quite in a normal state; so a second series of seventeen experiments, of equal duration, were made, and at a different time of year, so as to answer the question which might arise as to whether the season made any difference. In these the weight of urinary constituents, and of the feces, are examined under the three following circumstances—viz., while taking tea as an ordinary drink, on the days immediately following the leaving it off, and on other days when it was not taken. Solid food was eaten in measure limited only by appetite.

A third series of four experiments was also made, during four fasts of thirty-six hours each, two with water only, and two with tea to drink. On these occasions the author's business did not allow him to place himself under precisely equal conditions of occupation, and, moreover, his weight at the commencement of each observation was not the same. So that in some phenomena, especially as respects loss of substance, they do not agree with the two former series.

However, in the following particulars, all the three series so entirely coincide, that the conclusions will be set down as general deductions from the whole. The details of each will be quoted only as illustrations, or as indications of modifying circumstances:*

1. Tea, in ordinary doses, has not any effect on the amount of carbonic acid expired, the frequency of the respiration, or of the pulse.

2. When the diet is insufficient, tea limits very much the loss of weight thereby entailed.

This is strikingly shown in the first series of experiments. In the seven days on which tea was taken to drink, the weight of solid matter eaten was, on an average, 12.89 grammes (7 drachms avoird.) less than when water alone was drunk: yet the loss of weight of the whole body was, on each of the former days, but 203 grammes, on the latter, 539 grammes, showing a wear of 336 grammes (nearly 12 ounces avoird.) less under the influence of tea than with water only.

3. When the diet is insufficient, the body is more likely to gain weight when tea is taken, than when not.

This is shown in the second series of experiments; the tea-drinking days of which are the only instances of augmented weight.

4. Tea diminishes very much the loss of substance in the shape of urea.

In the first series the daily allowance, though less copious on the tea days, was more nitrogenized, and nitrogen, also, it must be remembered, was taken in as then, yet in spite of this the quantity of urea secreted in twenty-four hours was nearly a grammé less than on the water days, the numbers being in the first case 34.221, in the latter, 35.194 grammes. The quantity of water and other constituents passed in the urine was also lessened.

Still more strikingly is this shown in the days of complete fast, when

* For the details of Böcker's experiments, see this journal, No. 24, p. 542.
pure spring water is seen to cause a greater loss by urea than infusion of tea, in spite of the supply of nitrogen contained in the latter. The difference also is seen to exist in spite of an increased amount of bodily exercise.

5. It lessens remarkably the quantity of feces secreted.

In the first series of experiments with insufficient diet on the tea days their weight was, on an average, 96 grammes, on the water days 178 grammes. In the second series it is remarkable that on the days immediately following leaving off tea and taking to water a great augmentation of the feces is noted, as if water alone acted as an evacuant in those who are habituated to tea.

6. The loss by perspiration is also limited by tea.

In the first series it was 1335.7 grammes on tea days, on water days 1349.9 grammes.

Parallel with these observations there run a set of experiments made by Dr. Julius Lehmann on two individuals to exhibit the effects of coffee on the excretion of phosphoric acid, chloride of sodium, and urea by the kidneys. They are less full than Dr. Böcker's, in that they concern the urine alone, and are less in number; but, on the other hand, they are more complete in showing the separate actions of the several constituents of the coffee bean—viz., caffeine and empyreumatic oil, as well as of the mixture. Some of the effects of excess are also shown, to which the paper on tea makes no reference. The results are as follows:

1. That coffee produces on the organism two chief effects, which it is very difficult to connect together—viz., the raising the activity of the vascular and nervous systems, and protracing remarkably the decomposition of the tissues.

2. That it is the reciprocal modifications of the specific actions of the empyreumatic oil and caffeine contained in the bean which call forth the stimulant effects of coffee, and, therefore, those peculiarities of it which possess importance in our eyes—viz., the rousing into new life the soul prostrated by exertion, and especially the giving it greater elasticity and attuning it to meditation, and producing a general feeling of comfort and cheerfulness.

3. That the protraction of metamorphic decomposition which this beverage produces in the body is chiefly caused by the empyreumatic oil, and that the caffeine only causes it when it is taken in larger quantity than usual.

4. That caffeine (in excess) produces increased action of the heart, rigors, derangement of the urinary organs, headache, a peculiar inebriation, delirium, and so on.

5. That the empyreumatic oil (in excess) causes perspirations and diuresis, quickened motion of the bowels, and augmented activity of the understanding; which may indeed, by an increase of dose, end in irregular trains of thought and congestions, restlessness and incapacity for sleep.”

Though both our authors have frequent occasion to allude to the effects of tea and coffee on the mind, produced as they have just reason for concluding through the body, yet they do not seem to have thought of taking into consideration the reciprocal consequence, the reaction of the spiritual on the material. But we cannot doubt that while mental com-

* We may refer here to an analysis of a paper by Dr. Zobel on coffee, given in a former number of this journal, No. 24, p. 548.
fort results from the physiological action of these aliments, this mental comfort also helps towards the healthy working of the organism. The subject is too familiar to need much illustration, and has been lately brought under the reader’s memory. Perhaps, too, they have not allowed sufficiently for the effect of habit on the subjects of their experiments,—that is to say, of habit acting through the mind. When a man has been used to take tea or coffee daily for many years, it is a constant slight source of annoyance to give it up, and this may cause him to exhibit rather more loss of substance under water-drinking than arises from the mere physical action of the change. If an individual has always walked with a slouch, or with his hands in his pockets, or touched the posts as he went through the streets, he would, if debarred from these customs, most likely pass an increased amount of urine and feces. Recruits always lose weight, though their work may be less laborious than previously. And it is difficult to say how long this mental influence would last. Dr. Lehmann permits, indeed, a few days to pass over before he commences his estimate; in fact, he waits till the amount has got steady, but it may be doubted if that is quite sufficient. Dr. Böcker has not allowed for this disturbing influence at all. However, though those latter considerations may make us think the figures in the results perhaps a little exaggerated, they by no means invalidate the conclusions.

The distinct statements of Dr. Lehmann and the daily records by Dr. Böcker of his feelings and sleep, of the colour, smell, and consistency of urine and feces, show that the subjects of these experiments were in a practically normal state during the whole of the time they were under observation, so that any fallacy supposed to arise from pathological causes for the variations in the bodily phenomena is excluded. We may take them to represent the real effects of tea and coffee on a healthy person.

What an important effect this is! The tea and coffee drinker may have less to eat, and yet lose less weight—wear his body out less—than a water drinker. At a comparatively small expense he may save some of the costly parts of his diet, those nitrogenized solids that entail so much thought, labour, and anxiety to obtain. The loss of carbon indeed goes on much as usual, and a moderate outlay will supply that—but what an economy it is to spare the quantity consumed of meat, bread, milk, and all the most expensive viands! Besides the thein (or caff-in, for they may be viewed for the present purpose, at any rate, as identical) and the essential oils, there is contained in both tea and coffee a certain amount of difficultly soluble vegetable albumen, and in the former especially a large quantity of tannin. The presence of these substances introduces several modifications in the modes of using the plants as a beverage, and renders one or the other best fitted for people under different circumstances. The tea leaf, infused for a short time, parts with its essential oil and a small portion of alkaloid, a good deal of which with the tannin and vegetable albumen is thrown away with the grounds. If it stands too long or is boiled, more indeed is got out of it, but an astringent disagreeable drink is the result. Hence it is most suitable for those who can afford to waste some of their food, for the sake of having the rest more agreeable. The boiling of coffee extracts all its oil and alkaloid too, and, when it is drunk in the Eastern method with the grounds,
allows the whole nutriment to be available. Even when strained it is
clearly more economical than tea, and appears therefore the most proper
beverage for a poor man. It may be doubted, however, whether we
might not make our tea go further than is at present the custom, if we
were to adopt other modes of preparation. The following description
of the cookery adopted among the Baratsky Tartars is from the travels of
Bell of Auchterony, written in the middle of the last century, but it is
to be observed that MM. Huc and Gabet give a similar account of that
employed in the wilds of Chinese Tartary in the present day.

"A large iron kettle was placed on the fire, and wiped clean with a horse’s tail,
then water was put in, and then coarse broken tea and salt. When it was near
boiling, she took a large brass ladle, and tossed the tea till the liquor turned very
brown. It was now taken off the fire, and after subsiding a little was poured
clear into another place. The mistress now prepared a paste of meal and fresh
butter, that hung in a skin by the horse’s tail, which was put in the kettle and
fried. Upon this paste the tea was poured, to which was added some good thick
cream. The ladle was again employed for about six minutes, when the tea being
removed from the fire was allowed to get cool."*

In this there appear three points worthy of at least modified imitation
under some circumstances. The mixing of the salt with the tea makes
the albumen more soluble, and enables it to be digested, and really with
use becomes just as palatable as sugar. Then the consumption of the
whole decoction allows of no waste. Thirdly, the addition of meal forms
a mixture of complementary and accessory food which must be exceedingly
nutritious, while at the same time it probably diminishes the objectionable
taste of the tannin. The whole dinner reminds one of the Australian
diet of “tea and damper,” and where “damper” is deficient, perhaps may
afford a traveller a hint.

Chocolate exhibits, according to its mode of manufacture, a variable
amount of the alkaloid, allied to that in tea and coffee, theobromine. It
is, however, under all circumstances, much inferior to them in respect of
this constituent. The fat, the butter, the starch, and the albumen, which
it contains, may be obtained cheaper and more digestible in another shape.
It is a luxury for the rich, or an expedient for the invalid, not an economi-
mical nutriment. This is sensibly enough felt by our nation, as shown by
the custom-house returns. In the year ending January 1st, 1854, while
upwards of fifty-eight and a half million pounds of tea, and upwards of
thirty-seven million pounds of coffee, paid duty for home consumption,
of cocoa not half a million pounds were imported for the same purpose.
This, too, is in spite of the much larger quantity of the cocoa bean which
is required to make enough for a meal than of the other two.

As respects the use of the three articles in a medical point of view,
what has gone before indicates their mode of employment. When we
desire to have the fullest physiological effects, with the least bulk, as a
temporary medicine, we shall be best suited by strong infusion of tea; for
in that the essential oil, which is shown before to be more energetic than
the alkaloid, is predominant. If we would wish to choose as a daily
drink that which is the most powerful of ordinary beverages, we may

take coffee of the consistency it usually is. If we aim at a less vigorous action, it is afforded in tea made weak, according to the customary method. If this is too violent for the patient, and at the same time he rebels against plain water, we may compound the matter by getting him to take thin chocolate.

We may also learn from the observed physiological actions to simplify very much the indications and contra-indications of the use of this class of beverages by the sick. Where, for instance, we would limit the loss of substance, as in consumptions, colliquative diseases, the emaciation of fevers, &c., the accessory drinks are most valuable; they will, in acute cases, save a life which hangs on a thread, in chronic cases prolong the days to an almost indefinite period. In persons who have no disorder admitting of nomenclature, but who are what they call "poor creatures," that is to say, unequal to ordinary exertion of mind or body without an exhausting loss of substance, an useless existence is often by these means made into real life.* The pathology of these cases, probably, is some incapability of taking up by absorption, or of making into blood, or of fixing in the solid tissues sufficient nutriment to supply the waste. They are, therefore, always on insufficient diet, however much they put down their throats. The obvious indication, then, is to limit the waste by some such means as the accessory foods. When, too, the nervous energy is sluggish, the circulation weak and slow, each may, by their cautious employment, be rendered normal. It is not necessary to quote instances of these facts, they are familiar to all as exemplified in the medical use of alcohol, but the same will also be found true of tea and its colleagues, in a minor degree, if we observe their actions. Of all, the great physical effect is to limit destructive absorption, increase nervous energy, and give mental pleasure. With equal clearness the contra-indications are pointed at by the experiments which have been detailed. When it is desirable that secretion should go on quicker, that destructive absorption should be encouraged for a shorter or longer period, then we must forbid accessory foods to a greater or less extent. In the hypertrophic temperament they are noxious; the present author has long been in the habit of forbidding tea, as well as alcohol, to obese persons with striking advantage, and he thinks that good effect has followed its disuse in cases of thickened heart in muscular subjects, though of course the last result is difficult to trace. In gouty constitutions the whole class disagrees to a greater or less extent. Fermented liquids are pretty generally, in the present day, cautiously used by such patients, without our advice; but they are not aware of the objections which may lie against tea and coffee, and the chance of cure by giving them up. A temperate barrister, a college friend of the author's, of a gouty family, used to endure a martyrdom from acid eructations and vomiting, with gastrodynia, &c., till he adhered to cold water instead of tea, coffee, or chocolate at breakfast, when his symptoms ceased. In certain skin diseases, which appear to persist from defect of destructive absorption, water-drinking is often a most salutary temporary measure; when the nervous system is too sensitive, when the circulation too

* What shall be said of diabetes? The decided arrest of emaciation which the writer has several times seen result from the use of bottled porter, in spite of the sugar in it, strongly inclines him to favour accessory drinks in that disease.
excited, tea and alcohol are equally injurious, and, *ceteris paribus*, should be abstained from. In fact, so many cases are benefitted, that the homœopaths and hydropaths, whose whole secret lies in a combination of abstinence from accessory foods with mental amusement, are able to vaunt their systems as an universal panacea. By the simple process of lying, wilfully or ignorantly, they succeed in easily overcoming a difficulty which gives us much trouble; they gladden the patient's heart, by inducing him to have faith in a panacea, and enjoy himself in the country, at the same time as they augment the destructive assimilation in the body. If we keep this in mind, we may usually succeed in attaining the same object in an honest way; but it requires much thought and contrivance on our part, and good sense on the part of the patient. The difficulty is obvious enough—a vast number of cases of disease exhibit deficient nervous energy at the same time as they require an augmentation of destructive secretion, and *vice versa*, augmented excitability of nerve while the destruction demands arrest. Now, as the remedial discipline of accessory foods, or abstinence from them, combine the qualities in a transverse manner (that is, limited destruction and augmented nervous excitement, or augmented destruction and depression of nerve power), a very complex management of purely physical agents becomes necessary to make them beneficial. But why should we confine ourselves to purely physical agents? Why should not the mind be made to reciprocate the many benefits it receives from its slave? Why should not the joys of an easy sociable life in a beautiful country, new faces, shady woods and mountain breezes, be made available to rational medicine as well as to empiricism? It is certain that a "rational establishment," would in the end answer as well as a "homœopathic," or "hydroopathic establishment," and the undertaking may be conscientiously recommended to our speculative friends, who can obtain a good site at a moderate rent.

It is to be feared that the accessory articles of whose intimate relation to nutrition we have any practical knowledge is now exhausted. There are many others concerning which, as physicians, we would gladly be able to give a rational opinion, but, unfortunately, we have been able to investigate only the worst side, and learn the mischief which they do—

"Their evil manners live in brass; their virtues
We write in water."

Yet is it reasonable to suppose, that unless they do harm, pepper, spices, ætherial flavours, &c. are simply indifferent? Is all the tobacco burnt in England, at the expense of six millions sterling a year, pure waste? Surely the universal propensity of our race to these articles should lead us to conclude that there is an use as well as an abuse. To find dyspepsia arising from too much spice, or the salivary secretion vitiated, and the nerves shaken by excessive smoking, is easy enough; but we wait for a series of experiments on them like those above related on tea and coffee, to know what happens to those who take them and do not suffer.

It would be also very desirable to know more of proposed substitutes for customary beverages. Chicoreë may be justly set down, even on present information, as no substitute at all, but a cheat and adulteration. It has none of the beneficial effects of coffee. But a considerable interest
attaches to the recent introduction from Sumatra of the roasted leaf of the coffee plant, instead of the bean. The author must confess that he finds it nasty, resembling tea made in a coffee pot, and wanting in "bouquet;" but that may arise from its over-drying. The great reason for encouraging its importation is the low price, said to be capable of being reduced to twopence a pound, and that it can be grown in a climate where the bean will not ripen. This would, indeed, be a boon to the labouring man, if the article is worth having at all; which, in fact, is the gist of the whole question, and can be decided only by experience finally, though, in defect of that, chemical analysis is not devoid of value.

Now it appears from the analysis of Dr. Stenhouse, that the Sumatra coffee leaves are very rich in the desirable alkaloid, and that the same substance is also contained largely in the leaves of the *Ilex paraguayensis*, or Paraguay tea. They contain, in fact, more than the coffee berry, though not so much as the Chinese leaf. The proportions are as follows:

<table>
<thead>
<tr>
<th></th>
<th>Contains</th>
<th>from</th>
<th>2 to 2 1/3 % per cent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good black tea</td>
<td></td>
<td>1 15</td>
<td>1 15 to 1 25</td>
</tr>
<tr>
<td>Coffee leaves</td>
<td>''</td>
<td>1 1 1/2</td>
<td>1 1 1/2 to 1 23</td>
</tr>
<tr>
<td>Paraguay tea</td>
<td>''</td>
<td>1 1 1/4</td>
<td>a mean of 1</td>
</tr>
<tr>
<td>Coffee berry</td>
<td>''</td>
<td>1 1 1/5</td>
<td>1 1 1/5</td>
</tr>
</tbody>
</table>

These Sumatra leaves contain, also, more soluble substance than the beans, in the ratio of 38.8 to 29.1 per cent. The taste and the quantity of essential oil depend probably on the mode of preparation, which evidently requires improvement. At all events, we have here offered a chance of cheapening a most valuable article of diet without any cheating or adulteration, and probable a great boon to society.

Speaking of cheap teas for the poor leads us to expensive teas for the rich. There is no reason why we should so obstinately adhere to our coarse black leaf, when we can well afford the delicious "padre-souchong," scented with gardenia, or the "hyson-pekoe," made from the young buds, or the yellow teas drunk by wealthy mandarins. These would do away with the necessity for milk and sugar, and so avoid one of the fertilest sources of complaint to the dyspeptic. Let us demand them, and we shall soon get them.

A question may naturally occur to a cautious man, willing to know the real merits and demerits of accessory foods, whether, allowing immediate good results, we may not expect the accumulation of postponed evil to come upon us in the end? A man may feel himself stronger, and grow heavier for a week or a month, but does not some indefinite disease, or shortening of life, at last repay him with interest? A book lately had a considerable sale, writ by an unfortunate man, who traced all the evils to which flesh is subject to the use of salt: to tea has been ascribed all the imaginary degeneracy of the nineteenth century: the rational motives which led to the temperance movement have been overlaid by the illogical theories of teetotallers, denouncing all fermented drinks: tobacco, again, has been so "counter-blasted" by royal and other pens, that one might imagine smoking had only to be stopped to free the world from half its miseries. It is very difficult to prove to the million a negative to statements like these. The experience of medical men and physiologists, however, will probably lead them, on reflection, to assent to a proposition
which is in fact the contrary—viz., that where, on close observation, no immediate pathological phenomena are found to occur, no future organic injury is to be apprehended. An opponent might perhaps point to an old gin-drinker, with his liver hardened, and his gastric glands degenerated, and ask whether he felt the worse after each glass of spirits? This is a very case in point; perhaps the man’s own sensations were so blunt and unnatural that he did not feel the worse, but if you could have looked into his stomach, as Dr. Beaumont did into Alexis St. Martin’s, you would have seen what all the world knows was there visible after each excess. All that is required is close observation by competent physiologists, and there is no doubt but we should find, after each exposure of the body to that which is in the end hurtful, some decided abnormal phenomena, not less marked than the state of St. Martin’s stomach, if we knew where to look for it. Before, then, we condemn any habit, we will demand to see bad effects from individual indulgences in it.

It is desirable, before concluding, to make a few remarks on the essential difference between temperate enjoyment and excess. The results of the one are not, for practical purposes, minor degrees of the other: physically speaking, indeed, they are so, but not in the sense in which the argument is ordinarily urged. It is true that the sense of satisfaction which follows a mouthful of wine is excited in the same way as the maniacal raving of the drunkard; so, too, the luxurious glow experienced on rising from a cold bath is of the same nature as erysipelas, or the scald of boiling water. In the latter case, one distinguishes in a moment the normal and abnormal, and so we should act in the former also. Language is not sufficiently perfect to define what is meant by “health,” but, if we consult our common sense, we all know; and applying our knowledge to the present case, we may say, that following an instinct* is not an excess, when a man is, after it, as capable as usual of doing his duty, and has no unhealthy state of body.

Some apology is due to Drs. Donders and Moleschott for the sparing notice taken of the two works placed at the head of our list. This has arisen not from any blindness to their merits. They are, in truth, very valuable little popular treatises, such as it would be gratifying to have more common. There is nothing so much prevents the assignment of that honour and influence to the medical profession which it justly deserves, as the ignorance of educated people on all points connected with its most intellectual parts. A knowledge of the principles of law and of theology is forced upon every one who wishes to occupy a certain position in society; but that physiology is a science requiring a high tone of intellect, still more that it is a science necessary to those whom he is acquainted with principally as bill-makers and fee-takers, may be utterly unknown to him. Such books as these introduced into our railway literature would do much to dissipate the state of darkness. A tone of addressing the public, genial, easy, and manly, without affectation, and, still more, without childishness, will soon win their hearts and brains to know us

* It is surely not wrong to call the inclination to alcoholic drinks an “instinct,” when we see the difficulty of forging chains sufficiently strong to restrain men from them. The editor of the “Band of Hope Review” states, that of 500,000 in the United States who had taken the solemn vow of abstinence, 350,000 broke it—an awful outburst of nature! Have the same proportion ever broken vows of chastity or any other solemn obligation?
and love us better. It is pleasant to see a step made in the right direction by the cheap republication of 'Hufeland's Art of Prolonging Life,' by Mr. E. Wilson, and in 'Johnston's Chemistry of Common Life,' an excellent work, in spite of a little affectation in the titles of the chapters; and it may be hoped that translations of Dr. Douders and Dr. Moleschott will follow.

T. K. Chambers.

Review XII.

1. *Die Speck oder Cholestrinkrankheit.* Vom Prosector H. MECKEL. ('Annalen des Charité Krankenhauses zu Berlin.' Vierter Jahrgang, Heft 2, s. 264.)

The Lardaceous or Cholesterine Disease. By Dr. MECKEL.

2. *On some Points in the Pathology of the Liver.* By W. T. GAIRDNER, M.D. *With Seven Analyses.* By Dr. JAMES DRUMMOND. ('Monthly Journal,' May, 1854.)

The German term "speckig," which literally means bacon-like, has been usually translated into English by the word lardaceous, derived immediately from the French, lard, and remotely from the Latin, lardum, lardum. The disease in which a bacon-like or lardaceous infiltration of organs occurs has now received from Dr. Meckel another appellation—viz., the cholesterine affection. The propriety or otherwise of this term will appear in the sequel.

The lardaceous disease of the liver was described by Portal and Abercrombie as an albuminous infiltration; by others it was looked upon as a disease of fatty nature; and lately, Budd, referring especially to its presumed causality, has described it as the "scrofulous liver."

Rokitansky (1842) first described with sufficient detail the lardaceous infiltration of the kidney, and made of it his eighth form of Bright's disease. Hodgkin, and subsequently Rokitansky, described the lardaceous spleen, and the latter pathologist attempted to show that the cause of the disease of these three organs was a deep-seated cachexia, the profounder features of which, as far as the blood was concerned, remained to be investigated. Rokitansky made no chemical examination of the infiltrated material, but appears to have assumed that it was of albuminous nature.

We need not refer to the later opinions of Oppolzer, who used the term colloid; or of Baron, who termed the disease "carnification-dyscrasia;" or of Engel, who ranged it under the head of true hypertrophies; or of many of our own countrymen, who have employed the epithet "waxy" to designate this peculiar condition. It is sufficient to observe, that the lardaceous infiltration of the liver, spleen, and kidneys, has been recognised of late years, with greater or less precision, by most writers.

A remarkable interest has been lately given to the microscopic examination of the infiltrated matter in this affection by the statement of Virchow, that the enlarged Malpighian follicles in the lardaceous spleen are composed of a substance which gives the chemical reactions of cellulose. We have, in a later review, given a summary of Virchow's opinions, and have there, also, referred to the paper by Meckel which is now before us.
Our present object is to analyze this paper at greater length, as the statements made in it are of very great interest.

The coarser physical characters of the lardaceous liver, spleen, and kidneys are so thoroughly detailed in the works of Rokitansky and others, that we need not delay on this point.

The chief progress which has been made by Meckel is in the chemical examination of this infiltrated matter. A fresh lardaceous liver, spleen, or kidney yields to hot or boiling water a large quantity of a substance which has an acid reaction, is tasteless, and is soluble in water, with which it can be made to froth; it does not pass over when distilled with water; it does not hinder albuminous solutions from passing through membranes saturated with it; caustic potash makes its solution clearer; hydrochloric acid decomposes it, and brings into view fat drops, which form on the surface.

The lardaceous organ yields to cold alcohol a yellow-brown crystalline oily pulp; to hot alcohol a larger quantity of similar substance. Ether extracts a small quantity of similar substance. Meckel considers this substance to be a soap, a combination of bases (the exact nature of which he leaves undetermined), with an excess of fatty acid.

When the solution is evaporated, the following microscopic appearances are seen. It should be mentioned that there is never any polarization of the light (absence of sugar):

1. Pure, almost colourless oil-drops, coloured yellow or brown by iodine, then made darker by sulphuric acid, without any play of colour.
2. Similar oil-drops, made of a dark blue-green colour by iodine and sulphuric acid.
3. Oil-drops, simple, or in concentric layers, coloured at first beautifully violet, then blue, then dark-brown, by iodine and sulphuric acid.
4. Aggregated nodules and various extraordinary forms of a colourless fat, partly in extremely fine stratified drops, partly in long stratified, straight, or winding cylinders, with double outlines, exactly like nerves; partly appearing as simple drops, with, perhaps, enclosed water-drops and crystals. All these are scarcely coloured by iodine, and are rendered by sulphuric acid entirely colourless.
5. Needle-form crystals, single and in bundles, not coloured by iodine; rendered by sulphuric acid beautifully blue and green.
6. Cholesterine crystals, not coloured directly by iodine, but exhibiting after the application of iodine and of sulphuric acid a beautiful play of colours, first violet, then for days indigo and cerulean blue, then later a beautiful emerald green.

Such a chaos of substances is indicated in these reactions, that a perfect isolation and description of them is not at present to be hoped for; but Meckel believes that the reactions with iodine and sulphuric acid of the fresh organ, and not of the extract, are sufficiently precise to enable us to distinguish at least four substances, which he calls the "speck-roth, speck-violet, cholesterin, and speck-kalk." The literal translation of these terms would be bacon-red, bacon-violet, cholesterine, and bacon chalk! but as the genius of our language is little adapted for the translation of such Germanisms, we shall not attempt to render them literally.

1. The lardaceous substance, which gives the red reaction (speck-roth), is the most abundant and widest spread. It is colourless, semi-trans-
parent, and, when in large quantity, presents the appearance of a jelly-like
firm grey infiltration, without evident oil-drops. It is, according to
Meckel, a peculiar double body, composed of coagulated albumen and a
fat. This substance can be always recognised by the simple iodine reaction,
which gives a yellow-red colour, distinct from the violet-red of dextrin.

2. The lardaceous substance with the violet reaction (speck-violet) is a
firmer, denser substance, in much smaller quantity than the former. It
is probably a combination of cholesterine and other fats. It seems to
occur in the normal state in the "corpora amylacea." In disease it is
often found in the little arteries, especially in the Malpighian bodies in
the lardaceous kidney. To produce the violet reaction, sulphuric acid
must be added after the iodine.

3. Pure isolated cholesterine is seldom found in lardaceous exudation.
It is present without the two former substances in the large arteries of
those affected with lardaceous disease. Meckel found it once with the
substance with red reaction (speck-roth) in the cerebral vessels of a lunatic.

4. The lardaceous substance with calcareous matter is found only in
the kidney, and here only in small quantity. It is greatest in quantity
in the Malpighian corpuscles.

The exact nature of the peculiar fat which plays so important a part
in the composition of all these compounds is unknown. No other fat
shows this reaction with iodine. The author thinks it cannot be related
to starch and dextrine. The common kinds of fat form, he suggests,
the basis of the lardaceous fat, and then, through the influence of bases,
peculiar changes occur, which at first produce soaps of ammonia and
other alkalis, and end at last in the production of cholesterine, and of
compounds of chalk with the lardaceous exudation.

After attempting to define to some extent the chemical nature of this
peculiar exudation, Meckel enters upon the consideration of the lardae-
cous disease in general. This affection has as yet been recognised only
in the dead-house, and chiefly in persons who have suffered from some
profound chronic malady, such as syphilis with mercurial cachexia, scro-
fulo-rachitic affection with or without abscesses, or lung and intestine-
tuberculosis. The relation between the general lardaceous disease and
tuberculosis is discussed at some length, but we shall pass over this, in
order to come to the more positive and interesting points connected with
the development of the disease.

Meckel believes that there is a peculiar blood-dyscrasia; he does not
imply by this term that the special lardaceous material is found in the
blood, but that the blood contains some substances (fat, chalk, &c.), which
may form in certain tissues abnormal compounds with some of the normal
ingredients of those tissues.

In the dyscrasia leading to this disease all fatty tissues may receive or
form the lardaceous material. It is always found in such cases in the
system of the smallest arteries and walls of the capillaries. It is, how-
ever, never found in the arteries of the bones, and very seldom in those
of the brain. The arteries of the stomach seldom contain much, those
of the duodenum a great deal. In commencing lardaceous disease of the
spleen it is the arteries which first suffer. In the kidneys the disease
also attacks the arteries first, and especially the arteriae afferens et effe-
rens of the glomeruli, and the coil itself.*

The veins have never given evidence of lardaceous disease.

The thyroid gland is seldom affected. The heart is usually not in-
volved, or rather is not lardaceous. No lardaceous deposit has ever been
found in the lungs by this author.

The spleen in the lardaceous affection is never free from disease, although
in some cases nothing may be apparent to the unassisted eye. The arti-
cial capillaries are lardaceous, and sometimes have little lateral bulgings
(ektasis), especially when in connexion with the Malpighian corpuscles.
These bodies contain at first normal splenic corpuscles; at a later stage
some irregular granular jelly-like lymph corpuscles appear between them,
which are infiltrated with the substance giving the red reaction; then
little masses of lardaceous substance appear. These masses increase, so
that the spleen in advanced cases is enlarged, and on section the grey,
hard, lardaceous, Malpighian bodies are visible to the naked eye. In the
most developed stage of the disease the whole spleen is lardaceous.

Slight lardaceous disease of the liver begins with the appearance of the
substance with the red reaction, probably in the cells. The reaction of
iodine distinguishes at once every lardaceous cell from every bile or fatty
one, if such be present. The substance with violet reaction is rare. The
lardaceous liver is usually, but not always, enlarged. The bile appears
rich in cholesterine, and gall-stones are common, and once Meckel found
the lardaceous substance in the bile. There is no icterus. The liver was
affected in 8 of 11 cases recorded by the author.†

The lardaceous affection of the intestinal canal is very interesting; in
some cases there is inflammation with fibrinous exudation on the mucous
membrane, and in this exudation lardaceous substance is found; on exa-
mining the membrane itself, the points of the villi, then the villi alto-
gether, then the whole membrane are found infiltrated with the lardaceous
substance, giving the red reaction, while in the non-inflamed parts of the
intestine nothing of the kind is found. The inflammation assumes some-
times the shape of rings. In other cases the lardaceous matter is
infiltrated into the solitary and Peyerian glands.

The kidneys are only affected in general lardaceous disease. It com-
mences, as already said, in the vessels of the glomeruli, but the lardaceous
substance does not appear to prevent entirely the passage of water or of
albumen. From the Malpighian bodies the deposit passes into the enter-
ing and efferent vessels, then into the membrane of the tubes, and then
more or less through the whole organ. The vessels are much thickened,
and Meckel conjectures that Dr. George Johnson referred to this con-

* Meckel observes in reference to this, that there are few examples which show any relation
between dyscrasia, medicines, and poisons, and the Malpighian corpuscles, whereas there occurs
especially in them icteric, fatty, and chalky depositions. He alludes, however, to the case of an
epileptic patient treated with nitrate of silver for a long time, whose renal Malpighian bodies
showed after death a dark blue-black colour, which was found to depend on the infiltration of
their walls with a pigment which contained silver.

† Frerichs (Wien Med. Wochenschrift, vi. 1854, and Schmidt's Jahrb., Band lxxxii., p. 5) relates a case of lardaceous liver in a girl aged nine years. There was attendant ascites; and
on paracentesis being performed, a large quantity of sugar was found in the fluid. With the
exception of cases of diabetes, Frerichs states that sugar has never yet been found in ascitic
fluid, and suggests that its presence may be a diagnostic sign of lardaceous liver.
dition when he described the thickening of the coats of the vessels in morbus Brightii. The substance giving the red reaction is first seen in the kidney, then more and more of the substance with the violet reaction appears, and, finally, the lardaceous chalk appears.

So much for the pathological anatomy of this affection. As to its symptoms, little is known. The urine is albuminous, and probably the lardaceous substance sometimes appears in it. In 9 of the 11 cases there was anasarca, and the case was in several instances called Bright's disease. Meckel does not describe the microscopical or chemical examination of the urine. The diagnosis of the lardaceous kidney remains then to be discovered. If in the so-called renal dropsy we discover the liver very large, smooth on the surface, and not painful, and if there be scrofulous or supplicative disease of the bones, the diagnosis of lardaceous disease may perhaps be made.

The treatment of this affection is of course quite unknown, but Meckel thinks that in one case potash was useful. He advises, also, that acids (hydrochloric and sulphuric) should be tried.

We have given a pretty full analysis of this paper, and we refrain at present from doing anything more. If it really appear that the so-called lardaceous substance is, within certain limits, a stable chemical compound,—and if it can be so easily distinguished by the test with iodine and sulphuric acid,—a new path of great interest is opened for pathologists. We must confess, however, that Meckel's chemistry appears to us rather rude and unsatisfactory, and we are not at all convinced that he has made out the propriety of the term "cholesterine disease." Still our previous knowledge of the lardaceous affection leads us to think that many of his facts are correct, and some observations made in this country lend, we think, considerable support to some of his views.

We refer to some interesting remarks by Drs. Gairdner and Sanders on the "waxy liver, spleen, and kidneys," in the 'Monthly Journal' for February of the present year (page 186). Without being acquainted, apparently, with the peculiar reaction mentioned by Meckel, Dr. Gairdner has evidently come to very much the same conclusion. He observes that the waxy (lardaceous) degeneration of the kidney constitutes one form of Bright's disease, and that it is particularly the arteries and the Malpighian tufts which are first affected. In the spleen the Malpighian bodies are most affected. The important observation is also made, that both tubercle and cancer can, like the normal organs, undergo this degeneration. In the same journal, Dr. Sanders observes that the waxy (lardaceous) spleen is very common (in 10 per cent. of all the bodies examined in the Royal Infirmary at Edinburgh), and that the substance in the Malpighian bodies has both peculiar physical and chemical characters: it is a dense, colourless, translucent, homogeneous substance, with traces of irregular, misshapen cell-forms; it is little acted on by the usual reagents (acids, alkalies, alcohol), and is coloured brown by chronic acid and iodine. On this subject we would refer also to a former page (p. 347).

Drs. Gairdner and Sanders think that the waxy conditions of the spleen, liver, and kidneys, are dependent on the same disease—viz., a peculiar alteration in the nutrition of the textures, which is probably caused by an altered condition of the blood.
“The most interesting point of the pathological relations, is the fact that the waxy conditions of the liver and kidney depend upon the same change as that which takes place in the spleen. On this point Dr. Gairdner and Dr. Sanders had made repeated examinations. In the advanced stage, many of the acini of the liver, the Malpighian bodies, and other parts of the kidney, have undergone alteration into this transparent substance, which exhibits under the microscope the same physical, and, so far as tested, the same chemical characters as in the spleen. We must therefore class these conditions of the liver, kidney, and spleen together, as being similar not only in outward aspect but in the real nature of the affection. It is also apparent that the waxy lesion does not depend on fatty degeneration, for the fatty condition of the spleen is not met with; nor upon mere increased growth and compression of the cells, because the bloodvessels are also affected; but it depends on a peculiar alteration in the nutrition of the textures, and as it generally occurs simultaneously in several organs, it must arise from deep-seated constitutional causes, and may very probably be connected with an altered condition of the blood.” (p. 188.)

We need scarcely say how closely these statements accord with those of Meckel.

The paper by Drs. Gairdner and Drummond gives us some important facts connected with the chemical examination of diseased livers. The following table by Dr. Gairdner shows at a glance its conclusions:

<table>
<thead>
<tr>
<th></th>
<th>Normal liver</th>
<th>Fatty liver</th>
<th>Waxy liver</th>
<th>Cirrhosis with hypertrophy</th>
<th>Cirrhosis with atrophy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>lbs. oz.</td>
<td>lbs. oz.</td>
<td>lbs. oz.</td>
<td>lbs. oz.</td>
<td>lbs. oz.</td>
</tr>
<tr>
<td></td>
<td>3 0</td>
<td>2 8</td>
<td>3 6½</td>
<td>4 2</td>
<td>1 6</td>
</tr>
<tr>
<td>Solids</td>
<td>0 15</td>
<td>1 0</td>
<td>2 0</td>
<td>1 3</td>
<td>0 7½</td>
</tr>
<tr>
<td>Fat</td>
<td>0 1</td>
<td>1 8</td>
<td>0 2½</td>
<td>0 5</td>
<td>0 2½</td>
</tr>
<tr>
<td>Total weight</td>
<td>4 0</td>
<td>5 0</td>
<td>5 9</td>
<td>5 10</td>
<td>2 0</td>
</tr>
</tbody>
</table>

Of course it is understood that this table does not give the exact results of the analyses, but merely what Dr. Gairdner calculates from the experiments already made will be found to be the composition of liver in the various pathological states above-mentioned.

Dr. Gairdner considers the waxy liver to be the most common of all the forms of diseased liver in phthisis; to be, in fact, far more common than the fatty liver, with which the waxy liver is often confounded at the present day as it was by Louis. We may observe on this point, that occasionally the microscope may lead to a diagnosis of fatty liver, when no, or but little, fat can be extracted by ether. In two livers, which under the microscope presented numerous round highly refracting fatty-like globules, which were pronounced to be fat by very capable observers, we found the following composition in 100 parts, which we have compared with two analyses of healthy liver by Dr. Beale.

<table>
<thead>
<tr>
<th></th>
<th>Healthy liver (Beale)</th>
<th>Healthy liver (Beale)</th>
<th>Presumed fatty liver</th>
<th>Presumed fatty liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>68:58</td>
<td>72:95</td>
<td>72:24</td>
<td>76:41</td>
</tr>
<tr>
<td>Fat</td>
<td>3:82</td>
<td>4:28</td>
<td>3:39</td>
<td>0:00</td>
</tr>
<tr>
<td>Fat in 100 parts of solid matter</td>
<td>12:15</td>
<td>15:31</td>
<td>13:71</td>
<td>0:00</td>
</tr>
</tbody>
</table>

In the analysis of the last specimen (which was said by an experienced
microscopist to be highly fatty) not a trace of fat was taken up by boiling in ether several times, nor did ether act on the globules under the microscope. We did not determine the exact nature of the infiltration which thus simulated fat, but from some of the chemical reactions it was presumed to be of an albuminoid nature, and to be allied to the lardaceous liver. The disease in the first patient had been diagnosed during life as morbus Brightii; the second case was in a young woman with tuberculous pneumonia, in whom there was enlargement of the liver, the spleen, and the kidneys, with albuminous urine.

We shall for the present quit this subject, with the remark, that both the German and the Scotch observers, whose papers we have noticed, appear to have pursued their inquiries with complete independence.

E. A. Parke.

Review XIII.

(Concluded from No. 27, page 20.)

Having discussed in our former review the subject of pericarditis, we shall now consider the subject of endocarditis.

According to Dr. Stokes, the general formula for the detection of endocarditis is the occurrence of symptoms of cardiac irritation, accompanied by signs of valvular lesion. The disease, he states, may be associated with pericarditis, may come on insidiously in the course of rheumatic fever, or may occur in a case where the heart has been previously diseased. Dr. Stokes does not include Bright's disease among the causes of endocarditis. From the evidence of post-mortem examination that disease is its most frequent cause. Thus, Dr. Chambers relates, in the 'Decennium Pathologicum,' that out of 43 cases of endocarditis, 12 were associated with Bright's disease, 9 with acute rheumatism; and Dr. Barclay found Bright's disease in 9 out of 21 cases in which there was fibrinous deposit on the valves, in 8 of the cases there was valvular disease associated with previous attacks of acute rheumatism, and in 1 only with an existing attack.

"If we admit that the valves are more prone to inflammation than the membrane lining the cavities, we are forced to inquire, what are the circumstances which cause this difference. The structure of the valves, so far as we know, does not differ from that of the endocardium, generally considered. This at least is true of the auriculo-ventricular valves; but when we consider the anatomical relations of the membrane, we find that the endocardium of the cavities is in contact with the red muscular tissue, while that of the valves is a free serous structure. This, while it would not explain the greater liability to disease of the valves, might throw some light on the frequency of their chronic disorganizations." (p. 101.)

We would suggest that the margins of the valve are peculiarly prone to endocarditis, owing to the mutual friction of those edges upon each other. The mitral and aortic valve were both affected in 21 of the 43
cases enumerated by Dr. Chambers; in 14 of the rest the mitral, and in 7 the aortic valves were alone affected. The preference of the disease for the mitral valves is probably due to the forcible strain which is made upon them by their fleshy columns.

Dr. Stokes well remarks that:

"The symptoms of endocarditis are not yet fully ascertained or defined, and it is doubtful whether its diagnosis will ever be established with the same accuracy as that of pericarditis. Many circumstances occur to make this diagnosis difficult. Of these we may specify, first, the rarity of the disease in an uncomplicated form; second, the frequent co-existence of pericarditis; and thirdly, the general similarity of its constitutional symptoms with those of the latter disease. In truth, we rarely meet with a case of simple idiopathic endocarditis fit to be considered as a type of the signs and symptoms of the disease. Such a case at least has never occurred to me.

"Like pericarditis, this affection is often latent, causing little or no distress to the patient, no irregularity of the heart, nor any other symptom of irritation. This frequently occurs in rheumatic fever, and the practitioner is often surprised by his patient showing symptoms of valvular disease after an apparently perfect recovery from the fever. Latent endocarditis may thus exist, and the disease be only recognised when it is no longer curable." (p. 102.)

There is, in fact, no difference in character between the murmur of endocarditis and that of established valvular disease. How is it possible to tell whether the sound heard be due to an old standing or to a newly awakened disease, unless the murmur be generated for the first time while we are watching the patient from day to day? Even then the murmur is not an absolute proof of endocarditis, since even a mitral, and still more often an aortic murmur, may be generated when there is no valvular disease. This has been noticed by Dr. Stokes in two cases where it was removed by the act of vomiting, and in several cases of fever; by ourselves in a case of fatty degeneration; by Dr. Graves in a case of pericardial adhesion;* by Dr. Barclay, Dr. Markham, Dr. Chambers, and Dr. W. T. Gairdner, in cases in which no trace of valve disease was observed after death. Dr. W. T. Gairdner has recently made some excellent communications on this subject, which have been noticed in the 'Edinburgh Monthly Journal.' In a patient under our own care, in St. Mary's, we heard one day a loud musical mitral murmur, which next day had totally disappeared. In another patient, in whom the heart-sounds were normal, a plaintive, musical, mitral murmur was excited by exercise; he could also induce this by pressing on the abdomen, when he sat with his feet on the fender, after which it disappeared when he stood up. In anaemic persons mitral murmur is occasionally audible. The researches of Mr. King proved that the tricuspid valve enjoys a safety valve function—we are convinced that the mitral valve is endowed with a similar power. Were it not so, the left cavity would be more frequently exposed to rupture than it is when the capillaries are obstructed under the influence of terror. When examining the movements of the heart in an ass under the influence of wourali, we compressed the aorta—the left ventricle was filled a tergo, but was not distended. If the muscular columns be paralyzed from inflammation, mitral regurgitation may take place. The so-called anaemic mitral murmurs are undoubtedly produced by actual regurgitation. It is probable that in such

cases, and especially in chorea, the blood circulating in the heart is not sufficiently stimulating to excite the due degree of contraction in the fleshy columns.

If a mitral or aortic murmur supervene while a case of acute rheumatism is being watched, especially if there be congestion and an expression of anxiety in the face, with distress in the region of the heart not caused by pericarditis, there is strong probability of endocarditis; but if, when we are called to a case, we find a murmur, we are not entitled at once to infer acute endocarditis, and to treat the patient accordingly, owing to the mere presence of such murmur. If the patient have had a previous attack of acute rheumatism, accompanied by chest-signs, and followed by breathlessness on ascending a hill, the bruit is most probably due to valvular disease, established during the previous attack. No mistake can be practically more mischievous than this, especially if it be made by one accustomed to rush to calomel and large leeching to arrest the inflammation.

The detection of endocardial murmurs, supervening, as they often do, during pericarditis, though easy enough on paper, is most difficult in practice. Over the region of the heart itself, the grazing sounds altogether mask the valve murmurs. These must, therefore, be looked for from day to day, beyond the region of the heart. The systolic mitral murmur is not so difficult of detection, seeing that it is usually heard with increasing intensity and smoothness beyond the apex, and especially beyond and just above the nipple. If such a sound extend an inch and a half beyond the nipple, it is certainly due to mitral regurgitation, since, according to Dr. Stokes's law, friction-sounds are limited to the heart's region. Should it be otherwise, they are, speaking from our own experience, of a harsh grazing character; if so it would be scarcely possible to discern the mitral murmur, unless audible behind. The detection of an aortic murmur during pericarditis is much more difficult. The frottement often mounts to the top of the sternum. The aortic murmurs can therefore only then be distinguished in the neck. The best point for examination is just above the sternum, a little to the right, just over the innominata. If the sound be simply systolic, it may be caused by the suddenness and energy of the heart's action, propelling forth the blood of anæmia; it may also be easily caused by the pressure of the stethoscope, or the irregular contraction of the sterno-cleido muscles. If the first sound be followed by a distinct clear second sound, the chances are that there is no affection of the aortic valves, even if there be a loud systolic murmur. If, however, the second sound be indistinct, inaudible, or prolonged, or replaced by a diastolic bruit, the aortic endocarditis may be suspected, or detected with increasing precision. Care must be taken that vein murmurs, from pressure, are not mistaken for valve-murmurs. He must be rash that will decide this question on a first examination.

Dr. Latham and Dr. Hope are of opinion that endocarditis is more frequent than pericarditis. Dr. Stokes has come to a different conclusion, and to this conclusion we hold. If we decide the question by counting up the number of cases of acute rheumatism in which we have valve-murmurs, and set them over against the number in which we have friction-murmurs, no doubt the valve-murmurs predominate. The fallacy of such
a method is well shown by Dr. Stokes, and has been already sufficiently
illustrated. Let us, then, take the evidence of post-mortem inquiry.
Dr. Chambers found that there were 135 cases, or six per cent., of peri-
carditis, and 43, or two per cent., of endocarditis, in 2161 bodies—9 of
the latter, and 19 of the former, were associated with acute rheumatism;
and 12 of the latter, and 36 of the former, with Bright’s disease. Ac-
cording to this return, pericarditis is twice as frequent as endocarditis in
acute rheumatism, and three times as frequent in Bright’s disease. Dr.
Barclay* found that in 8 fatal cases of acute rheumatism, 6 had peri-
carditis, 3 endocarditis, and 2 no cardiac inflammation; and that in 13 fatal
cases of Bright’s disease affected with endocarditis, or pericarditis, or both,
6 had the former, and 9 the latter. Dr. Taylor observed that in 17 cases
of pericarditis examined post-mortem, only 3 were likewise affected with
endocarditis. So far, then, as the test of the dead-house is concerned,
pericarditis is a much more frequent disease than endocarditis. It may
be, however, that endocarditis is a less fatal disease during the attack than
pericarditis.

Endocarditis, or at least the deposit of fibrine, is proved to affect the
valves when they are already diseased. Thus, Dr. Barclay found, that 13
out of 21 cases in which fibrine was deposited on the valves, were affected
with old standing valvular disease. Dr. Stokes gives a valuable case of
this class in which, though there was ossification of the mitral valve, there
was no murmur; but the supraventricular endocarditis developed a loud
murmur with the first sound. If in a case of valvular disease, the mur-
mur becomes suddenly louder, harsher, or more musical, there is some
reason to suspect the supraventricular endocarditis, or the deposit of
fibrine on the valve.

Dr. Stokes gives three cases of supposed endocarditis in which there was
doubling of the second sound. We would suggest that this is due to the
fact that one of the ventricles expels its contents sooner than the other, prob-
elably owing to local irritation, and the blood consequently comes back
during diastole on the semilunar valves of the side in question, so as to cause
a second sound there before the systole of the opposite ventricle is com-
pleted. We think with Dr. Walsh, who suggests that they arise from a
want of consent between the ventricles, that these reduplications are
almost insignificant in diagnosis. Dr. Stokes gives two valuable sections
on myo-carditis and on purulent cysts of the heart, to which we refer the
reader.

One of the most valuable and important chapters in Dr. Stokes’ work
is that on the ‘Diseases of the Valves of the Heart.’ He first considers
the causes of the heart’s sounds:

“Thus, some have taught that the sounds depended upon valvular tension; some,
on muscular contraction; and others, on the impulse produced by the current of
blood. But if we reflect on the number of physical circumstances which, if not all
concurring to produce the double stroke of the heart, must take place in the short
interval of time occupied by each complete action of the organ, indicated by the
arterial wave, we shall find that the number of operations or possible causes of
sound is very great. We have—1. The auricular contractions; 2. The ventricular
dilatations; 3. The ventricular contractions; 4. The auricular dilatations; 5. The
opening of the auriculo-ventricular valves; 6. The opening of the arterial valves;

7. The closure of the auriculo-ventricular valves; 8. The closure of the arterial valves; 9. The entrance of blood into two auricles; 10. The entrance of blood into two ventricles; 11. The exit per saltum of the blood from two ventricles. So that we have here not less than twenty-two operations, which, however, if the heart is acting with regularity, may be reduced to eleven, in consequence of the simultaneous action of the pulmonary and systemic portions of the heart.

"It is certainly not proved that every one of these operations produces sound. For example, we have no evidence that the relaxation of a hollow muscle is attended with sound. Still, even at the moment of this relaxation, a possible cause of sound exists in the impulse of the blood against the walls of the cavity: as occurs in aneurism from the entrance of the wave of blood into the sac.

"We have thus, as the principal causes of the acoustic phenomena of the heart's action, three conditions, namely, the contraction of its muscles, the closing of its valves, and the current or wave of blood passing from one cavity into another. These are, at all events, the sources of what may be termed the intrinsic phenomena of the heart's action, and have special reference to the production of the first sound. The second sound, or that produced by the arterial valves, on the other hand, may be termed extrinsic, and has relation to the motion of the blood after its departure from the heart." (p. 128-30.)

We would particularly claim the reader's attention to the large and pregnant truths contained in the following passages:

"It will be seen by referring to the chapter on the condition of the heart in Typhus Fever, that in by far the greater number of cases of alteration or suspension of one of the sounds, that sound was the first, and that in many instances so complete was its obliteration, that the double action of the heart appeared suspended, nothing remaining but the second sound. I have suggested, that in the rare cases in which the latter becomes feeble, there is a diminution of the arterial force; but future observations must determine whether this be owing to any alteration of the vital contractility of the vessels, or of their elasticity alone.

"It is, then, in the vital and anatomical conditions of the muscular fibre that we find the key of cardiac pathology; for, no matter what the affection may be, its symptoms mainly depend on the strength or weakness, the irritability or paralytic, the anatomical health or disease of the cardiac muscles. It was long ago observed by Laennec that valvular diseases had but little influence on health when the muscular condition of the heart remained sound, and every day's experience confirms this observation. We may extend it to many other cardiac affections, at least so far as the production of characteristic symptoms is concerned. Pericarditis without irritability of the muscle is often so completely latent as only to be discoverable by physical signs; and the same may, doubtless, be said of endocarditis; while it must never be forgotten that the important symptoms of these affections, as laid down in books, have reference to lesions of either muscular action or structure." (p. 131.)

The above quotations illustrate certain remarkable and apparently contradictory qualities in the mind of Dr. Stokes. The first passage, relative to the great number of possible causes of the heart-sounds, is dictated by a singular subtlety of analysis that continually shows itself in the course of the work, and the last passage is distinguished by breadth and grasp. The minute details are apt to be confusing, but the vigour with which the important points are at length brought out establishes the leading idea in the mind of the reader. These qualities, while they make Dr. Stokes' work of permanent value to every practitioner, his daily labour being occupied, not with the types but with the infinite varieties of disease, often render it difficult and confusing to the student. Farther on, Dr. Stokes gives a large quotation on the causes of the heart's sounds from Skoda's
work. The recent admirable translation of that work by Dr. Markham now places it within the reach of every one. Skoda’s view of the nature of those sounds, and of the action of the valves, is, we conceive, in the main, correct, especially in what relates to the office, ascribed by Weber and himself to the fleshy columns which prevent the valves from being drawn out of the ventricles during the systole. In addition to this, however, we would suggest that the mutual movements of the fleshy columns and the walls of the heart are such as to bring the edges of the valves almost into approximation at the very beginning of the systole, and before any fluid has been expelled. If there were no such provision, a considerable quantity of the blood just admitted would regurgitate into the auricle before the blood has time to float together the margins of the valvular flaps, so as to close the aperture. The position of things is very different with the semilunar valves when they commence to act, seeing that when the ventricle has ceased to propel the blood forward, it is still for an instant shut, like the doubled fist, by its rigid walls; consequently, when the elastic force of the arterial walls begins to return the blood back upon the valves, that fluid, incapable of entering the shut ventricle, finds its way at once behind the valves, so as to close them. Indeed, as Dr. Alderson suggested to us, owing to the peristaltic movement of the ventricle, those portions nearest the valves are the last to contract, and consequently, as the ventricle is emptied, the bases of the valves become approximated.

Our space will not allow us to consider in detail the question of the heart’s sounds, with regard to which we gladly refer the reader to the lucid and comprehensive details in Dr. Bellingham’s work, as well as to Skoda’s and Dr. Herbert Davies’s valuable writings, and the various original memoirs referred to by those authors. We would, however, remark, that we completely coincide in opinion with Skoda and Dr. Stokes, as to the compound nature of the sounds, as we have previously stated in the ‘Provincial Medical Transactions’ for 1844. We there insist on the effect of the impulse of the heart upon the walls of the chest, in producing what we term the impulse noise, that being one of the elements of the systolic heart sound, as Skoda long since clearly stated. The impulse noises are only heard over that part of the chest with which the walls of the heart are in contact; they are obliterated by the thinnest wedge of interposed lung; consequently those noises muffle and obscure a valve murmur over the superficial cardiac region, but they cease to do so immediately beyond that region. The mitral murmur is therefore generally much louder and clearer to the left of the apex, than over the apex itself. We found out, almost by accident, that the interposition of a slip of paper between the skin and the stethoscope, applied over the cardiac region, completely obliterates the impulse noises. Any valve murmurs present are thus usually rendered much clearer, owing to the obscuring impulse noises being, as it were, dissected away. Why this is so we cannot tell; the fact itself readily admits of confirmation; and Dr. Todd has already corroborated our observation, in one of his valuable clinical lectures. As the heart’s impulse is now before us, we would here protest against a singular error broached by Skoda, who states, from observations made by him on a child devoid of sternum, that the apex of the heart descends one inch during systole. This is altogether contrary to the
observations of every experimenter on the movements of the heart. We noticed the heart of an ass under the influence of the wourali, beating with full vigour for four hours, and we found that the descent of the apex during systole was trilling. Gutbrod and Skoda consider that the impulse is caused by the recoil of the ventricle when the blood is being propelled into the arteries, on the principle of the motion of Segner's wheel, Barker's mill, and the rocket. This view was ably put forth and proved by Dr. Alderson, as early as 1825. Besides this cause, we would suggest that the following additional causes co-operate in producing the impulse. The elongation of the ventricle, owing to its lateral contraction, just as the tongue is protruded; the filling of the auricles behind, and to the right of the respective ventricles during their systole, which displaces the ventricles forward, on the principle of Bramah's hydraulic press; and the tendency to straighten the aorta and pulmonary artery by the rush into them of the blood during systole, as Hunter put forth.

The following remarks by Dr. Stokes are of great value:

"It too often happens, when the existence of a valvular disease is determined, that great labour is expended in ascertaining the exact seat and nature of the affection. Long and careful examinations are made, to determine whether the disease exists at the right or left side of the heart; whether it be a lesion of the mitral, tricuspid, or the semilunar valves; a contraction or dilatation; an ossification; a permanent patency, or warty excrescence. Now, though in some, we might say in many cases, these questions may be resolved with considerable accuracy, it is also true, that in a large number their determination is of comparatively trifling importance; and the two great practical points to be attended to are, first, whether the murmurs really proceed from an organic cause, and next, what is the vital and physical condition of the muscular portions of the heart; for it is upon these points that prognosis and treatment must entirely depend. There is, indeed, no other organ whose affections more fully illustrate the truth of this principle, that in dealing with the diseases of adjacent structures, diagnosis is easy where it is important, and of little value where it is difficult or impossible.

"Another source of the difficulties with which this subject is surrounded is, that rules of diagnosis are in many cases founded on the supposition of the isolation of disease; but every practical man knows, that in chronic diseases of the heart, isolation is the exception, and complication the rule. Hence, one reason why disease at the bedside so rarely corresponds with its description in books. . . .

"The various effects of organic disease on the function, structure, and form of the valves, is described in every work on pathological anatomy. In a practical point of view, it would be sufficient to recognise contraction or dilatation of the orifices, both of which conditions are attended by a permanently open state. . . .

"For it appears certain that we must be guided in our treatment of valvular disease less by the condition of the valves, than by that of the muscular portions of the heart. The practical physician, having satisfied himself that a valvular disease exists, will not devote too much time in ascertaining its exact nature; but he will examine into the vital and mechanical state of the heart's cavities. He will ascertain the amount of vigour of the heart, whether its force is above or below the natural standard; whether it is liable to excitement from slight causes; and whether irregularity of action or the opposite is its ordinary state. He will endeavour to determine the duration of the disease and its origin, and examine how far the brain, lungs, or liver, have suffered from the mechanical or vital effects of disease of the heart. Thus he will obtain some rule of treatment, and as the two most common diseases of the orifices—viz., permanent patency of the aortic and mitral valves, when occurring in an isolated form, are not difficult to distinguish, he will, so far as treatment and prognosis are concerned, be able to

* Quarterly Journal of Science, Literature, and Art.
give to the patient all the advantages which the present state of medicine can afford.” (pp. 131-135.)

Dr. Stokes then gives a succession of formulæ for the diagnosis of the various valvular diseases of the heart, which, with one exception, do not differ from the received views. That exception relates to extreme ossific disease of the aortic orifice. He has witnessed two or three such cases, in which there was an extremely loud and musical murmur at the aortic orifice, transmitted through the whole extent of the arterial tree.

"In two cases, the sounds were distinctly audible to the patients, who were conscious of their existence at almost every point of the body. With one patient the perception of these sounds was the principal cause of his suffering, for his general health long continued excellent, and the heart’s action was but little excited. This gentleman once observed to me, that his entire body was one humming-top. The loudness of the tone varied with the force of the heart. When I first saw him, the sounds were audible at the distance of at least three feet; but when the force of the heart had been reduced by local treatment, the use of sedatives, and by removing all causes of bodily and mental excitement, the loudness of the sound at the aortic orifice was so much reduced, as to render it inaudible, unless by applying the ear. Even under these circumstances, the musical sound of the small arteries still continued, though not to such a degree as to cause annoyance to the patient." (p. 139.)

Dr. Stokes remarks, that the complications of heart disease are so numerous and varied, that it is impossible to determine the exact nature of every case that may come before us.

The loudness of the valvular murmur is by no means proportioned to the extent of disease. Indeed, as we have already remarked, aortic, and even mitral murmurs, may be present when there is no valve disease. On the other hand, extensive valve disease may exist without any attendant murmur. Decrease, and even disappearance of a murmur, may coincide with the increase of disease, as is well illustrated by Dr. Stokes, in a case of ossification and contraction of the mitral valves, in which there was complete disappearance of murmur before death; and by Mr. O’Ferrall, in a series of cases illustrative of the disappearance of murmur in progressive valvular disease.* He believes that, with the advance of disease of the valves, the valve may be so altered as to prevent regurgitation, and that hence the regurgitating murmur disappears.

Violent action of the heart may excite murmurs, when both the heart and the blood propelled by it are healthy. The so-called anemic murmur may be caused by the moderate action of the healthy heart when the blood is watery. Valve diseases which excite murmur may cease to do so, if the action of the heart becomes too feeble or too rapid to generate the sound. The physical conditions causing the murmur may be changed, either by change in the power, the force exercised, or the rapidity of the heart’s action; the increase or decrease of water in the blood; and by the ease or difficulty with which the blood flows through the capillaries of the system, or of the lungs.

Perhaps the most valuable section of Dr. Stokes’ work is that relating to the latency of chronic valvular disease:

"The doctrine that disease of the valves, when it is uncomplicated with any functional or organic lesion of the muscles of the heart, is often so latent as to be undiscoverable without physical examination, is one of the great truths for which

we are indebted to the genius of Laennec. And it is not yet sufficiently insisted on, that valvular disease, even to an extreme degree, may affect the heart without there being anything in the previous history or existing symptoms which could lead us to suspect the existence of such a lesion.

"The effects of injudiciously communicating to the patient that his heart is organically diseased, in conjunction with those of an ignorant and destructive medication, produce that very condition the absence of which has been the patient's chief safety. The heart becomes irritable, irregular, perhaps excited, and it is then no wonder that the symptoms of disease are superadded to the signs."
(pp. 146, 147.)

Dr. Stokes relates, in illustration, the instructive case of a gentleman, of full habit, generous in his diet, athletic and active, in whom a physician detected a mitral murmur during a casual attack of bronchitis. He was warned of the heart disease, restricted in his diet, and forbidden exercise. Unnecessary medical treatment, and the fear of sudden death, produced in this ardent young man depression both of mind and body. Dr. Stokes suspected that the murmur indicated some very old, passive, and stationary valvular disease, originating, some seven years previously, during an attack of rheumatic gout. He was re-assured, allowed stimulants in moderation, and advised to keep to his profession. Some years later he was seen in the highest state of health and spirits, after a month's excursion in Scotland, where he was on foot walking over mountains for eight hours a day, carrying a heavy gun, and using stimulants freely. The murmur continued unchanged.

Every medical man has met with cases, especially among the members of our own profession, wherein a casual palpitation had led to the fear of heart disease, such fear itself creating a crowd of formidable symptoms, the whole of which have disappeared as soon as a careful examination has convinced them that the heart is healthy. If the mere fear of heart disease can produce such formidable effects on the frame, how much more formidable must be the effects produced, when a patient, ignorant of the fact, is officiously informed that he has disease of the heart.

Dr. Stokes presents us with two cases illustrating an opposite state of things in two young girls, who, with all the symptoms of anemia, presented what were probably only anemic bruits. No diagnosis was made. One dropped dead while leaving her father's door, after having for three years perfectly regained her health. The other died in the course of two years, and in her the mitral orifice was so contracted as scarcely to admit the passage of a quill.

Two other cases are given, in which there was extreme aortic narrowing. One of these was a man of exceedingly active habits up to his fatal illness, a few days before death. The other, also of active habits, was attacked with extreme dyspnoea after walking up hill. Afterwards walking even on level ground produced great distress. In the course of six months he became dropsical, and died rather suddenly.

We have here, then, illustrations of the sudden development of the symptoms and signs of a long pre-existing disease, and of the great fact, that the sufferings of disease are much less dependent on the mechanical than the vital condition of organs.

"Considered with reference to practical medicine, we may divide cases of valvular disease into two classes, in one of which there is reason to believe that a carditis has been the first step in the morbid process, while in the second we are
without evidence that the alteration of the valve has been in any way connected with an inflammatory process.

"In cases of the appearance of a valvular murmur, in the course of or immediately after the subsidence of an attack of pericarditis, we are to use all proper means to remove the endocardial inflammation. So, also, in the examples of the recent development of a valvular murmur in cases of excitement of the heart, even without pericarditis, the same practice is to be employed; and experience shows that in many of such cases the treatment is followed by success, and organic disease of the heart prevented. But we must be sure that the murmur is of recent origin, and we should take care not to prolong our treatment beyond a justifiable period.

"The persistence of the murmur for a week or ten days is regarded by Dr. Hope as indicating that the disease has passed into the chronic stage, and this, he observes, may continue for several weeks, or even months, and still be benefited by antiphlogistic treatment. I have seen several cases in which, after a month, there was this much evidence of a chronic inflammation, that stimulants seemed to over-excite the heart; but I think it probable that, should the murmur persist for more than three or four weeks, we should be very watchful, lest, by continuing a reducing treatment, we weaken the system too much in the vain endeavour to remove an organic change." (pp. 155, 156, 157.)

It is a source of real regret to us that Dr. Stokes, while stating "that we are to use all proper means to remove endocardial inflammation; and that, in many such cases, the treatment is followed by success, and organic disease of the heart prevented," has not detailed to us his mode of treatment. We to this day gain by the valuable suggestions as to treatment with which Dr. Stokes has throughout interspersed his work on 'The Diseases of the Lungs,' as the various cases arise. In this work he has not, unfortunately, pursued this plan to the same extent.

If the "reducing" treatment to be adopted in endocarditis consist in free mercurialization, large and repeated leechings and abstinence from food, or, indeed, whatever the "reducing" plan may be, we would strongly protest against its being continued for anything like three or four weeks. We would here put two very important questions—Does experience show that, in many such cases, treatment is followed by success, and organic disease of the heart prevented? and does a reducing plan of treatment tend to that all-important result? We fear that these questions must be answered in the negative. We hear an endocardial murmur, and we infer endocarditis; the patient recovers, and sometimes no sign of endocardial disease remains. Is it impossible for such a happy result to follow in some cases independently of all treatment? The vascular granulations and fibrine that fringe the valves in endocarditis, and cause regurgitation, tend of themselves, in the progress of the disease, to shrink up into minute beads or prominences, the mere cicatrices of the disease, that no longer render the valves inefficient. Unfortunately, the anxious part of such cases is that we find the murmur too often remain for life, in spite of our treatment. Are we quite certain that it never does so because of our treatment? Mercury, in its full action, tends to soften and disorganize the tissues. This unquestionably is so in pleuritis, pericarditis, and pneumonia, and we are compelled to infer that it is so likewise in endocarditis. We have now under our care, in St. Mary's Hospital, a young man with acute rheumatism, who was admitted in a state ofptyalism. There were then the signs and symptoms of a commencing endocarditis, which increased in intensity from day to day,
although—may we not say because?—the system was under the full influence of mercury. Absolute rest, the application of a few leeches, and opium, with or without antimony, repeated in grain doses, at first every two or three hours, and, as the required effect is produced, at longer intervals, along with lemon-juice or a saline, will, we believe, generally bring a case of endocarditis through at least as effectually as a more reducing plan of treatment. The only ground for giving mercury in such a case we believe to be the absence of bile in the motions.

Dr. Stokes, after making some valuable practical remarks on the importance of observing, in cases of valvular disease, whether there be obstruction to the circulation; increased or lessened, regular or irregular, action of the heart; and actual enlargement of the cavities of the organ, remarks—

"That, while the diagnosis of valvular disease depends on the existence and appreciation of certain physical signs, the questions of prognosis and treatment depend upon the condition of the muscular portions of the heart. The study of cardiac pathology leads irresistibly to the conclusion, that in valvular disease the source of irregular and excited action is to be sought for less in the condition of the valves than in that of the heart itself." (pp. 160-61.)

Irregular or intermittent action of the heart, he well remarks, is by no means necessarily due to heart-disease. Sometimes these exist where an emetic, an anti-nervous draught, an attack of gout, or a few doses of a mercurial, will restore the natural action of the heart. This was well illustrated in the case of a lady who was for some years subject to attacks of violent palpitation, attended by a loud bellows-murmur. Dr. Stokes, who was consulted during a paroxysm, saw her again in ten days—the heart was tranquil, and every trace of murmur had disappeared. Several years later, he saw her in perfect health. She had discovered her own cure, and this was the use of an emetic at the commencement of each attack.

In the case of a young man suffering from the most violent action of the heart, the treatment was of extreme activity; repeated bleedings, mercury, and other such means, produced not the slightest effect on the heart's action, though his strength was much exhausted. Death being expected, the treatment was fortunately suspended. An ether and laudanum draught excited vomiting, whereon the heart became tranquil, the murmurs disappeared, and the convalescence was rapid.

Dr. Stokes says, truly, that an imperfect state of the valves may be induced by many causes besides inflammation. In that spirit of subtle analysis which so often distinguishes him, he enumerates these, and adds, that if we include inflammation we have not less than twelve pathological conditions which may induce valvular disease. (p. 172.)

Forget's statement that isolated cases of disease of the aortic and of the mitral valves are about equally frequent, and that their simultaneous affection is as frequently met with as the isolation of disease in either orifice, is thought by Dr. Stokes to be not far from the truth if we consider the mere occurrence of anatomical lesion rather than the actual amount of disease; but if we discard cases of slight alterations, insufficient to interfere with the action of the valves, it will probably be found that there are more cases of isolation of disease of the mitral than the aortic orifice. Let us test these inferences by the observations of others. According to—
Dr. Barclay's First Report* of 70 cases, both valves suffered in 36, the mitral alone in 17, the aortic alone in 26.

Dr. Barclay's Second Report† 46 " " 22 " 18 " " 6.

Dr. Chambers‡ 367 " " 133 " 106 " " 112.

Dr. Ormerod§ 181 " " in about 68 " in about 64 " in about 48.

Influence of Age:

In Dr. Ormerod's 181 cases

There were, below 30 61 " in about 23 " in about 30 " in about 8.

" above 30 120 " " 45 " " 38 " " 40.

Influence of Severity of Disease:

In Dr. Ormerod's 181 cases

There were, of severe cases 39 " " 13 " " 19 " " 7.

" of less severe cases 142 " " 55 " " 46 " " 41.

Influence of Associated Disease:

Acute rheumatism at the time or before

Dr. Ormerod 42 " " in about 23 " " in about 15 " in about 3.

Dr. Barclay 69 " " 53 " " 12 " " 4.

Kidney disease: Dr. Ormerod 42 " " in about 19 " " in about 17 " in about 6.

All diseases except kidney and rheumatism: Dr. Ormerod 97 " " in about 26 " " in about 32 " in about 39.

Atheroma of valves: Dr. Barclay 28 " " 4 " " 12 " " 12.

In all the above returns, diseases of the tricuspid and pulmonic valves are put out of sight. Of Dr. Ormerod's 181 cases, in 17 the former, and 6 the latter, were affected; and of Dr. Chambers' 367 cases, in 29 the former, and 14 the latter, were affected.

* Medico-Chirurgical Transactions, vol. xxxi.
† Ibid., vol. xxxv. This return excludes those cases in which it was doubtful whether they had or had not previously suffered from acute rheumatism.
‡ Decennium Pathologicum: Medico-Chirurgical Review.
§ Gulstonian Lectures, 1851. In these lectures, Dr. Ormerod enumerates them thus:—Total cases, 181. Of these, the mitral valve was affected 133 times; the aortic, 116 times. To bring them under the same heading with the others we have used a calculation that is disturbed by the possible isolation of disease to the tricuspid or pulmonary valves. This disturbance, though real, is trifling, and although we say "about," the returns are very nearly accurate.
From this table we may safely infer that the mitral valves are more subject to disease than the aortic; that the disease is more often limited to one valve or other, than common to both, but that it is more often common to both than limited to either; that when associated with acute rheumatism, disease affects both valves in the greater number of cases, and the mitral more frequently than the aortic; that in the young, who are subject to acute rheumatism, disease of the mitral, and in the old, who are subject to atheroma, disease of the aortic valve predominates; and that in the more severe cases, in which the valve disease is itself the cause of death, the mitral valve is by far the most frequently affected. The last inference, if confirmed by larger returns, is of great importance, seeing that it proves mitral valve disease to be the most prone to go on to a fatal issue, more so even than simultaneous disease of both valves.

Dr. Ormerod is the only observer who, giving all cases of valve disease, has made the important distinction between the slighter cases and those in which the valve disease was itself the cause of death. We trust that this distinction will in future be made by those accurate observers now engaged with the statistics of heart disease.

Dr. Stokes justly remarks, that the so-called new law laid down by Forget, that the cavities of the heart are dilated and hypertrophied behind the seat of valvular obstruction, and entitled the law of dilatation a tergo, was already vindicated by Dr. Adams, in his admirable paper in the fourth volume of the 'Dublin Hospital Reports.' Forget deserves credit for calling attention strongly to retro-dilatation as an additional diagnostic sign in diseases of the valves. The pathological condition, however, of dilatation and hypertrophy a tergo has been clearly stated by many of the best observers, long before either Dr. Adams or Forget wrote. Senac puts the whole case comprehensively before us.* He states that obstruction to circulation in the aorta, whether from narrowing or dilatation of the vessel, or (though this is less clearly stated) from disease of its valves, causes dilatation of the left ventricle; while obstruction to the circulation through the lungs causes dilatation of the right cavities. He also states that obstruction or regurgitation through the auriculo-ventricular opening causes dilatation of the auricle. He likewise gives a case in which aortic regurgitation caused extensive dilatation. In reasoning on a remarkable case of aortic valve disease, related by Lancisi, in which the left cavities were small, the right dilated, he conceives that the left ventricle, though the first to be engorged, might resist the dilatation, owing to the thickness of its walls: but considering the small size of the left auricle, he conceives that there must have been in the lungs themselves some obstacle which arrested the blood in the right cavities. Morgagni,† who re-states with greater precision the views of Senac, while arguing on this very case, says, that dilatation of the left ventricle is joined with disorders of the aorta or its valves, that of the right ventricle with impediments in the pulmonary artery or lungs. Portal,‡ in giving a lucid digest of Senac's views, says that if the obstacle to circulation reside in the aortic opening, the aorta itself, or its minute branches, the left ventricle may be dilated by the blood, which finds a difficult exit, and

† Letter xviii. 5.
‡ Anatomie Médicale, tom. iii. p. 99.
then the left auricle and pulmonary veins; and that in succession the right ventricle and auricle, and even the vena cavae, may be dilated. Burns* from observation, takes up a position diametrically opposite to Dr. Parry’s statement, that it is generally the cavity immediately before the obstructed part which is dilated; and states that, in proportion to the resistance offered to the passage of the blood, the circulating powers have their strength augmented. Corvisart, Dr. Williams, Rokitansky, and many recent authors, have clearly stated the law of dilatation and hypertrophy a tergo.

To find out as nearly as possible the actual and ascertained effect of the several valve diseases on the walls and cavities of the heart, we have made an analysis of such cases, given by various authors, as throw light upon the subject.† Before examining this evidence, it will be well to consider what other morbid states, besides the various valve diseases, influence the cavities and walls of the heart. In most cases of disease, there is not one ailment only, but the association of several morbid states. It is often difficult to discover which of these morbid states was induced by, and which induced the others. Disease in one organ is often at once both the effect and the cause of disease in another organ, so intimate and continual are the mutual reactions of one part of the frame upon another, which, indeed, blend to form the whole living organism. These different morbid states existing at the same time, may tend to produce totally opposite effects, and thus sometimes we shall have a result common to both or several causes; sometimes one influence will override the other, so that a given morbid state may not be followed by its usual effects and diagnostic signs.

All pathologists agree, that dilatation or hypertrophy, or both, of the right cavities may be, and usually is, excited by bronchitis, emphysema, and any lung disease in which there is an obstacle to the flow of blood through the lungs. Phthisis appears to be an exception to this law; but in phthisis, the blood and the solids are both lessened in proportion to the lessened capacity of the lungs. This is not so, however, always; and if we examine the weight of the heart in cases of phthisis, we shall find that in scarcely any case is the heart lessened in average weight more than the body. In many cases the heart maintains the normal size, although the body has lost weight largely, and in some cases the heart is absolutely larger than it is in health. We need scarcely say, that in the first case, the heart is normal in relation to the body and blood, and that in both the last cases it is really enlarged.

Rokitansky‡ gives a complete analysis of the conditions of the lungs inducing active dilatation of the right cavities; and he also rightly claims for disease of the arterial trunks, such as atheroma, aneurism, dilatation, or narrowing—whether of the lungs or of the system—the power of inducing dilatation of the right and left cavities respectively. But, while he recognises obstruction through the pulmonic capillaries as

* Diseases of the Heart, p. 167.

† These cases, in number 96, the analysis of which is grouped in the following table, are related by Abercrombie, Adams, Barlow, Bouillaud, Burns, Chevers, Corvisart, Forbes, Forget, Hodgkin, Hope, Laennec, Latham, McDowell, Mills, Urmerod, Parkes, Senag, Sibson (MS.), Spittal, and Stokes.

a cause of dilatation of the right ventricle, he does not recognise obstruction through the systemic capillaries as a cause of dilatation of the left ventricle. In a paper on the causes of respiration,* we have considered the retrograde influence of the systemic as well as the pulmonic capillaries on the heart. Under the influence of fright and despair, and even joy, the left ventricle has again and again been ruptured;† the action of the ventricle has been so strong as absolutely to lacerate itself; but the obstruction to the circulation through the capillaries has been so great, as to prevent the escape of the blood, and to cause the walls of the cavity to spend their force upon themselves. The depressing passions occasion hypertrophy of the left ventricle, as Senac remarked, an effect palpably due to the continued resistance to the systemic capillary circulation, and the augmented force used by the ventricle to overcome the obstacle.

In kidney disease, hypertrophy and dilatation of the left ventricle is a frequent effect. Dr. Bright, in the first volume of 'Guy's Hospital Reports,' gives 100 cases of Bright's disease; of these, 52 had hypertrophy, although no valve disease existed in 34 of them. In 11 of these 34 cases, the coats of the aorta were affected. The hypertrophy was most marked in the left ventricle 21 times, in the right, twice; and in these two cases the lungs were affected. It is clear, as Dr. Bright suggests, that the altered quality of the blood so affects the capillary circulation as to render greater action necessary to force the blood through the distant subdivisions of the vascular system. In 33 cases, the heart was healthy or small. This tends to prove that it is not obstructed circulation through the capillaries of the kidneys alone that induces the hypertrophy, but rather through those of the whole system. Dilatation and hypertrophy arise really from the same cause—namely, increased resistance to the exit of blood from the cavity, and increased efforts to expel the blood. If the walls be soft and yielding, dilatation is in excess of hypertrophy—if firm and fleshy, hypertrophy is in excess of dilatation; usually, however, they are combined.

* Provincial Medical Transactions for 1851.
† See Dr. Stroud, on the Death of Christ, for many instances.
Of 20 cases of narrowing of the aortic aperture, usually with valvular insufficiency—

The heart was large in 17; of normal size in 3—
The left ventricle was dilated (2), or hypertrophied (1), or both (12), in 15; normal in 1; hard, but of normal size, in 3; smaller than right ventricle in 1.
The left auricle was dilated (4), or hypertrophied and dilated (5), in 9; normal in 8; not mentioned in 5.
The right ventricle was dilated (5), or hypertrophied and dilated (6), in 11; normal in 5; not mentioned in 4.
The right auricle was dilated (5), or hypertrophied and dilated (4), or large (1), in 10; normal in 3; not mentioned in 7.

Of 13 cases of aortic regurgitation, in which the aperture was either normal or dilated—

The heart was large in all—
The left ventricle was dilated (4), or hypertrophied and dilated (11), in 13.
The left auricle was dilated (3), or hypertrophied and dilated (3), or large (1), in 6; normal in 1; not mentioned in 6.
The right ventricle was dilated (5), or hypertrophied (1), or both (3), or large (2), in 11; normal in 1; not mentioned in 1.
The right auricle was dilated (3), or hypertrophied and dilated (3), or large (3), in 9; normal in 1; not mentioned in 3.

Of 8 cases of disease of the pulmonic valves—
The left ventricle was moderately large and thick in 1; normal in 3; not mentioned in 2.
The left auricle was normal in 2; not mentioned in 4.
The right ventricle was hypertrophied and dilated in 3; normal in 1; not mentioned in 2.
The right auricle was hypertrophied and dilated in 1; normal in 1; not mentioned in 4.

Of 23 cases in which the mitral aperture was contracted and usually regurgitant—

The heart was enlarged in 20; flaccid and pale in 1; size not stated in 2.
The left ventricle was dilated (4), or hypertrophied (3), or both (2), or large (1), in 10; normal in 7; not mentioned in 6.
The left auricle was dilated (7), or hypertrophied and dilated (5), or large (1), in 13; normal in 2; not mentioned in 8.
The right ventricle was dilated (5), or hypertrophied (1), or both (7), or large (1), in 14; normal in 3; not mentioned in 6.
The right auricle was dilated (10), or hypertrophied and dilated (4), or large (2), in 16; normal in 1; not mentioned in 6.

Of 8 cases in which the mitral aperture was regurgitant but not contracted (in 3 dilated)—
The left ventricle was dilated (1), or dilated and hypertrophied (2), or large (2), in 5; normal in 1.
The left auricle was dilated (1), or dilated and hypertrophied (1), or large (1), in 3; normal in 1; not mentioned in 2.
The right ventricle was dilated slightly (1), or large (1), in 2; normal in 2; not mentioned in 2.
The right auricle was dilated slightly (1), in 1; normal in 1; not mentioned in 4.

Of 28 cases of disease common to both mitral and aortic valves—

The heart was decidedly enlarged in 22; slightly so in 4; size not stated in 2—
The left ventricle was dilated (4), or hypertrophied (4), or both (10), or large (5), in 21; normal in 2; not mentioned in 5.
The left auricle was dilated (3), or hypertrophied (2), or both (8), or large (4), in 17; normal in 1; not mentioned in 11.
The right ventricle was dilated (5), or hypertrophied (7), or both (4), or large (1), in 17; normal in 3; not mentioned in 7.
The right auricle was dilated (4), or hypertrophied (2), or both (6), or large (3), in 15; normal in 2; not mentioned in 11.
These tables tend to prove, that by far the larger proportion of valve diseases thicken the walls and enlarge the cavities of the heart; that aortic regurgitation with, and still more without, narrowing, of the aperture induces active dilatation of the left ventricle, followed consecutively by enlargement of the left auricle, and the right ventricle and auricle; that disease of the pulmonic valves causes dilatation of the right cavities; that mitral narrowing, with regurgitation, leads to enlargement of the left auricle, followed in succession by dilatation of the pulmonary veins, congestion in the lungs, enlargement of the right ventricle and auricle, distension of the venæ cave, engorgement of the liver, congestion in the systemic capillaries, and at length, and in nearly one half of the cases, enlargement of the left ventricle; and that combined disease of the aortic and mitral orifices, causes enlargement of the left ventricle, and to a less, but nearly the same extent, of all the other cavities. Forget lays down, at p. 201, the law, from the observation of one case, that when the narrowing of the aortic and mitral orifices is equal, the left ventricle is neither hypertrophied nor dilated. The observations brought together in the above table contradict this law of Forget's, which is, indeed, upset by a case given by himself, at p. 208, wherein the aortic and mitral orifices were both ossified, and yet the left ventricle was much dilated and hypertrophied.

In the great majority of cases in which a murmur is heard, the murmur will of itself lead us to a correct diagnosis; in some, however, as we have already seen, it will not. In such instances, the size and force of the heart will materially aid us. As a rule, if there be valve disease, the heart is enlarged, and its impulse is increased in extent and power. Now, if the murmur be anemic, the heart is usually lessened rather than enlarged, and the impulse, though it may be preternaturally strong and troublesome, yet it is quick and smart, and limited within the cardiac region. Murmur may, however, be present without valve disease, when there is enlargement of the heart from fatty degeneration, from kidney disease, or gout, or from adhesions. In fatty disease, the extent of cardiac dulness may be increased, but the impulse, though possibly extensive, is generally, but not always, feeble. In kidney disease the impulse may be as extensive and powerful as in valve disease. When adhesions exist, with heart enlargement, the superficial cardiac region extends as high as the second costal cartilage; the sternum and ribs, and the intercostal spaces, are drawn firmly inwards during systole, returning with a shock during diastole; and the extent of dulness and of impulse are scarcely lessened during a deep inspiration. Then all these conditions may co-exist when murmur is present, and that, too, when there is not, as well as when there is, valve disease. The extent of cardiac dulness, and the amount and power of the impulse, may all, like other diagnostic signs, taken singly or even collectively, fail us in our attempt at a diagnosis. As Laennec long ago observed, and as Dr. Stokes so often and so well enforces, valve disease has but little influence on health when the muscular condition of the heart remains sound. It is by the extent and power of the impulse that we discover the heart’s muscular condition, and its observation is, therefore, practically always of the greatest importance.

The left ventricle being more frequently actively dilated in disease of
the aortic, the right ventricle in disease of the mitral orifice, the power of distinguishing this condition is sometimes of value. If the left ventricle be enlarged and hypertrophied, the impulse at the apex protrudes strongly, steadily, and extensively, often as low as the sixth intercostal space, and as far to the left as an inch beyond the nipple.

"If the right ventricle be enlarged, and its walls thickened, the lower half of the sternum, the xiphoid cartilage, and the left costal cartilage from the third or fourth to the seventh, are heaved gently and steadily forwards, not by a pointed impulse, but by a diffused steady advance; the protruded walls usually fall back quickly towards the end of the systole."*

We must be careful not to infer that the heart is enlarged, when the perceptible impulse is increased owing to the uncovering of the heart when the lungs collapse and shrink away from before it, which is often the case in the weak, especially when confined to bed. Still less must we decide that the heart is small when, owing to emphysema, the heart is shielded from examination by the enlarged and interposed lung, and is drawn down into the epigastrium by the habitual descent of the diaphragm, when the impulse is felt, not between the ribs, but in the epigastrium only; and when the heart, instead of being small, is actually enlarged, especially in the right cavities. We must then take care not to mistake a large for a small heart, because it is covered by enlarged lung, nor a small for a large heart, because it is naked of lung. Forget gives, with admirable candour, a case illustrative of this source of error, in which he mistook aortic for mitral disease, owing to supposed non-hypertrophy of the left ventricle, that ventricle being evidently masked by emphysematous lung; he at length made the correct dead-house diagnosis of disease of the aortic aperture, when he saw that the left ventricle was enlarged.

Since Dr. Corrigan's valuable paper on aortic disease,† the aid afforded by the pulse in the diagnosis of heart disease has been well appreciated. The visible, or as Dr. Stokes rightly terms it, the collapsing pulse gives us the key, not only to the existence of insufficiency of the aortic valves, a pathological condition long since indicated by Lancisi;‡ but brought more completely before us by Dr. Hodgkin, in his valuable paper,§ but it is also with variable precision the key to the degree of the valvular patency, the size of the aortic orifice, and also, if we watch the case from day to day, the power of the heart.

When there is excessive aortic regurgitation, and when the arteries are enlarged and varicose from atheroma, the tortuositities of the subclavian, may be so prominent and throbbing as to be mistaken in some cases for subclavian aneurism. There is another source of that error in the local murmur that is sometimes heard over the outer end of the clavicle, towards the end of a deep, or even ordinary, inspiration. This murmur is due to the stretching of the artery during inspiration, where it bends downwards over the edge of the first rib—that rib being then raised, while the artery itself is drawn downwards, owing to the inspiratory descent of the heart. This bruit is most frequently present when the upper part of the chest is prominent, and when the blood is watery.

* Provincial Medical Transactions, vol. xii. p. 555.
† Edinburgh Medical and Surgical Journal, 1832.
‡ De Motu Cordis, p. 341.
§ London Medical Gazette, 1829.
Dr. Stokes is silent as to the blocking up of the larger arteries, by the detachment of fibrinous deposits from the interior of the heart, a condition to which attention has been so strongly directed by Virchow,* Dr. Kirkes,† and Dr. Simpson.‡ Rokitansky§ considers that in endocarditis the fibrinous vegetations on the valves are worn out superficially, and taken into the blood in fine particles; and that their absorption into the mass of the blood leads to secondary coagula in the capillaries of the spleen and kidneys, and to obliteration of those vessels. The fibrinous deposits on the valves are not necessarily the result of endocarditis, but may be, so to speak, whipped out of the blood, when surcharged with fibrine, by the thickened and roughened valves. It appears probable that Bright’s disease, which often appears to be associated with valve disease as a cause, is associated with it also as an effect, owing to the plugging of the capillaries by the fibres detached from the valves. This view derives some confirmation from an analysis which we have made of the cases of valve-disease tabulated by Dr. Barclay. Of 81 of these cases (putting aside doubtful ones) acute rheumatism alone had existed in 28; Bright’s disease alone was present in 35, and both diseases were associated in 18. In most of the last cases, acute rheumatism of old standing had evidently induced the valve-disease; and it is probable, we conceive, that in some of them the detached fibrine plugging the renal capillaries aided in causing the Bright’s disease.

We have chosen, in this article, to restrict ourselves to pericarditis and its effects, endocarditis and valve disease. We shall merely mention a few of the many additional points of value contained in the work of Dr. Stokes. In his chapter on fatty degeneration, Dr. Stokes brings into prominent notice the important and remarkable sign first observed by Dr. Cheyne, of the alternate acceleration and apparent arrest of respiration; the respiration seems to cease for from ten to twenty-five seconds, so as to simulate death; it then returns, becoming gradually of an extraordinary quickness and depth; at length it again dies away, and is again renewed; the successive changes, occupying about a minute, reoccur with amazing regularity, so as almost to mark the time. Usually this condition lasts about a week before death, but we had a patient under our care in St. Mary’s hospital, who presented these singular phenomena night and day, sleeping and waking, from the date of his admission to that of his death, three weeks later.

It will have been gathered, from the remarks already made, that Dr. Stokes condemns over-treatment, and in many cases, all medicinal treatment whatever. He is indeed opposed to routine methods, and adopts with great distinctness Dr. Corrigan’s admirable maxim of sustaining, rather than debilitating, in cases of heart-disease. When the liver becomes excessively congested and hard, so as additionally to obstruct the circulation, he advises mercury, pushed no farther than to produce the desired effect, as the only means capable of relieving the hepatic congestion.

Great objection is taken to that large part of Dr. Stokes’ work that

* Virchow’s Archiv, vol. 1.
‡ Association Medical Journal, No. liv. p. 4.
relates to the state of the heart in fever, and that, too, by those who enjoy
the largest opportunities of observing the disease. When bronchitis is
present in fever, the lungs being large and the breath sounds noisy, the
impulse may be imperceptible and the sounds inaudible, although the
heart's action be strong. It is possible, but not likely, that Dr. Stokes
may have observed such cases imperfectly, but from our faith in his general
accuracy of observation, we feel assured that, in many cases of fever
wherein the heart is softened and its action low, the sounds are sometimes
obliterated, more particularly the systolic sound. With regard to fever,
we would remark that, like the fauna or flora of a locality, it differs in type
at different places and among different people, and we doubt not that the
fevers of London scarcely offer a fair parallel with the fevers of Dublin.
Our own opportunities of observing fever are comparatively limited, and
we cannot, therefore, speak with confidence on this part of Dr. Stokes'
work; we think, however, that too large a space is occupied with the
subject.

We have already said that Dr. Stokes' work, though so valuable to the
medical man, is apt to prove confusing to the student. We agree fully,
however, with a remark made to us by one of the most able and laborious
of the many able medical men now at work in the north, that, notwithstanding its disadvantages, Dr. Stokes' work, like Dr. Latham's, is really
more instructive even to the student than the more systematic works on
diseases of the heart. Nothing can be more fruitful of error than the
fashion of placing in a finished, arranged, and made-easy manner, a subject which, from its variety and complication, is full of difficulty even to
the most matured observers. Can that which is difficult to the advanced
physician be made easy to the unpractised student? Certainly not. The
lucid descriptions and precise definitions of disease which the student
thus receives can never be more than the descriptions and definitions of
small groups of cases.

In conclusion, we strongly advise both medical men and medical stu-
dents to familiarize themselves with the two works before us. In Dr.
Bellingham's work they will find, well and comprehensively stated, that
fundamental knowledge which will fit them to comprehend more easily
the infinite but orderly varieties of disease; and in that of Dr. Stokes, they
will find throughout that spirit of practical and sagacious observation
which it is so important that they should themselves acquire.

F. Sibson.
Review XIV.

On the Structure and Relations of the Corpora Amylacea of Man. By Dr. R. Virchow.

On a Substance found in the Brain and Spinal Cord of Men, having the Chemical Reaction of Cellulose. By Dr. Virchow.

Further Communications on the Occurrence of Vegetable Cellulose in Men. By Dr. Virchow.

On the Cellulose Question. By Dr. Virchow.

 b. Bericht über die Leistungen in der Physiologischen Chemie. Von Prof. Dr. Scherer. p. 98.

Reports on the Progress of Anatomy and of Physiological Chemistry. By Professors Henle and Scherer.

The Bacony or Cholesterin Disease. By Dr. Meckel.

That quaestio vexata, the distinction between animals and plants, after much subtle disquisition, and the rise and downfall of many ingenious hypotheses, seemed at length to receive a simple and tolerably satisfactory
solution in the supposed limitation of starch to the vegetable kingdom. Yet no sooner had this opinion gained ground, and had naturalists begun to employ it in determining the animal or vegetable character of doubtful organisms, than, by the perverse ingenuity of an industrious German—Carl Schmidt*—it was discovered that the tunic of Ascidians contained a substance having the chemical reaction of starch, or, more strictly speaking, of its isomeric congener, cellulose.

This discovery was followed up by Löwig and Kölliker,† who proved the existence of cellulose in many other of the Ascidia, both the simple and compound; in most animals, indeed, of the order Tunicata; and Dr. H. Schacht‡ and Mr. Huxley§ have more recently inquired into the anatomical and physiological relations of that substance to the animal tissues.

Still the belief in cellulose being peculiar to plants could not at once be surrendered as untenable; and it was urged against Schmidt’s observation, that the starchy material in the mantle of Ascidia was of adventitious origin—a foreign substance, probably derived from their food, intermingled with the tissue. But this plea was, in its turn, soon set aside by the discovery that the yet embryonic Ascidians, excluded from any foreign admixture with vegetable products, contained cellulose equally with the adult animals.

It is now consequently received as a fact, that cellulose enters into the structure of these inferior beings. By itself it constitutes no one of their tissues, as happens in plants, but it is associated with their nitrogenous elements, and is in some way connected with their nutrition. The conditions under which it exists in the two divisions of animated nature, respectively, are still matters of discussion, which we, however, cannot here enter into. Suffice it to say, that Schacht contends for a distinction in the relations of cellulose to animal and to vegetable tissues; whilst Huxley, on the contrary, affirms that those relations are anatomically and physiologically alike in the two.

So long as the existence of an amylaceous material was recognised only in the simple asidian Mollusces, and in a few other beings equally low, or even lower in the animal scale, which partake, in not a few particulars, the attributes of vegetable organisms, the interest of it as a fact was rather limited to the naturalist, and in only a subsidiary manner extended to the medical philosopher. On the announcement, however, by Professor R. Virchow, of Wurzburg, of the discovery of a substance in man having the reaction of cellulose, it was at once evident that, to the human physiologist, a point of the highest interest and importance had been raised. It had recently been proved by Claude Bernard, that the animal organs could elaborate other than animal products; that, for instance, the liver was a sugar-forming organ; now another phenomenon of the same class seemed brought to light—viz., that cellulose, the material of the cell-wall of plants, might be developed in the processes of human nutrition.

This discovery of Virchow illustrates the value of combining chemical

* Zur vergleichenden Physiologie der wirbellosen Thiere. 1845, p. 61.
‡ Müller’s Archiv, 1851, p. 176; and Journal of Microscopical Science, vol. 1, 1853, pp. 55, 106.
§ Ibid., p. 22.
with microscopical researches. It is, indeed, by the joint prosecution of the two means of investigation that we must hope at length to fathom some of the processes of healthy and diseased nutrition at present concealed from us.

To proceed, Virchow informs us, in his first paper, that the detection of cellulose in the Ascidiow induced him to seek for it also in the human frame, and that, from an accordance in general appearance between the jelly-like tissue of those simple animals and the gelatinous matter of the umbilical cord, his inquiries were first directed to the latter, but without success. Having regard, doubtless, to the external conformity of structure of the corpora amyloae of the brain and of starch-corporae, he subsequently subjected the latter to the tests for cellulose, and had the satisfaction of finding them display the characteristic colour. These bodies, on the addition of iodine, first acquired a pale blue, and upon the subsequent addition of sulphuric acid, presented the beautiful violet reaction characteristic of vegetable cellulose.

Thus far the researches of Virchow had the support of analogy, both in respect of structural resemblance and of chemical reaction.

The corpora amyloae mentioned appear to have been first seen in the brain by Purkinje, and to have been so named by him on account of their rounded, concentric, and laminated figure recalling very closely the appearance of starch corpuscles. Their discoverer, we believe, however, included under that appellation other granules besides those lately noticed by Virchow, to exhibit the reaction of cellulose—such as the calcareous particles which constitute brain sand, and possess equally evident concentric laminae about a nuclear point or hilum, as we have elsewhere pointed out.* And although Virchow has, in his later papers, carefully distinguished the earthy from the other starch-like bodies, yet he, in his communication to the Wurzburg Academy on the corpora amyloae, evidently included both under that appellation. This is also done by Meissner in his account of concentric cells in a cystic polypus of the ear. Our present knowledge, however, renders it necessary to keep the distinction in view, and this will be best done by restricting the term corpora amyloae to that variety which, by reason of its physical and chemical characters, is more closely assimilated to starch. The other variety will be sufficiently indicated by the designation of calcareous concentric corpuscles.

The cellulose reaction was, on the first promulgation of his views, supposed by Virchow peculiar to the amylaceous bodies of the great nervous centres, found in the ependyma ventriculorum and its prolongations. This ependyma forms the lining of the cerebral ventricles, lying sub- jacent to their epithelium. According to Virchow it is a connective tissue of the nerve elements, not restricted to the brain, but extending from the fourth ventricle the whole length of the spinal cord to the filum terminale, under the form of a continuous gelatinous band. In the cord it is essentially the ependyma of the obliterated central canal of the fetus, and has been called, by Kölliker, the substantia grisea centralis; Virchow would prefer naming it the central ependyma filament. The

* See Original Communications: Art. II., Observations on Brain Sand and Amyloid Bodies.
cellulose exists in this spinal ependyma generally, but apparently in
greater abundance in its upper portion. The ependyma

"Contains very fine cellular elements, and a matrix sometimes of more dense,
sometimes of softer consistence, and is continued on the internal aspect without
any special boundary between the nervous elements. In the deeper layers of this
membrane, and in immediate contiguity with the nerve fibres, the cellulose corpuscles are found most abundantly, and they are also especially numerous where the ependyma is very thick. They are consequently very abundant on the fornix, septum lucidum, and in the stria fornicata in the fourth ventricle; at times they occur of excessively minute size. In the spinal cord, the substance corresponding to the ependyma lies in the middle, in the grey substance. . . . Its cells are
much larger and more perfect than those of the cerebral ependyma.

"In other situations I have sought," says Virchow, "for these bodies (cellu-
lose) in vain, and in particular, I have been unable to find them in the external
cortical layer of the cerebrum, or anywhere in the interior of the cerebral sub-
stance. . . . In the child I have, as yet, searched for cellulose in vain, so that,
like the 'brain-sand,' it appears to arise in a later stage of development, and probably may have a certain pathological import.

"The cellulose granules, therefore, appear to be everywhere connected with the
existence of the ependyma-substance of a certain thickness, and might perhaps be regarded as a constituent of it."

In following up his investigations, Virchow soon found that corpora
amyelacea were not confined to the localities named, but existed also in the
higher nerves of sense—in the auditory and optic nerves; and he consequently assumed that an ependyma extended into them. This
assumption involved some change in the definition of the ependyma as
heretofore given, and Virchow,

"From a series of pathological observations, concluded that a soft matrix,
referrable mainly to connective-tissue substance, everywhere pervades and connects the nervous elements in the centres, and that the ependyma is only a free superf-
cial expansion of it over those elements. The opinion that the epithelium of the
cerebral ventricles rests immediately on the nervous elements, appears to have risen from a confusion of this interstitial substance with the true nerve-sub-
stance."

The views hitherto expressed rested on the supposition that cellulose corpuscles were found in connexion only with the nervous tissue, or more particularly with its ependyma, or "connective substance." We shall
presently see that this opinion will not hold good; that at least in one
other organ, granules, answering to the tests for cellulose, exist, having
no relation to nerve matter. We will, however, first call attention to the
observations of others on the corpuscles found in the cerebro-spinal
axis and its offshoots.

On the publication of the above researches by the Wurzburg professor,
numerous other workers appeared in the same field; the majority of
whom confirmed them so far as related to the existence of corpuscles in the ependyma, affording blue and violet tints with iodine and sulphuric
acid; but on the subject of their chemical nature the greatest diversity of
opinion did, and still does prevail.

Both Rokitansky and Scherer found those peculiar bodies in the epen-
dyma; Kölliker detected them in the retina, and Mr. Busk has assigned
to them a much wider range in the brain than that allotted by Virchow.
The observers first named have recorded no additional facts, but Mr.
Busk has supplied us with original observations and opinions which require to be here stated.

The first brain he examined for cellulose

"Was that of a young man who died of the consecutive fever of cholera, after an illness of five or six days, during the whole of which period the renal secretion was completely suppressed. What I noticed (Mr. Busk goes on to say) in this case was:

1. The enormous abundance of the corpora amylacea in certain situations, as the ependyma ventriculorum, particularly on the septum lucidum, and more especially also on the choroid plexuses; upon gently scraping the surface of which a fluid was obtained, containing these bodies in the most surprising quantity.

2. That they existed in immense abundance in the olfactory bulbs, and in the superficial parts of the brain, both cortical and medullary, contiguous to the tract of the olfactory nerves. But scarcely any part of the cerebrum and cerebellum could be examined, at all events towards the surface, without meeting with some or more; and they occurred abundantly in the very middle of the cerebellum. Their distribution, however, was very irregular, inasmuch as they abounded in some spots, and were nearly, if not altogether, wanting in others. I could find none in the corpora striata, where they seemed to be replaced by 'brain-sand.' . . .

3. The cerebral substance, in immediate contiguity with the corpora amylacea, appeared quite natural. . . . The corpuscles were of all sizes, from less than a blood-disc up to 1-500th of an inch or more; generally more or less ovate, but many irregular in outline, and apparently flattened. . . . Many of the larger ones showed the appearance which, in starch, has been erroneously described as indicative of a laminated structure: whilst in others this appearance, under any mode of illumination, certainly did not exist. The point that would correspond with the so-called nucleus of a starch-grain was, unlike that of most kinds of starch, central, and consequently the laminated marking was concentric to the grain, which is rarely the case in the starch of plants."

Mr. Busk's second case was "that of an old man—dead of chronic dysentery, and who died comatose." The ventricles were found distended with about three ounces of clear fluid. The ventricular lining was studded with minute transparent granulations, but corpora amylacea were absent. Of the latter structures none were found.

"In the central substance of the brain; a few were met with in the peripheral portions, especially on the summits of the hemispheres, and still more in the nuclei-developed Pacchioni granulations, and there commingled with other concentrically-laminated bodies, which formed botryoidal masses imbedded in a stroma of immature connective tissue; these bodies, which might, to distinguish them, be termed the 'chalcodonic corpuscles,' were rendered yellow by iodine. . . . In several instances I saw minute amylaceous particles (coloured blue by iodine) contained in cells which they only partially occupied."

The differences in locality, and in the abundance of the amylaceous granules in the two brains examined by Mr. Busk, are very striking, and seem opposed to the idea of such particles being limited to any particular regions or tissues. Their peculiarity to nerve-substance or to its ependyma, their non-occurrence on the cerebral surface, or in the meninges, or their prolongations, as at first supposed by Virchow, are hypotheses overthrown by the discovery of amyloid corpuscles upon the choroid plexuses, on the surface of the brain, and in the Pacchioni bodies. Should Mr. Busk's observations be confirmed, the development of an amylaceous material in the processes of secondary nutrition will have a much wider signification than Virchow's original investigations suggested.
We have here purposely omitted reference to the relations, intimated in Mr. Busk’s observations, between the production of a starchy material in the nervous centres, and that of brain sand. Of this hereafter.

Besides those corpuscles in which starch or cellulose has been evidenced by chemical re-agents, numerous others, of various origin, have been enumerated as belonging to the same class, possessing in many cases, however, little in common, except their minuteness and doubtful nature. Foremost among corpuscles approaching corpora amylacea, are those exhibiting concentric laminae around a nucleus. To such, analogy, in external conformation, led Virchow to first direct his inquiries in search of cellulose, but it proved itself therein an erroneous guide. We have already noted the failure of that diligent student to recognise an amylaceous element in brain-sand; with other concentric globules he was no further successful. Professor Luschka, of Tubingen, records meeting with rounded particles amid the nerve-tubes and ganglionic cells of the Gasseri-an ganglion, displaying a concentric striation after the addition of hydrochloric acid, which he imagined to be corpora amylacea. He also encountered similar bodies in connexion with the superficial vessels of the cerebral hemispheres. So again, Rokitansky stated, on learning the discovery of concentric and seeming starch corpuscles, that he remembered meeting with not unlike structures in an atrophied optic nerve; also, in a case of atrophy of the spinal cord with diffused, transparent, greyish effusion; in the cerebral substance; and, lastly, in large numbers and of great size, in softened bones (osteomalacia).

Of even more doubtful nature are many of the granules which Meissner would number among corpora amylacea. In fact, some of them, according to his own statement of their vital and chemical characters, are clearly of a different class. He speaks of seeing corpora amylacea (?) in the choroid plexus and pituitary gland; in the acoustic nerve of a deaf and dumb patient; and in the cysts of a polypus of the meatus auditiorius. The same observer further states, that he has “often met with concentric corpuscles in great number, and of more considerable size, in nasal mucus; also in synovia, in dropsical fluid,—and not only in that of serous cavities, but in that, moreover, of anasarca. They are found likewise in the cerumen of the ear, sometimes in the urine and in pus.”

Again, Förster would class with corpora amylacea the corpuscles found in alveolate-cancer; and Wedl, some colloid concentric bodies occurring in hypertrophied heart. Henle contends that certain concentric corpuscles noticed by him in glandular discharges some years since (in 1849), should be admitted into the same category. His original remarks occur in a short paper on what he denominated “Hassall’s concentric corpuscles of the blood.”* The objects so called, are described and figured by Dr. Hassall,† and their resemblance to starch-grains is very striking; but Mr. Gulliver‡ had previously pointed out the presence of such concentric globules in fibrous clots of the heart, and represented them in his engravings. Henle expressed an opinion that the latter anatomist was altogether deceived in the bodies he saw, and Hassall presumed them to be

† Microscopical Anatomy of the Human Body.
‡ In his translation of Gerber’s General Anatomy.
extraneous and entozoal, and probably vesicles of minute algae, of the genus *Microcystis*, or *Hematoecoccus*.

Now it at once forces itself upon the mind, that, among corpuscles differing among themselves so much both in situation and in histological relations, there can be between many of them no other actual affinity than that of external similarity in rounded form and in concentric lamination; and, therefore, that, to identify them all with corpora amylacea, is a proceeding opposed to the probability of the case. Indeed, of the bodies which some observers would assimilate with the cellulose particles, many have never been chemically examined, whilst others submitted to chemical tests, have afforded results of a contrary character. The only connecting link, as we have already said, between many of the rounded granules enumerated, is that of circular markings; in fact, even this is wanting to some. It is, moreover, a circumstance to which little importance really attaches. For the circular lamination of exuded matter around a central point or nucleus, exemplifies the natural tendency to what MM. Robin and Verdeil designate "concentric crystallization."* Those authors use the term with reference to the salts of animal fluids, but we would give it a wider extension, so that it should embrace the phenomena exhibited by all laminated corpuscles, however constituted; whether of saline ingredients alone, or of earthy or other matter and animal tissue, or even of the substance presumed, by Virchow, to be cellulose.

Modern science authorizes our speaking of the crystallization of animal matter;† and there are sufficiently numerous examples to illustrate both the simple union and the chemical combination of animal tissue with mineral, and, we can now add, with vegetable material. We have suggested elsewhere,‡ in an account of brain-sand, the chemical union of the calcareous with the organic basis, whereby the peculiar properties of each are modified. So, again, Schacht points out, that in the Ascidia we have to deal not with pure cellulose, but with cellulose deposited in a nitrogenous membrane, and vitally connected with it; and it is under analogous circumstances that we may suppose the amylaceous substance is present in the human body.

In his paper in the Wurzburg 'Transactions'—(placed first at the head of this article)—written prior to his discovery of cellulose bodies, Virchow gave a very good summary of the various corpuscles related by the circumstance of being laminated and concentric, and to which generally he applied the term *amyloid* bodies. As those therein mentioned were most likely the concentric corpuscles which he examined unsuccessfully for cellulose, and in order to render the list of such particles,—which henceforth will doubtless arrest much attention,—the more complete, we will recount such among them as have not hitherto been noticed. On the serous surface of the female sexual organs, Virchow met with small, concentric "colloid-bodies," having also radiating stries, and resembling those first seen by Kohlrausch in the kidneys. Others referred to are, concretions of the prostate, of the vesiculae seminales, and of the veins (Venen-

* *Traité de Chimie Anatomique.*
† See an able paper on Albuminous Crystallization, by Dr. Sieveking, in this Review, vol. xii, 1854, p. 545.
‡ Original Communications, Art. II.
steine) and granules in the bursae mucosae. Between the above and biliary and renal calculi, he also finds an analogy.

To sum up, therefore, concentric lamination, after the manner of starch-grains, is not peculiar to, or characteristic of, corpora amylacea. It is, besides, no necessary feature; for it is not unfrequently absent, just as in the case of starch itself. Indeed, we have obtained the blue reaction with iodine, or with iodine and sulphuric acid, in granules without apparent concentric markings, more frequently than we have discovered corpuscles possessing them. And Mr. Busk has remarked that, though many of the larger ones appeared of a laminated structure, “in others, this appearance, under any mode of illumination, certainly did not exist.” The presence of a nuclear point or line, or hilum, is equally uncertain with the lamina-tion, and in no degree characteristic of corpora amylacea.

We must seek, then, in chemical reaction the signs which shall distinguish corpora amylacea from all other corpuscles approaching them in structural characters, and, in the meantime, must be careful to separate all those which, from reasoning and chemical experiment, appear of a different nature, just as is done, by most observers, in the case of the calcareous corpuscles of the brain. The German writers, in their eagerness to follow in the wake of Virchow’s discovery, have, as already seen, heaped together imperfect observations on all sorts of granules, and have thereby so encumbered the matter, that, at present, it seems hopeless to endeavour to evolve any general truth relative to the part played by cellulose in the processes of nutrition.

We have just said we must look to chemistry to determine what are corpora amylacea. It is by its employment that Virchow has been led to the discovery of granules having the reaction of cellulose in other than nerve-tissue—viz., in the parenchyma of the spleen; and it is this discovery, as hinted at in a previous page, which has scattered to the wind the several ingenious hypotheses which that persevering observer has, from time to time, raised concerning the histological relations of cellulose.

Virchow writes that, having failed to detect amylaceous matter in the several varieties of concentric corpuscles, he entered on an examination of the human tissues generally, both of the healthy and of the morbid, but met with no evidence of cellulose, until a spleen in that ill-defined pathological state known as fatty- or waxy-spleen, fell under his observation. This diseased condition occurs in cachectic habits of body, especially where there has been prolonged suppuration and exhaustion. According to some, it depends on an albuminous or fibrinous exudation, whilst others describe it as a fatty or true colloid degeneration. Virchow formerly coincided with Schrant in believing the disease to be “colloid,” and afterwards, from the chemical reactions of the morbid elements, concluded it to be due to albuminous exudation; but, if his present experiments and views be confirmed, it is no other than a cellulose degeneration. From his latest published researches, there would appear to be two varieties of this seemingly cellulose degeneration, distinguished by the different site of the foreign matter in each.

In the first variety, the transformation occupies the contents of the Malpighian follicles; it advances from periphery to centre, and gives origin to globules of a gelatinous aspect, the size of a pin’s head or hemp-seed,
well compared by Christensen to sago-grains in soup. These bodies Virchow was for a long time aware were composed of little microscopic corpuscles, round or slightly angular, quite homogeneous, of a greyish or yellowish hue, packed close together, and, although larger, derived from the metamorphosis of the usual lymph-cells which constitute the contents of the splenic follicles. Nitric acid rendered apparent a granular and fine connective tissue between the grains; when the acid was made hot it coloured the latter yellow, and caustic ammonia then rendered them brown, acetic acid made them pale, and ferro-cyanide of potassium being added, produced a granular precipitate between them. It was the knowledge of this behaviour with reagents which started the idea of their albuminous composition; but subsequent experiments with iodine and sulphuric acid brought to light their apparently cellulose nature.

Iodine alone, however, does not give the pale blue tint to these spleen granules which it does to the corpora amylacea, but at first produces a remarkably strong yellowish-red colour, and then the addition of sulphuric acid develops a blue, and afterwards a strong violet colour. An excess of acid, acting powerfully, destroys the violet tinge, and causes a dark brownish red, changing presently to yellow. This transition, and likewise the more rapid operation of reagents upon these splenic globules, than on the corpora amylacea of nerve-matter, Virchow would attribute to their softer consistence.

Besides these important differences in chemical reaction, the splenic granules differ from corpora amylacea in never showing concentric markings. This, however, Virchow considers no argument against the identity of the two; in his apprehension, the same blue colouration by iodine and sulphuric acid together is in itself sufficient to establish it.

Another point made out, of much value as promising great facilities for examination, is the persistence of these spleen corpuscles and their resistance to decomposition. In specimens of the diseased spleen, kept in weak spirit for more than a year, these bodies still made their appearance. So again, recent portions of waxy spleen, macerated under a constantly running stream of water for many weeks, displayed their distinctive colouration with iodine and sulphuric acid even more brilliantly than when not so treated. By this means, corpuscles may be washed out of the tissue and isolated, and their peculiar reaction be clearly ascertained; and Virchow even hopes to hereafter obtain a sufficient quantity to submit to chemical analysis, and thereby to determine whether or not they contain fibrin, the absence of which will render their affinity to vegetable cellulose even more close. The behaviour of the tissue interposed between the granules with chemical reagents convinces him it is of an albuminous nature.

The other variety of diseased spleen, presenting corpuscles having a reaction like cellulose, was met with in a man who had died from necrosis and great suppuration. The liver was congested; the kidneys had suffered fatty degeneration; the spleen itself was much enlarged, very red, firm, and dense, and full of blood; its follicles small and white, and its pulp opaque; when dried, wax-like. Crowded masses of "corpora amylacea" occurred, not, as in the form of waxy spleen previously considered, within the contents of the Malpighian follicles, but in the intermediate spleen-pulp. Iodine
quickly coloured the entire pulp yellowish-red, and sulphuric acid being added, produced a clear blue and violet tint. Here, consequently, was the converse of the pathological state of the spleen before noticed,—the follicles normal, the medullary substance degenerated.

Virchow is not prepared to state how far this cellulose reaction is partaken by other similar gelatinous or colloid corpuscles found in other organs, such as those noted by Wedl* in the intermuscular tissue of an hypertrophied heart, or the concentric cells, portrayed by Schrænt, from the optic nerves of an amaurotic patient. But he has tested for cellulose the so-called colloid bodies of the thyroid gland, of the ovary, and of the kidneys, as well as the thick-walled cells in the intervertebral cartilages, and various fatty degenerated parts, yet in vain.

In the remarks hitherto offered we have only superficially treated the subject in its chemical bearings, although a little consideration will show that it is to chemistry we must look for a settlement of “the cellulose question.” It must be clearly ascertained whether the reaction of iodine and sulphuric acid with cellulose is peculiar to the latter, or whether any other substance also displays it. H. Meckel, of Berlin, affirms that cholesterol is affected in the same way as the presumed “cellulose” of Virchow, and accordingly attributes to the corpuscles in question a cholesterol nature. To this view Henle assents; but a contrary opinion is advocated by Donders and Busk—viz., that corpora amylacea are actually starch-grains. The questions thus raised must form the subject of a future analysis.

J. T. Arlidge.

Review XV.

Notes on Pericarditis, Endocarditis, and Organic Disease of the Heart and Aorta. By C. Morehead, M.D., and Professor of Medicine in the Grant Medical College, Bombay. 1853. 8vo, pp. 105. (From the ‘Transactions of the Medical and Physical Society of Bombay.’)

Every contribution to pathological science is acceptable—its value, as in the present instance, may probably be enhanced by the reputation of the observer who presents it, or by the sphere of disease whence it is derived. Our Indian possessions have already yielded a fair harvest to the diligent cultivators. Among these, not the least worthy of honourable mention is the author of the report before us, which will be found to sustain the reputation, for industry and ability, of Dr. Morehead, who thus states his intentions in its preparation.

“In submitting this report, I have had two objects mainly in view; one to add to our clinical knowledge of an important class of diseases; the other to correct the erroneous impression which seems to exist, that acute rheumatism in India is rarely associated with pericarditis or endocarditis.”

The opinions here alluded to are those of Drs. Bird† and Chevers. The latter writer says, “there appears to be every reason to believe that rheu-

* Grundzüge der Patholog. Histologie. Wien, 1853, p. 228, fig. 38.
† Lancet, Aug. 1850.
matic heart affections must occur very far more rarely in this country (India) than they do in Europe."*

Dr. Morehead's cases were observed in the Jamsetjee Jejeebhoy Hospital at Bombay. A smaller proportion of rheumatic patients are observed in India than in England; the greater number are chronic cases. Many acute cases do, however, occur, and cause heart disease; thus, of the 49 cases of heart affection brought under notice by Dr. Morehead, 27 were clearly traced to rheumatic attacks, and more, also, would probably have fallen under the same category, had the record of all the cases been equally complete. The author remarks:

"It may be that in India acute articular rheumatism is not so common as in colder climates, yet it is by no means of unfrequent occurrence; and the association of pericarditis and endocarditis with it is, I believe, as common in one country as the other.

"Of no rule of practice am I more thoroughly satisfied than that it is as incumbent on the practitioner in India as in Europe, carefully to watch and search for the physical signs of pericarditis and endocarditis in every case of acute rheumatism. If this rule be neglected, the co-existence of these diseases in India will necessarily continue to be looked upon as of rare occurrence."

The data, as Dr. Morehead remarks, are not yet furnished which can justify a comparison between the pathology of the natives of India and that of the diseases of the natives of European countries. So far, however, as a limited number of observations enable us to form a conclusion, the existence of the similarity affirmed by Dr. Morehead seems to exist. An examination of the more important features observed in these cases gives confirmation to the opinion, as will be seen in the following abstract or analysis of the essay in which they are contained. This consists almost exclusively of a detail of clinical facts, so that we cannot do justice either to our author, or our readers, otherwise than by reproducing, in as condensed a form as possible, the contents of this valuable pamphlet.

The report is divided into two parts:

1. The history of 25 cases of pericarditis and endocarditis.

2. The history of 21 cases in which there was structural disease of the heart, and 3 cases of aneurism of the aorta.

We shall follow the author's arrangement of the most important facts deducible from the narratives of the cases in the first category, by considering them under certain heads:

1. Proportion of Cases of Pericarditis and Endocarditis, and of both combined.—Of 13 cases recorded as pericarditis alone, 6 are not sufficiently clearly stated to justify the entire exclusion of endocarditis; they are therefore doubtful.

Four were cases of endocarditis alone, affecting the mitral valve in 3, and the tricuspid valve, as believed, in 1.

There were 8 cases of pericarditis and endocarditis combined; in 3 the aortic valves, in 4 the mitral valves, and in 1 both aortic and mitral valves, were affected.

In 7 of the cases the pericarditis took precedence of the endocarditis; in the remaining case the endocarditis was first observed.

* On the Practical Management of Diseases of the Heart, &c. By Norman Chevers, M.D. Calcutta, 1851, p. 38. See also this journal, No. 17, p. 42, in which this opinion is objected to.
2. Results of the Cases.—Nine of the 25 cases proved fatal; of these, 8 were in the list of pericarditis, but in 5 of them the coexistence of endocarditis was not disproved; one followed on the two combined. Two of the fatal cases occurred in association with rheumatism; 2 in cachetic habits; 4 were consequent on pneumonia, pleuritis, and phthisis.

From these cases Dr. Morehead deducts the inference, that the prognosis is more favourable in pericarditis associated with rheumatism than under other circumstances. This deduction is, of course, in conformity with the experience of Dr. Taylor and others.

In the 16 cases in which a fatal result did not take place, in 5 no signs of cardiac disease were left behind, and recovery was regarded as complete. In 3 cases the signs of valvular disease were so slight, that they were regarded as probably instances of ultimate complete recovery.

3. Relation to Difference of Sex.—The data furnished by the cases under notice are insufficient to justify any attempt at a comparison of the frequency of the disease in the two sexes. They simply show that the proportion was about the same as that of the admission into the hospital—viz., one female to seven males.

4. Proportion of Cases in different Castes.—An equal liability to pericarditis and endocarditis appears from these data to exist in the Hindoo and in the native Christian population; and that these affections are twice as frequent among Parsees, and not one-fourth so frequent among Mussulmans. Of this comparative exemption of the Mussulman population, the author can offer no explanation.

5. Classification with reference to Age.—The ages of 23 cases only are recorded—viz.: from ten to twenty, 7; from twenty-one to thirty, 10; from thirty-one to forty, 4; from forty-one to fifty, 2. Seventeen of these cases were between fifteen and thirty years of age, of which 14 were in association with rheumatism. These facts also, we remark, are in accordance with the features of these affections as seen in Europe.

6. Occupations of those affected.—In 20 cases these were as follow: 2 sailors, 3 servants, 3 hawkers of fruit, &c., 2 beggars, 2 sepoys, 1 baker, 1 labourer, 1 carpenter, 1 grain-seller, 1 schoolmaster, 1 oil-seller, 1 dyer, 1 cook. Sixteen of the twenty followed occupations which more or less led to exposure of the individuals to wet or vicissitudes of temperature. The inference then, that these are its exciting causes, is borne out by the above figures, as well as by the following.

7. Months of the year in which most admissions took place.—Nine cases were admitted in the cold months of November, December, January, and February. Fifteen cases were admitted in the rainy season, including the months of June, July, August, September, and October. Of 4 cases admitted in June, 3 were after the 20th, and consequently are correctly classed with the admissions of the rainy season. Only 1 case occurred during the hot season, and this had on previous occasions been the subject of rheumatism.

8. Relation to Habits of Life.—Of 5 only is it stated that they were addicted to the abuse of spirituous liquors—1 was addicted to the habit of opium-smoking.

9. Relation of the Disease to Rheumatism, Cachexia, and Pulmonic Inflammation. Of the 25 cases, 17 were associated with acute articular
rheumatism. In 16 the rheumatism was present when the heart symptoms appeared, and afterwards co-existed with them. In 1 case the rheumatic symptoms were not present with the cardiac symptoms, which occurred in an individual who had some years previously suffered from an attack of acute rheumatism, and in whom the diathesis, at the period of the attack of pericarditis, may be assumed to have been present. Of the remaining 8 cases, in which rheumatism was not present, 2 occurred in very cachectic states of the system: in 1 the cachexia was distinctly syphilitic; 4 were extension of inflammatory action from the lungs or pleura, and were, with one exception, cases of pericarditis. Two must be looked upon as instances of primary or idiopathic pericarditis.

Of the total cases of pericarditis and endocarditis there was only 1 in which, as far as the record shows, Bright's disease of the kidney was present. In 31 cases of Bright's disease (detailed by the author in the 'Transactions of the Medical Society of Bombay,' there were only 2 in which affection of the heart co-existed with the kidney disease. These data, then, do not show the same relation between Bright's disease of the kidney and pericarditis and endocarditis as the statements of other observers do.

In these cases, the greater relation which subsists between endocarditis and acute articular rheumatism, than between pericarditis alone and rheumatism, is evident. All the cases of endocarditis, single or combined, were, with one exception, associated with rheumatism; whereas, of the 13 cases of pericarditis, 7 were unconnected with rheumatism; and of the 6 cases in the list of uncombined pericarditis, noted as occurring in association with rheumatism, it is not improbable that in 2 of them endocarditis was also present. Of the 2 cases of apparent primary pericarditis, 1 is peculiar in its nature, and is commented upon by the author in his narrative of cases.

10. Leading Symptoms observed.—Nothing new is communicated under this head.

11. Treatment.—General bleeding was not employed. Local depletion was used in 11 cases. Blisters and mercurials were also employed.

In the second part of the paper Dr. Morehead relates the histories of 21 cases, in which there was old structural diseases of the heart, and of 3 cases of aneurism of the aorta. The following extract will show the lesions, which were found after death:

"Of the 24 cases, 17 proved fatal in hospital, and 2, in all probability, shortly after discharge. Of the 17 fatal cases, an examination of the body after death was made in 16. . .

"In 11 there was dilatation of both ventricles of the heart; in 6, associated with disease of both aortic and mitral valves; in 4, with disease of the mitral valves; and in 1, with disease of the aortic valve alone.

"In 9, there was dilatation and hypertrophy of the left ventricle. In these, with 2 exceptions, there was dilatation of the right ventricle also; in 5 of the cases there was disease of both the aortic and mitral valves; in 3, disease of the mitral valve; in 1, of the aortic valve only.

"In 1 case there was hypertrophy of the right ventricle, associated with obstructive disease of the pulmonary semi-lunar valves.

"In 4 cases there was aneurism of the left ventricle. In all, the opaque state of the endocardium showed that endocarditis had at a former period been present,
and was in all probability the cause of the atrophy and impaired irritability of the muscular fibre, which had led to the formation of the aneurismal pouches. In 3 of the cases there was disease of the mitral valve; in 1, of the aortic valve alone.

"In 7, there was both aortic and mitral valvular disease.
"In 5, disease of the mitral valve only.
"In 1, disease of the aortic valve only.
"In 1, disease of the pulmonary semi-lunar valves.

The co-existences of dilatation of both or one of the ventricles of the heart, with their several states of valvular disease, has already been shown.

"In 9 cases the existence of former pericarditis was proved by the presence of opaque patches on the surface of the heart; and in 2 of these there were also adhesions between the pericardium and the surface of the heart.

"In 6 cases, there was, in the opaque condition of the endocardium of the left ventricle, evidence of the previous existence of endocarditis.

"Both the pericardium and endocardium had been affected in 5 cases.

"In 5 cases there was effusion of serum, exceeding two ounces, in the sac of the pericardium.

"In 1 case rupture of the left ventricle of the heart had taken place: the muscular fibre in this case had undergone the fatty degeneration.

"In 2 cases there was dilatation of the ascending portion of the aorta, and in 2 the aorta was contracted. In 3 there were thickened patches of atheromatous deposit on the inner surfaces of the aorta.

"In 1 case there was aneurism of the thoracic aorta, and in 1, aneurism of the abdominal aorta.

"Of the 16 cases examined after death, the state of the lungs is not mentioned in the report of 2 of the cases. In 6 cases there was congestion of part of the lungs; 5 of these were cases in which there was dilatation of both ventricles—1 dilatation and hypertrophy of the left ventricle. In 4 cases there was oedema of the lungs; and in all, dilatation of both ventricles was present. In 4 cases there was more or less serous effusion into the sacs of the pleura, and these were also cases in which there was dilatation of both ventricles—in 3 of the cases the pleural effusion was associated with oedema of the lungs. In 5 cases, old pleural adhesions existed. In 2 cases there were hepatised nodules here and there in the substance of the lungs. In 1 case, tubercles existed; in 1, emphysema. In 1, the lungs were reported to be healthy. In these cases we find the relation between congestion of the lungs, serous effusion into the sacs of the pleura, or into the pulmonary air cells, and heart disease, well illustrated."

In conclusion, we thank Dr. Morehead for this seasonable paper. He has satisfactorily shown that rheumatic fever offers the same sequence of phenomena in India as in Europe; and in so doing he has corrected an error which seemed very likely to creep into our pathological doctrines.

Among the many practical papers which have proceeded from the Bombay Medical Staff, we regard the present as one of the most important. It offers a lesson to the young surgeon entering into the Indian army, which ought not to be neglected, for its perusal will show him, that amidst the unfamiliar forms of disease which his tropical service will give him, he will still have to diagnose and to treat affections entirely similar to those with which his English experience has made him acquainted.
PART SECOND.

Bibliographical Record.

Art. I.—Six Lectures on the Pathology of Strabismus, and its Treatment by Operation, delivered at the Westminster Hospital. By C. Holt-house, F.R.C.S.E., Assistant Surgeon to the Hospital, and Lecturer on Anatomy in its Medical School.—London, 1854.

Mr. Holthouse's first lecture is occupied with a brief but clear account of the anatomy and actions of the ocular muscles. In describing the action of the orbicularis, it is observed that it can press the eye slightly back in its orbit during contraction, and to this action Mr. Holthouse refers the slight movement backwards of the eye which sometimes occurs in the operation for cataract, and which is usually attributed to the action of the recti muscles. But is not this movement during the operation entirely independent of the orbicularis, as the contraction of this muscle is prevented by the assistant's fingers?

In the second lecture, the phenomena of strabismus are described under the usual headings, of the single and double-convergent strabismus, and the single and double-divergent strabismus.

In the third lecture, the remote causes of strabismus are given, as follows:—1st, Congenital defects of the organ of sight; 2nd, Diseases of the brain affecting the orbital nerves; 3rd, Hypertrophy of a particular muscle from over use, from voluntary squinting, either from imitation or in order to turn away the eye from the light when there is conjunctivitis or ulcer. Mr. Holthouse also alludes to the fact mentioned several years ago by Dr. Radcliffe Hall, that in some cases of single-convergent strabismus, the inner rectus of the squinting eye is much smaller than the corresponding muscle of the eye which is not squinting—i.e., is not turned inwards. Mr. Holthouse gives Dr. Hall's explanation—viz., that in such cases the squinting eye being very inferior in power, the sound eye has to do all the work, and therefore its abductor muscle is constantly called into play to counteract the hypertrophied inner rectus. The consequence is, that by consensual action the abductor of the squinting eye is influenced with the abductor of the sound eye.

The immediate or proximate causes of strabismus form the subject of the fourth lecture. The reason why impaired vision should produce strabismus does not, according to the author, sufficiently appear. Disease of the nervous centres may lead to squinting, either from paralysis or spasm—the latter cause being, however, rather inferred than proved. Some cases are also referred to in which there was paralysis of the ex-
ternal rectus, from pressure on the sixth nerve. The action of the
other great cause of squinting—viz., hypertrophy of one of the recti (most
commonly the internal rectus) from over use, is evident.

The causes of the subjective phenomena of strabismus are discussed in
the fifth lecture. In strabismus the sight of the squinting eye is fre-
cently, though not always, impaired. This has been attributed to
disease of the eye; to compression of the optic nerve through the recti
muscles; or to the action on the optic nerve of the same cause which
produces the squinting. Mr. Holthouse does not agree in the first ex-
planation, arguing that vision is often regained at once by division of the
muscle, and that in cataract the visual power of the now disused retina
may remain unaffected. Mr. Holthouse dissents in toto from the second
explanation, suggested by Mr. John Adams, and thinks it highly impro-
bable that any contraction of the recti muscles should be able to compress
the optic nerve. The third cause of diminution of vision he believes to
be the true one, and thinks, either that there may be disease of the nerve
or brain, or that the dioptic parts of the eye have undergone some
change in form by muscular action, so that too much, too little, or ir-
regular refraction, is produced. It is only, he thinks, on this supposition,
that we can explain the immediate improvement in vision which takes
place when the muscle is divided, and the squinting removed.

The last chapter is on the Treatment of Strabismus. A few directions
are given as to when the operation should not be performed. After
describing the operation as commonly performed, the author states that
he prefers the sub-conjunctival division of the muscle by means of a
bistouri cachet, as recommended by Guerin.

The causes of failure of the operation are then considered, and especial
attention is directed to the great breadth of the insertion of the internal
rectus, some portion of which is liable to be left uncut. The other causes
of immediate or remote failure, such as adhesions of the ocular fascia and
muscle to the eyeball, re-union of the ends of the muscle, adhesion of
the cut end to a fresh point on the sclerotic, or contraction from cicatri-
zation of the wound, are described.

We have now given a brief outline of these lectures, from which our
readers may gather that this little work treats the important subject of
strabismus in considerable detail, and in an able manner.

ART. II.—Traité Clinique et Pratique des Maladies des Vieillards. Par

Clinical and Practical Treatise on the Diseases of Old Age. By Dr.
Durand-Fardel.

The title of this work is scarcely a correct one; it is a treatise on the
practice of medicine, only the influence of age on the several diseases is
put prominently forward.

We cannot say that we think the author has done wisely in writing such
an enormous book. What there is specific and peculiar in the diseases
of old age might surely be communicated by itself, without a complete
discussion of the disease as seen at all ages. No less than 334 pages are
occupied with diseases of the encephalon: and, although some new matter has been introduced, a very great portion of this is simply an abstract, or a repetition, of the author's 'Treatise on Softening of the Brain,'* which in many parts has been copied to the letter: as, for example, in the chapter on the Diagnosis of Cerebral Haemorrhage, which is really nothing but a slightly altered copy of the chapter in the earlier work, on the Diagnosis of Softening. In the chapter on Cerebral Haemorrhage, which is in great part new, the author abandons altogether his avowed object, and has written a complete treatise on the subject of cerebral haemorrhage occurring at any age.

In the latter part of the work, on the Diseases of the Respiratory, Digestive, and Urinary Organs, this great fault of extension of the subject beyond its proper limits is less observable. Still even here the diffuseness of the style is a little wearisome. We should not do justice to this work, however, if we did not at once admit, that, as might be expected from the great reputation of its author, it is a valuable treatise.

ART. III.— *Mikroskopische Anatomie oder Gewebelehre des Menschen.*

Microscopic Anatomy. By Dr. KöLLIKER. (The second and concluding part of the second half of the second volume.)

The smaller "Handbook," by Professor Kölliker, which has been partly issued by the Sydenham Society, has of course to a considerable extent anticipated the section of the larger work now before us.

The kidneys, the genital organs, the vascular system, and the organs of the higher senses, are treated of in this part, and with it the most important half of the whole work, the doctrine of the special tissues, is brought to a close. The first volume has yet to be published.

The admirable edition issued by the Sydenham Society, and the notes of the accomplished editors, render it unnecessary for us to go at length into a critical survey of the present volume. We may observe only, that, as usual, every page bears marks of the untiring industry, and uncommon powers of research of the author; and that, like the former parts, the work is well printed, and is illustrated by excellent woodcuts.

A library without a catalogue is like an army without a general. But, in a large library, a good catalogue is so extensive, that it requires no little skill to use it. We open it, and find ourselves in a sea of words, without chart or guidance to carry us to our end. The catalogue itself then demands a catalogue, if we are to employ the means it indicates usefully and expeditiously.

The splendid library at the College of Surgeons has recently been

enriched by an "Index to the Catalogue," which is really almost an index to medical literature. By its means any one may find the names of the authors who have written on any special subject: provided, of course, that those works are in the library at the College. A quotation will make the plan of the work understood. We will suppose that we require to refer to a particular subject, say Fracture of the Femur. We turn to Femur, and find the following passage:

"Femur, fracture of the (in general), Amesbury; Brunninghausen, H. Earle, Freytag, Gresely, Nusche, Solzmann, Sauter, Schurmayer (see Fractures).

"Of the Cereix.—C. Bell, A. Cooper, Duverney, Flach, H. Earle, Hagedom, Loh, C. G. Ludwig, Mayor, Schellhorn, Szlecki, Ulrich, J. Wilson (complicated with dislocation), Haase.

"Absorption of the Cereix.—B. N. Bell."

We thus see the names of the authors, and then, by reference to the large catalogue, the case and shelf on which the book is placed are shown. Much labour must have been bestowed on this Index, but it is labour well applied.

Dr. MacLoughlin believes that in all cases of cholera "a diarrhoea precedes for a few hours, or for a few days, or for a few weeks," the attack of cholera, and that this diarrhoea is not essential to the disease.

The first statement is made on the authority of an investigation extending, we are informed, over many thousand cases, in none of which has diarrhoea ever been absent. In order to complete this inquiry, Dr. MacLoughlin has taken the trouble of examining closely into all cases of cholera which are stated in the returns of the Registrar-General not to have been preceded by diarrhoea. If any such case is reported, he visits the house in which the death has occurred, and tells us, that he invariably finds either that the medical attendant had wrongly reported the case, and that diarrhoea had pre-existed, or that the case had not been one of cholera at all.

In entering on such an inquiry as this, it is necessary exactly to know what is meant by the term "premonitory diarrhoea." We suspect that Dr. MacLoughlin and some of his opponents would find that, in many cases, the difference of opinion arose entirely from a difference in the interpretation of terms. Dr. MacLoughlin says a painless diarrhoea precedes the "vomiting, purging, and cramps," and he believes that he can distinguish between the diarrhoea which precedes the cramps from the diarrhoea which occurs during cramps. As we conceive this to be impossible, and as the chemical nature of the transudation before and during cramps only differs by the admixture of the contents previously in the bowels during the former period, we should object to the phrase that "premonitory diarrhoea precedes the purging of cholera." But if this "painless diarrhoea" is not different from the purging of the developed choleraic stage, what right has it to be called "premonitory diarrhoea," and spoken of as distinct from cholera? Is it not the first symptom of
cholera itself, and premonitory only of other symptoms, such as cramps? We know this is a debated question, and that it is difficult to think that a diarrhoea which can be arrested so easily, is of the same nature as the disease, before the developed stage of which human art is powerless: but with our present knowledge of the transudation processes in cholera, we are inclined to think that the term "premonitory diarrhoea" is merely an hypothetical expression, and that the proper wording of the facts should be "diarrhoea is (usually) the first symptom of cholera, and after lasting for some hours, or days, is followed by cramps and vomiting."

Then comes the question, whether there are not some cases of cholera in which symptoms quite characteristic of the disease occur as early as the diarrhoea? Taking Dr. Macloughlin's extensive series of facts, we are compelled to say that as far as cramps are concerned, they have been found in nearly 5000 cases to be posterior in point of time to the purging. We do not see that any other or stronger conclusion is warranted by these facts. Then, as to the shortest time which intervenes between the first stool and the first cramp, we find that in the second case investigated by Dr. Macloughlin, there was a painless (so called premonitory) diarrhoea for three hours before the cramps (p. 33), and in case three (p. 34) the cramps came on one hour and a half after the first stool.

But it does not follow from Dr. Macloughlin's facts, that in the cases investigated by him other symptoms, equally or more characteristic than the cramps, may not have occurred as early as the first stool. A slight failure of the circulation, and some diminution of animal heat, a peculiar appearance round the eyes—in fact, the earliest traces of those formidable symptoms which, when developed, form the stage of collapse—may, for all Dr. Macloughlin can say, have been present in cases two and three, or in others, and may indeed have even preceded the diarrhoea.

While we thus freely express our opinion that Dr. Macloughlin would have avoided some misconception, had he defined more clearly the terms used by him, and the exact nature of the problem sought to be solved (which really was the relative priority in point of time of two symptoms, diarrhoea and cramps), we cannot refrain from expressing our sense of the energy and perseverance which has led him to this inquiry. He has given a larger number of facts on the point than any other observer, and is entitled to the greatest credit for the investigation.

One fact appears from Dr. Macloughlin's inquiries. In 21 cases, reported by the Registrar-General, as cholera, he found no less than three (or 14.28 per cent.) were not cases of this disease.

In addition to an introduction, the volume before us includes the following subjects:—the physiology of animal and vegetable life; the principal forms of the skeleton, and of the teeth, and the varieties of the human species. The first is by the editor, Dr. Bushman, the second by
Professor Owen, the third by Dr. Latham. The work is illustrated by 365 engravings.

The physiological department has been ably treated, under the following heads:—the elements of organic bodies; the textures; circulation; digestion; respiration, reproduction, and the functions of relation. This is a good popular arrangement, and the execution of the work is equal to the design. There is, perhaps, too great an employment of technical terms before the reader is prepared for them, but the description is in general so clear, that an attentive reader can have little trouble in surmounting this little difficulty.

Professor Owen's section is, of course, an admirable scientific production, but it is decidedly too laboured. It would be good tough reading for any one, and can be scarcely intelligible to a beginner.

We must also find, to a certain extent, the same fault with Dr. Latham's chapter. It is too deep and too dry for the class for whom we conceive this book to have been written, though well adapted for those who are already a little acquainted with the subject.

The work altogether, however, is so excellent, and contains such rich stores of knowledge, that it is scarcely just to find any fault, especially such a one as we have now indicated, which has arisen, no doubt, from anxiety to treat each subject as fully as possible.

ART. VII.—Summary of New Publications.

Our supply of books this quarter has been below the average. In addition to those already noticed, we have received only the following:

In Medicine, the most important work is M. Delasiauve's prize essay on 'Epilepsy,'* a work of considerable research and judgment. We shall insert an analysis of it as soon as possible. M. Racle has published a treatise on 'Diagnosis,'† of which we can speak very highly.

A French work has been published by an American,‡ Dr. Flint. We have had for some little time by us the 'Clinical Report on Fever' by this physician, of which the treatise before us is an abstract. We shall soon review the whole subject, and these works will receive due notice. Dr. Peddie has published an interesting paper on 'Delirium Tremens,' in which the treatment of the disease by moderate doses of antimony, without stimulants or opium, is very strongly advocated, and supported by well-reported cases.

A treatise on 'Auscultation' was published in 1849 by Dr. Weber, of Kiel, which has been now translated by Dr. Cockle, and has also received from that gentleman certain additions. The work, to which reference has been made several times in our pages, is one of great merit, and we are glad to see it translated. Dr. Cockle has performed his task well, if we may judge from a comparison of about twenty pages of the original and translated work. There are, here and there, some phrases at which we could

* Traité de l'Epilepsie, par le Dr. Delasiauve. Paris, 1854.
† Traité de Diagnostic Médical, par le Dr. V. A. Racle. Paris, 1854.
‡ Résumé de Recherches Clinique sur la Fièvre Continue, la Dysenterie, et la Pleurésie Chronique, par Austin Flint, M.D.
take exception, but the general excellence of the translation makes us loth to be hypercritical. The additions made by Dr. Cockle are from the works of Böck and Pierry; those from Böck’s work on ‘Diagnosis’ are, for the most part, useful, but we wish he had spared us some of the diagrams from Pierry’s ‘Atlas,’ and all the elaborate markings and the atrocious nomenclature of that able but eccentric physician.

Dr. Granville’s treatise on sudden death will be reviewed in our next number. A review of Dr. Winslow’s excellent Lettsomian lectures on ‘Insanity’ is in type, but has been unavoidably postponed.

The works of Galen, with additions from MSS., are being translated by the celebrated savant, Daremberg. The first volume only has yet appeared, but it is needless to say that the work will be a classical one.

Mr. Pearce has published a popular but sensible hygienic work on the ‘Treatment of Diseases of a Sedentary Life.’

Few new publications have reached us on cholera. The notification of the Board of Health of Jamaica has been reprinted in this country by order of the Colonial Secretary, and is a very sensible production. We would take this opportunity of expressing our regret that the pressure upon our space has hitherto prevented our noticing Dr. Milroy’s excellent ‘Report’ of the cholera in Jamaica. We have not, of course, lost sight of it, and shall take care to do it justice.

Mr. Tucker, the well-known Secretary of the Epidemiological Society, has published a paper on the use of acids in cholera, and Mr. Grove has proposed to use sulphur in the same disease. Both pamphlets are interesting and suggestive, but no evidence as to the use of acids is added to what is already known, and Mr. Grove’s recommendation of sulphur is so far unsatisfactory, as he appears in every case to have combined carbonate of soda with it. Dr. Ayre has written a letter on the calomel treatment, as he believes his plan has not been properly dealt with by Dr. Gull in the College Report. As we shall probably have other evidence on this subject, we defer all comment.

A treatise on ‘Hooping Cough,’ by Dr. Gibb, shall receive notice in our next number.

In Surgery, we have received nothing but reprints of papers. Among these we may mention two pamphlets on the ‘Physiology of the Tymp-panum,’ one by Mr. Pilcher, the other by Dr. Jago, of Truro, both of which will well repay perusal.

In Midwifery, and the allied subjects, we have before us an able work by Mr. Baker Brown, for a review of which we shall find early room. The second edition of Von Siebold’s ‘Lehrbuch der Geburtshilfe’ has appeared; it contains 386 pages, and is an useful book. A little treatise on the ‘Diseases in the Fetus in Utero,’ by Dr. Madge, possesses many good points; too much space, however, is occupied with an elementary account of the development of the fetus, and the detail of the various diseases is sketchy. We shall notice the book, however, at greater length, as it appears probable that other works on the same subject will soon appear.

In Anatomy, the sixth edition of Mr. Erasmus Wilson’s ‘Vade-Mecum’ has been published. The author acknowledges in his preface the assistance he has received in the preparation of this edition from Professor Retzius, of Stockholm. The illustrations are excellent.
In *Physiology*, we have to mention a work by M. Flourens on the 'History of the Discovery of the Circulation,' which appears to be, as far as we have examined it, a good account of the subject. Mr. Struther has published an interesting volume, entitled 'Anatomical and Physiological Observations.' Most of the papers are reprints from journals (our own among the number), and are of great value and interest. We shall have occasion to refer to more than one of them hereafter.

In *Materia Medica*, the American 'Dispensatory' of Drs. Wood and Bache has passed into the tenth edition. A very useful work, called 'A Manual of Practical Therapeutics,' has been written by Mr. Waring, of the Indian army. It is intended to give, as briefly as possible, the opinions of the standard English writers on the therapeutic employment of each article of the materia medica.

In *Botany*, we have only to notice a work by Dr. Spencer Thomson, entitled 'Wanderings among the Wild Flowers.' It is, in fact, an elementary treatise on botany, and is extremely well written and arranged. We have seen no better book for beginners, and older botanists will find instruction and pleasure in the graphic descriptions contained in it.

Under the head of *Miscellaneous Subjects*, we may observe that we have received treatises 'On the Climates of Nice and Spain,' by Dr. Lee, and two pamphlets 'On the Climate of Madeira,' by Dr. Lund and Mr. Bloxam. We regret that these all reached us after the review 'On the Climate of Spain and Australia' was in type. The two treatises on Madeira are intended to reply to some statements made by Dr. Burgess on that climate. Both writers believe that Madeira has been hardly dealt with.

We are happy to say that the 'Micrographic Dictionary,' by Drs. Griffiths and Henfrey, is appearing regularly, and that the contents of the second, third, and fourth, sustain the high character we gave of the first part. If the work is carried on throughout in the same way, it will be by far the most valuable one of its kind.

We recommend to our readers a very interesting paper on 'The Effects of Civilization on the Fortunes of the Medical Profession,' by Mr. Dayman. It was read before the Medical Society of Southampton, and is printed at their request. It contains many fine thoughts, well expressed.

Sir George Ballingall has reprinted the lecture which he delivered at the opening of his course of military surgery at Edinburgh. It gives a history of the untiring efforts of this eminent officer and teacher to obtain a due recognition of the importance of his subject, and is full of the enthusiasm and earnestness which have always distinguished Sir George Ballingall. Like an old war-horse, he rouses up at the sound of the cannon, and even seems to blame himself that he has not, ere this, started for the banks of the Danube. It has grieved us, however, to read the list of ailments which tie him to his professorial chair: "a lame hand, from a painful and anomalous affection of the fingers; an impaired eye, from a recent attack of ophthalmin; and, above all, a load of 68 years, are miserable qualifications for a campaign in Turkey." In spite of these ailments, we trust that many years of usefulness are yet in store for Sir George Ballingall. If it were not so, his country and his profession would be great losers.
PART THIRD.

Original Communications.

ART. I.

On the Peculiarities in Figure, the Disfigurations, and the Customs of the New Zealanders; with Remarks on their Diseases, and on their Modes of Treatment. By ARTHUR S. THOMSON, M.D., Surgeon of the 58th Regiment of Foot.

(Continued from No. 26, p. 502.)

The Diseases of the New Zealanders.—I have heard it mentioned in New Zealand, that one of the greatest misfortunes which can occur to the inhabitants of an unknown island in the Southern Ocean, is its discovery by some civilized navigator. This painful reflection entirely refers to the misery the people suffer from the introduction of bad habits and new diseases.

However much some men may object to the above opinion, there can be no doubt that the progress of European colonization, in every country situated within the temperate zone, has produced a partial or total destruction of the aboriginal races. In tropical countries, where the heat of the climate prevents the white man from cultivating the soil with his own hands, the indigenous races, unless actually destroyed, have generally kept their own ground. In New Zealand, where, from the first, a just, generous, and benevolent policy has been adopted towards the natives, it is hoped their extinction will not occur; but there are certain mournful facts which would lead us to infer that the New Zealand race—far elevated in virtues, although debased by many vices, above other races—will furnish another proof of the apparent blight which civilization produces; and men who are fond of prophecy have already foretold, that before a century has elapsed the aborigines of New Zealand will not, in numbers, be a tithe of what they are at present.

Good men in England have attributed the frequent extinction of certain aboriginal races to the cruel conduct, and the unchristian treatment, of the early settlers among them. The hands of the white men in America, Van Diemen's Land, New Holland, and Algeria, may not be clean from this imputation; but not so the pioneers of European colonization in New Zealand. It is, indeed, one of the objects of this Memoir to place on record, before years have placed proof out of the question, that the decay of the New Zealanders is not the work of the early settlers; on the contrary, they have stood before the destroyer, and have endeavoured, with some success, to prevent the destruction hastening on: nor can the decay be laid at the feet of advancing civilization, but chiefly to a violation, on the part of the New Zealanders themselves,
of those natural laws which God has made for the propagation and increase of the human species.

In a few words, I may state that the present generation of New Zealanders violate the laws of nature by promiscuous sexual intercourse with the females at a very early age, by infanticide, chiefly of females, by neglecting the sick, by intermarrying with near and scrofulous relatives, by using bad and poor food, and by living in a temperate climate as if it were a tropical one.

These circumstances produce a great amount of sterility among the women, a large mortality among the children, and an extraordinary prevalence of the scrofulous diathesis.

In order to convey to the mind some definite idea of the comparative frequency of different classes of disease among the New Zealanders, I have drawn up the following table, to which I shall occasionally refer. It affords, I am aware, a rude comparison, but I conceive it will not be found destitute of usefulness in illustrating the following memoir.

It is necessary to bear in mind, that all the diseases among the New Zealanders are classed from symptoms. No post-mortem examination has been made in any of the hospitals for fear it should create a disturbance, and deter the sick from applying for relief.

TABLE I.—Showing the Comparative Frequency of certain Classes of Diseases among the Inhabitants of a large town in England,* and the Natives in New Zealand.†

<table>
<thead>
<tr>
<th>Classes of disease</th>
<th>Number of cases presenting themselves for treatment in the English Infirmary</th>
<th>Number of cases presenting themselves for treatment in the New Zealand hospitals</th>
<th>Proportion among each race. Out of 1000 cases of disease, there were:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fevers</td>
<td>390</td>
<td>190</td>
<td>29 / 109 / 169</td>
</tr>
<tr>
<td>Diseases of the lungs</td>
<td>2165</td>
<td>455</td>
<td>12 / 71 / 119</td>
</tr>
<tr>
<td>Diseases of the liver</td>
<td>228</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Diseases of the stomach and bowels</td>
<td>1418</td>
<td>304</td>
<td>71 / 119</td>
</tr>
<tr>
<td>Diseases of the brain</td>
<td>1031</td>
<td>15</td>
<td>58 / 5</td>
</tr>
<tr>
<td>Dropsey</td>
<td>451</td>
<td>2</td>
<td>25 / ...</td>
</tr>
<tr>
<td>Rheumatic affections</td>
<td>2365</td>
<td>495</td>
<td>119 / 191</td>
</tr>
<tr>
<td>Venereal</td>
<td>86</td>
<td>99</td>
<td>4 / 38</td>
</tr>
<tr>
<td>Abscesses and ulcers</td>
<td>2195</td>
<td>278</td>
<td>111 / 168</td>
</tr>
<tr>
<td>Wounds and injuries</td>
<td>1992</td>
<td>89</td>
<td>92 / 84</td>
</tr>
<tr>
<td>Diseases of the eyes</td>
<td>708</td>
<td>81</td>
<td>92 / 84</td>
</tr>
<tr>
<td>Diseases of the skin</td>
<td>801</td>
<td>181</td>
<td>45 / 70</td>
</tr>
<tr>
<td>Scrofula</td>
<td>1173</td>
<td>210</td>
<td>59 / 82</td>
</tr>
<tr>
<td>Eruptive fevers</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Asthenia</td>
<td>1156</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Tumours</td>
<td>318</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Caries</td>
<td>218</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Cachexia</td>
<td>171</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Hernia</td>
<td>224</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Hydrarthrus</td>
<td>4908</td>
<td>191</td>
<td>248 / 75</td>
</tr>
<tr>
<td>Dysuria</td>
<td>110</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Amenorrhoea</td>
<td>325</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Menorrhagia</td>
<td>107</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Bronchocele</td>
<td>191</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>All other diseases</td>
<td>1969</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

| All other diseases | 19,866 | 2560 | 1000 / 1000 |

* Compiled from a Synopsis of Medical and Surgical Cases at the Sheffield General Infirmary during 22 years, by Robert Ernest, M.D. It is a small pamphlet (14 pages), and is republished in the first volume of Farr's Annals of Medicine, 1837.
† Compiled from the Return of Native Diseases treated in the Colonial Hospitals, &c., as appended and marked Table No. 11.
This table is thus read:—Out of 19,866 cases of disease at the Sheffield Infirmary, 390 were fevers; out of 2580 cases of disease among the New Zealanders, 190 are febrile maladies. Among the English this is about 20 cases of fever for every thousand cases of disease; among the New Zealanders, 74. The diseases which are included in the different classes may be seen in Tables II. and III., appended.

On the Frequency of Febrile Diseases.—The climate of New Zealand has no tendency to produce fevers; but the small and badly ventilated houses in which the aborigines sleep, the poor diet they use, their dirty habits and insufficient clothing, are the remote and predisposing causes of the febrile attacks to which they are subject. In some of the cases complications exist, and produce death. Generally the attacks are mild, but occasionally a low typhoid type is met with. Out of 50 cases of fever registered and admitted into hospital, 4 proved fatal. The doctrines of contagion and infection from this class of diseases are unknown among the aborigines, and although there are to be found traditions of several fatal epidemics, none appear to have been fever. I have not seen a case of remittent or intermittent fever among the New Zealanders, and Dr. Rees, who has been resident for ten years near a populous pa (village) on the banks of the Wanganui river, has never seen one either. In 1847 a fever broke out in St. John’s College, near Auckland, the result of bad drainage; and Dr. Davies saw a decided case of remittent fever, which assumed a typhoid type and proved fatal, in a New Zealander. In a small pa, situated in one of the swampy parts of the valley of the Thames, Dr. Johnson, the late Colonial Surgeon, in 1847, heard of several cases of a kind of remittent fever. In the native language there is a term for a disease which is accompanied by shivering—but this symptom may occur during the progress of other diseases. Slight attacks of ague may occur, but they are seldom seen.

Eruptive Fevers.—Small-pox, measles, and scarlet fever, have not been seen among the New Zealanders. That they are susceptible of the poison of small-pox is obvious from the violence with which their constitutions are affected by the vaccine lymph, and from the circumstance that the lymph, after passing through their bodies, is much more powerful than that obtained from a European arm. I vaccinated several soldiers successfully with lymph taken from a New Zealander’s arm, who had been many times before unsuccessfully vaccinated from a European child’s arm. The vaccine operation is accompanied with slight fever, and the vesicle is often large, and occasionally ulceration of the part occurs. In 1848, scarlet fever appeared for the first time in New Zealand, in the town of Auckland, but with the exception of affecting a few half-caste children, and a native of Tahiti, it confined itself to the European population. A few cases, I have been told, occurred in a native village near Auckland. That the New Zealanders are liable to be affected with measles is obvious, from the circumstance that the one who lived in England under the care of Dr. Traill, of Liverpool, was attacked with the disease. Neither small-pox nor measles have appeared among the European population in New Zealand, but varicella has.

It is very remarkable that in New Zealand, where the temperature is for many months about 60° Fahr.—where the uncultivated land is
covered with thick wood and fern, up to the very door of a New Zealander's hut—where the moisture of the climate is great—that diseases which are attributed to marsh poison are almost unknown. Even Europeans who have lived for years on the alluvial soil on the banks of the Waipa and Waikato rivers, and in the low town of Kororari, have scarcely ever contracted ague; and Europeans who have suffered from ague in tropical and other countries, have recovered from the malady after a few years' residence in New Zealand. This exemption from remittent and intermittent fevers I attribute to the shape of the island, the high winds which blow over the narrow land, and to the volcanic nature of the soil allowing the rain to percolate quickly to a considerable depth.

Diseases of the Lungs.—This class of diseases is much more frequent among the New Zealanders than the English. I do not place any reliance in the number of specific diseases, but on the great prevalence of cough and other symptoms indicative of irritation within the chest. The fatal attack may commence as pneumonia or catarrh, and many of them are cases of chronic catarrh; but the symptoms found on the approach of death are all those which accompany what is called "consumption." I do not say it is tubercular. All ages seem equally liable to the disease. Spitting blood is common, and is known as a very fatal symptom; influenza and hooping cough have been once epidemic during the last four years; the latter appears to have been a new disease among them. The sudden prostration of strength, which is so characteristic of the invasion of influenza, was observed among the New Zealanders. Asthma, the result of other diseases, is frequent. Pneumonia is a less acute disease in a New Zealander than a European, and consequently is more obscure. Medical treatment in hospital affords much relief to natives suffering under consumption, but most of the cases when brought into hospital are in an advanced stage, a period when relief is the only object in view.

The great prevalence of diseases of the lungs does not arise from the climate, but from causes peculiar to the New Zealanders themselves. This I assume from the comparative rarity of cough and consumption among the European population in the island. It is not the bodily shape of the New Zealanders which produces the disease, for nature has given them ample chests; I measured the girth of the chests of 151 New Zealand men, and found it thirty-five inches, which measurement is not inferior to that of Europeans, and I found healthy persons could distend much more easily than Europeans Dr. Arnott's breath measure.

The causes of the frequency of diseases of the lungs among them are, their poor diet, badly ventilated houses, insufficient clothing, and migration from a tropical to a temperate climate. These subjects I shall more particularly notice under the head of scrofula.

Diseases of the Liver.—This organ is rarely diseased; at first I thought that hepatic affections might be overlooked, but when I found medical men who had been practising for years without having met with a case of jaundice, I then came to the conclusion that liver complaints are a rare disease among the New Zealanders. Jaundice is, however, not unknown, for I have heard of three cases. As Europeans resident in New Zealand are as liable to affections of the liver as in England, I attri-
but the rarity of the disease among the New Zealanders to their not using any fluid containing alcohol, the injurious effects of which, when taken to excess, or in habitual moderation, on the functions of the liver are now well known and appreciated.

Diseases of the Stomach and Bowels.—It will be seen on referring to Table I., that this class of maladies is much more frequent among the New Zealanders than among the English, although the immediate fatality is not in proportion to the frequency. Diarrhoea is the most common disease, but almost every affection of the stomach and bowels has been under treatment. The maladies under this head are very amenable to hospital treatment, not from the medicines given, but from the change of diet, and removal from the exciting causes of the diseases. Affections of the stomach and bowels are often the remote causes of scrofula and other complaints which terminate fatally among the New Zealanders. The symptoms of the different diseases do not vary much from the symptoms observed in similar attacks among the English, if I except a less acute type. The exciting causes of many of the diseases under this head, are excess in eating food, often bad in itself, and badly cooked, long abstinence from food, cold, exposure, and wet. It has been said that dyspepsia is a disease of civilization, but a glance at the foregoing list of diseases will show that this is a popular error. Worms in the intestines are seen in adults.

A large proportion of this class of diseases might be prevented by avoiding the use of bad food. In some districts where wheat is cultivated, and the habit of eating maize and potatoes in a state of decay is less common, the number of patients affected with diseases of the stomach and bowels have decreased. Gluttony is often the cause of diarrhoea. I have seen a native eat, I am sure, ten pounds of potatoes in a very short time. Fern-root produces constipation. Traditions state that two fatal epidemics, having a dysenteric character, visited the island many years ago.

Diseases of the Brain.—It will be seen in Table I., that this fatal class of diseases are not often met with amongst the New Zealanders. Sanguineous apoplexy, so as to produce either death or paralysis, is seldom seen; but I can easily imagine that some cases of apoplexy must now and then occur; of two cases I have heard about, one was admitted into the Colonial Hospital at Auckland, in December, 1851; the patient was an old emaciated man, who when working was suddenly seized with giddiness, and fell down; when brought to hospital next day, one side of his body was slightly paralytic, and he died two months afterwards. The other case of apoplexy was in a woman, who lived with a whaler, and shared with him his food, and probably his grog. I have heard of one or two natives having died suddenly when in a state of excitement, but whether this was produced by apoplexy, or disease of the heart, or aneurism, I cannot say, for as rheumatism is common, organic disease of the heart must now and then occur. I can easily imagine a case of apoplexy being produced by too great a distention of the stomach with food, and men have died after a cannibal feast.

The small number of cases of apoplexy I attribute to the New Zealanders not using wine, spirits, or beer, as common drinks, the use of
a vegetable diet, and from not indulging in the luxurious habits of eating food which are so common among persons in easy circumstances in England; and a little is also to be attributed to their bodily conformation.

Paralysis.—With the exception of the above case, I have heard of no person being affected with paralysis. There are several natives affected with wasting of the muscles of the limbs, the result of rheumatism and paralysis of the lower extremities from curvature of the spine; but paralysis, the result of cerebral disease, is almost unknown. No case of paralysis agitans has been seen, nor of that strange malady, chorea, or St. Vitus's dance.

Insanity and Idiocy.—These diseases are now and then seen, but they are, comparatively speaking, rare. In the extensive district of Poverty Bay, out of 2145 persons, there were, in 1849, two idiots and one insane person;* and at Taurangi, in the Bay of Plenty, in 1849, out of 2411 souls, there was no insane or idiotic person.† Temporary fits of insanity, the result of chronic and acute disease, and melancholy often leading to suicide, and produced by superstition, are occasionally observed; but the above statistical data from very extensive districts shows that true insanity and idiocy are rare, when contrasted with the fact, that among the Quakers in England there is tolerably good evidence that 3 4 per thousand, or one out of every 333 persons, are insane.‡

Most cases of idiocy result from some peculiarity in the shape of the skull, which it is not in human power to prevent; whereas insanity is not only the product of bodily conformation, but of society. Most of the cases of insanity I have heard about among the New Zealanders may be referred to the shape of the head, mechanical injury, old age, or superstition: all of which causes, with the exception of the last, it is not in their power to prevent; while among the English, a large proportion of the cases of insanity arise from immorality, violent illusions, obstinate passions, and diseases, the remote and proximate causes of which are intemperance. The higher faculties of the mind are uncultivated and neglected among the New Zealanders, which circumstance may contribute much to diminish the tendency to insanity: nevertheless, the rarity of insanity among them ought to teach us a lesson, that many of the attacks of this painful disease are the result of our own wilful and unbridled passions.

There is one New Zealander in the Auckland Lunatic Apartment, who has been "mad" several times. The disease is produced by excessive intemperance in spirits. His tribe lives at a distance from Auckland—from them he escapes to Auckland, where he obtains spirits, sometimes by fair, at other times by foul means, until he gets into the "horrors" (delirium tremens), and attempts to destroy himself; a few weeks' detention, and no spirits, restores him. It is the only instance I have ever heard of a strong desire for spirits among the aborigines.

Epilepsy.—As no patient affected with this disease was admitted into hospital, I took some trouble to ascertain whether the disease has been seen among the New Zealanders. I thought the malady did exist among

* Communicated to me by the Very Rev. Archdeacon Dr. William Williams.
† Communicated to me by the Rev. Mr. Davis, Taurangi.
them, because, in their own language, there is a term for a disease, the chief symptom of which is falling down without any perceptible cause; but as this term is employed when a person faints, and as I never could meet with a medical man, nor a European, who had seen a native with epilepsy, nor a native who could describe the disease, I am inclined to think it does not exist among them; or, if it does, it must be very rare.

The exemption of the New Zealanders from epilepsy is worthy of the most particular attention. The causes which are said to predispose to this disease are hereditary predisposition, sanguine and plethoric habit, great activity of the mental faculties, residence in a cold and moist climate, masturbation, intemperance, and a scrofulous constitution. None of these predisposing causes are found among the New Zealanders, with the exception of the last, a circumstance which tends to prove that they are the true predisposing causes of epilepsy. It has been surmised that there is some connexion between the convulsions of infancy, and the epilepsy of mature age; but the children of the natives are subject to convulsions, and not to epilepsy, a result which is opposed to this theory. I have never heard of a woman having puerperal convulsions; perhaps there is some connexion between this and epilepsy. Epilepsy cannot often have its origin from mal-conformation, or injuries of the brain, otherwise the disease should have been seen among the New Zealanders.

From the absence of epilepsy among the New Zealanders, we may infer that the proper treatment for that malady is to be found in the use of a vegetable diet, without any stimulants; case of mind, approaching to indolence; migration to a country where the temperature of the climate is about 60° Fahr., and where the moisture suspended in the air is considerable. At London, the average fall of the wet bulb of a thermometer by evaporation is five and a half degrees; at Auckland, New Zealand, it is four and three-tenth degrees; in other words, the air of New Zealand is more moist than England.

The remarkable exemption which we have seen the New Zealanders enjoy from this dangerous and painful class of diseases of the brain is well worthy of attention, and the practical conclusion to be drawn from it is, that many of the attacks which occur in Great Britain, result from eating and drinking too much, and in allowing the passions of our nature to rise above our judgment. It may be said that the Polynesian race are little liable to disease of the brain, but this is not the case; for among the Malays in Ceylon—a similar race to the New Zealanders—apoplexy, epilepsy, mania, paralysis, and delirium tremens are all to be seen; but it is necessary to bear in mind that the Malays in Ceylon, if they do not drink alcohol, stupify themselves with opium.

Dropsy.—This class of diseases are almost unknown among the New Zealanders. There were two cases of dropsy treated out of 2580 cases of disease, and the patients, both of whom, I believe, are still alive, were put down as labouring under ovarian dropsy, and water in the pericardium, diseases difficult of diagnosis. Of local dropsies, I have heard of some cases of hydrocele. Beriberi, a dropsical malady common among the Malays in Ceylon, is unknown in New Zealand. Bright's disease of the kidney, as indicated by dropsy, is very rare. I have examined the urine of a good many natives, and have only found it albuminous, and of a low
specific gravity in one case. In this case, the patient was suffering under the first stage of that strange disease which I have described under the head of Lepra Gangrenosa. The low specific gravity in this case was caused by the large quantity of urine passed, in consequence of a want of action in the skin. There was no dropsy; but he was suffering under disease of the lungs.

Professor Christison* is of opinion that a scrofulous constitution tends to predispose to Bright’s disease of the kidney. I am inclined to doubt this, from the exemption of the New Zealanders to the disease. Dr. Christison states, that a large proportion of the patients who suffered from disease of the kidney were habitual drunkards. Now, the exemption of the New Zealanders from dropsy and kidney disease may be chiefly attributed to their abstinence from spirituous liquors, and part may be attributed to scarlatina being as yet almost unknown among them.

Rheumatic Affections.—This obscure class of diseases is much more frequent among the New Zealanders than the English. A large proportion of the applicants for relief were suffering from local pains, the severity of which did not prevent them from following their usual occupations. The attacks were often uncertain and obscure, and a large number of the cases were chronic. Out of 31 registered, only 2 were acute, and the acute cases rarely show that intensity which similar attacks do in England. The average duration of 10 cases of rheumatism treated in the Colonial Hospital at Auckland was twenty days. The usual treatment laid down for rheumatism is found very efficacious with the natives suffering from that disease, and among them it rarely terminates in any affection of the heart. Sometimes it produces death by wearing out the strength of the constitution, and sometimes local and temporary paralysis of the extremities. Toothache is met with, and extraction of the tooth is readily admitted. A dentist in Auckland, for a shilling a tooth, could get natives to allow their healthy teeth to be extracted. Gout is unknown.

The frequency of rheumatism among the New Zealanders is to be attributed to careless exposure to the vicissitudes of the weather without suitable clothing, sleeping on damp places, and sudden transitions from hot, crowded, and badly-ventilated sleeping apartments into the open air. A large proportion of the attacks might be prevented. Europeans resident in New Zealand are more subject to slight local attacks of rheumatism than in England; but acute cases are not so frequent, nor are they so severe; affections of the heart are, however, often induced. The heart appears to have a greater tendency to become affected in Europeans than in New Zealanders suffering from rheumatism—a result which may be attributed to the use of spirits.

Venereal Diseases.—Under this head are included all the diseases affecting the organs of generation. It is a painful class of maladies to come under consideration, because their introduction is attributed to the crews of Captain Cook’s ships, and of the other early navigators; and it is still more painful to draw attention to the fact, that the disease is much more prevalent among the New Zealanders of the present day than among the English. There is one agreeable feature in this dark picture—a large

* Christison on Granular Disease of the Kidneys, 1839.
number of the cases are mild. Ulcerations on the penis often occur; but a true chancre, as described by John Hunter, has not been seen by the colonial surgeons of Auckland or Wanganui. Scrofulous ulceration and loss of substance occur; gonorrhœa and discharges from the urethra are very common; neglected warts and ulcers often lead to buboes; secondary symptoms, complicated with rheumatism and scrofula, are common, and occasionally terminate fatally by exhausting the strength; but I never saw a New Zealander without a nose. No case of stricture of the urethra is recorded, but I have heard of one. Hernia humoralis after gonorrhœa is very rare.

It is my opinion, filth and neglect have much to do in producing a large number of the diseases of the genital organs among the New Zealanders, and from the comparative small number of females in the country, the promiscuous sexual intercourse which takes place between both sexes who are not married, and which system is sanctioned by custom, it is only natural there should be many cases of ulcers on the organs of generation.

Medical treatment is found very beneficial in the removal of the disease, but personal cleanliness in most of the cases I have seen is all that was required; indeed, one surgeon of long experience is of opinion that true venereal disease does not exist among the New Zealanders, from the fact of the ease with which sores are cured. I examined the medical register in the Auckland Hospital, and found, out of 51 patients suffering from sores, discharges from the genital organs, and secondary symptoms, 14 were females, and 37 were males. The average residence of the females in the hospital was seventeen days, that of the males, twenty-one. A few of the patients were inhabitants of Auckland, but many came from the interior. In none of the cases were the patients discharged from hospital with anything which could prevent them procreating their species. Ulcerations are stated to have yielded readily to cleanliness and local treatment.

Among the European soldiery in New Zealand the venereal disease is rare, and is not severe. I have only known two cases of Europeans with secondary symptoms, which could be referred to contact with natives.

In former days, previous to the establishment of the British government in New Zealand in 1840, there was a small place in the bay of islands called Kororarika. It was the resort of all the numerous whaling vessels in the Southern Ocean. They were attracted to it, not only by the cheapness and abundance of pigs and potatoes, but also by the easy virtue of the women. Here a lawless body of men, chiefly from New South Wales, were congregated, and scenes of the most depraved intemperance and of the most gross sensuality were witnessed.* The New Zealand chiefs not only traded in pigs and potatoes, but in women; they kept a regular set employed; and although very little more than ten years have elapsed since this Pandemonium on earth was shut up, I am told there is only one woman now alive who acted a conspicuous part in this licentious drama. This fatality of New Zealand prostitutes is opposed to my own observation. In the town of Auckland there are about thirty

* Report of the Select Committee of the House of Lords, appointed to inquire into the Present State of New Zealand. Printed August, 1838, and laid before the House of Commons. 28–xiv.
professed strumpets. These women generally come from the populous
districts bordering the Waikato and Waipa rivers. They drink, and have
all the vices peculiar to European prostitutes. They occasionally suffer
from gonorrhcea, but are otherwise healthy. They rarely, however, become
so demoralized as European prostitutes. They spend two or three years
at this unlawful occupation, after which, either from a decay in their
personal appearance, or a disgust at their mode of life, they either return
to their native village, or attach themselves to one European. Whenever
they do return to their own home and tribe, they are not looked on as
outcasts, but are received with open arms, soon get married, and are
reckoned more valuable than other women, because they have generally,
even in the wretched condition of a prostitute, acquired some good
habits.

The mild nature of the venereal disease may partly be ascribed to the
treatment. I saw two cases of secondary symptoms, the part affected being
the skin, in which the primary sores had not been treated by a European.
The absence of stricture of the urethra, and hernia humoralis, where so
many cases of gonorrhcea occur, is a strong proof that these diseases are
often produced by high feeding and indulging in spirituous liquors.

(To be concluded in the next number.)

ART. II.

Observations on Calcareous Deposits in the Brain, known as Brain Sand and
Amyloid Bodies. By J. T. Arlidge, A.B., M.B. Lond.

The presence of earthy matter in the human brain has been long noted,
as well in the walls of its vessels as in the pineal body, in the choroid
plexus, and in other parts of its substance and membranes. The collection
of sabulous particles in the pineal gland has particularly arrested attention,
and, owing to its almost constant occurrence, has by some been conceived
a normal condition. This opinion was held by Soemmering, who proposed
for the accumulation the name of "acervulus," but it certainly has no claim
to a special designation. The grains of sand in the choroid being less
evident, have had their presence and their peculiarities less remarked,
although, I believe, they almost as frequently exist as do the pineal
particles. Except in rare cases of considerable accumulations of the earthy
material, the knowledge of its not uncommon presence in various other
parts of the encephalon has been arrived at by the aid of the microscope.

The conversion of the larger arteries of the brain into calcareous tubes
has been especially studied of late years, and its true characters and im-
portant pathological bearings been clearly determined. This subject it is
not, however, my intention to handle in this paper; it has already been
ably treated in the pages of this journal, in the elaborate articles on fatty
degeneration,* by Dr. Handfield Jones. The present object is to describe
the chemical and physical constitution of the sandy matter of the brain,
and to demonstrate its corpuscular organic structure in each of its varieties.

My attention was first particularly directed to the investigation of the

* British and Foreign Medico-Chirurgical Review, for April and July, 1853.
earthly matter in the brain by meeting with a large quantity deposited in the cerebellum of a male patient, at 51, who died in St. Luke's Hospital, in March, 1851. The calcareous deposit existed in masses of an irregular shape, of the size of millet seeds and larger, and of a reddish-brown colour. They were found only in the great central stem of white matter, to which they gave a speckled appearance, the cerebellum in other respects looking healthy.

There were signs of old inflammatory action in the meninges;—the dura mater was inseparable from the bones, the pia mater and arachnoid were opaque, and much thickened. The larger cerebral arteries were sound; the Pacchionian bodies large, and the cranial bones very thick. The poor man suffered very distressing delusions, among which was that he should be roasted alive; he resolutely refused food, was constantly agitated, and ultimately died exhausted.

The rarity of so excessive an accumulation of earthly deposit in the cerebellum has induced me to mention the above particulars; for, although the microscope has revealed in several other instances the existence of minute granules of calcarceous matter in that organ, I have never again met with it in masses visible to the naked eye.

After investigating the physical and chemical characters of this cerebellar sand, I extended my inquiries to those of the pineal grit, and of the calcarceous molecules found in the choroid, and at various times sought to discover similar deposits in other parts of the brain and membranes. The results arrived at I will now endeavour to record: they are less complete than I could wish, but will, nevertheless, supply a more extended knowledge of cerebral calcarceous deposits than has hitherto been published. The localities in which I have discovered the earthy corpuscles are:—the fibrous substance of the cerebrum and cerebellum, the pineal body, the choroid plexus, velum interpositum and pia mater generally, the cysts of the pineal and of the choroid, and exudations on the dura mater and pia mater. A more extended microscopical examination of the brain would, no doubt, have made their existence evident in other parts. Dr. Copland* has collected notices of calcarceous concretions in other regions than those named—e.g., in the corpus striatum, in the corpora quadrigemina, in the union of the optic nerves, and in the pons Varolii. These cases referred to by Dr. Copland were examples of extraordinary accumulations, visible to the naked eye. But intermediate between such and the mere microscopic particles are those deposits which may be detected by rubbing the brain-matter between the fingers.

Since the characters—particularly the structural—of brain-sand differ according to the locality in which it occurs, it is desirable to separately describe them in connexion with their several localities. The difference referred to, no doubt, partly depends on the nature of the tissue amid which the foreign matter is deposited.

Sand of the cerebral and cerebellar substance is alike; the fibrous nerve-tissue, the seat of its formation, being in these two segments of the brain, similar in structure. The irregularly-shaped large masses in the cerebellum, in the case above detailed, require considerable pressure to fracture them, and, like any inorganic matter, are unchanged by exposure to the

air and by keeping. I have some at present, after an interval of above three years, merely enclosed in a pill-box, which retains all its characters as at first. The fracture is vitreous, and the smaller fragments appear, under the microscope, very much like splinters of glass, angular, of no definite figure, transparent, highly refractive and colourless. By adjustment of the focus, however, the surface of these glass-like portions may be made to exhibit delicate wavy lines, some of which may be seen to have a concentric disposition.

By employing more gentle pressure, and adding a little water or liquor potassa, the fragments obtained have a botryoidal outline; spheroidal corpuscles project more or less considerably, and some become completely detached. Where there is a smooth fractured surface, sections of the corpuscles are visible, along with interspersed entire ones. The latter are less hyaline or transparent than their broken portions, and present a slight yellow or orange colour. Each corpuscle seems made up of numerous concentric laminae, surrounding a nuclear point, hilum, or umbilicus, which may be centric or excentric, but more commonly the former in this cerebellar sand. The similarity of these particles to starch-corporules at once suggested to me the name amyloid to designate them. I subsequently discovered that Purkinje, Valentin, and other German writers, had given to these and some similar bodies the name of corpora amyloacea. Besides the concentric markings, I detected very densely radiating lines on the surface of many, very fine and indistinct. As to the chemical reaction of these corpuscles, cold acetic acid exerted little action; it, however, rendered their structure and markings more evident, and brought into view corpuscles in a compound mass previously unnoticed. Boiling acetic acid caused a rapid evolution of gas, and dissolved out the mineral salts, leaving the animal basis, which retained the outline, and the internal concentric strata of the original globule. A much more active effervescence attended the addition of nitric and of hydrochloric acid, but the same organic matrix was left, unless, indeed, the acid was very strong, when the animal matter was itself ultimately acted upon, and reduced to a faint granular stratum.

The application of a dilute mineral acid rendered the corpuscular structure of a mass, and the markings of individual globules, more evident. Even in apparently amorphous, glass-like fragments, dilute acid will display curved and concentric lines, and so prove their organic structure. The acid solution gave a precipitate upon the addition of excess of ammonia, consisting chiefly of amorphous phosphate, with a few crystals of the triple phosphate. Upon redissolving the precipitate in acetic acid, and adding oxalate of ammonia, an abundant precipitate of oxalate of lime occurred. Hence these masses of cerebellar sand contained a small quantity of carbonate with phosphate of lime, and traces of triple phosphate, deposited in, and probably combined with, an organic material, the presence of which prevented the acetic acid acting on the carbonate. Liquor potassa did not exert a powerful action on the corpuscles, although it rendered their concentric markings more distinct, and its use is desirable to clean portions of the grit, and to bring their composition into view. For some of these chemical details I am indebted to my friend Dr. L. Beale, to whom I furnished a portion of the calcareous matter for investigation.
Besides the evident large aggregate masses, the cerebellum contained isolated corpuscles. Such are found, pretty frequently, where no visible concretions exist, as well in the cerebrum as in the cerebellum. Occasionally two or more are united together. They are very transparent and colourless, and can be made to show, by focal adjustment, only a very slight irregularity or roughness of surface, or they may look quite structureless, and readily be mistaken for bubbles of air, and passed by unnoticed, as I expect they often are. Their true nature is, however, shown by rolling them about on the slide, observing their constancy of outline and their fracture under pressure. The addition of an acid, moreover, brings at once into view their structure, and disengages bubbles of gas, which appear to emerge through the organic envelope by pores, the bubbles tailing as they pass out. The same appearance, I may add, attends the effervescence of the clearly concentric, larger specimens, both of cerebellar and of the other varieties of calcareous deposit. On one or two occasions, I have noticed an isolated corpuscle in rolling over exhibit a disciform instead of a spheroidal figure. Some of the cerebellar corpuscles measured 5/100 th of an inch, whilst others were but 3 1/1000 th. All intermediate sizes occurred.

Pineal sand, like the Pacchionian bodies, is constantly found in the brains of adults, and occasionally in so large quantity as almost to occupy the whole pineal body. The deposit sometimes consists of one large calculus, the size of a split pea; at others, of several considerable pieces, or of particles of all dimensions between such large masses and an impalpable powder. As is well known, this pineal grit has a pale yellow or buff colour, and a transparent, smooth, shining appearance, at least when wet, like siliceous sand. When dry it is more dull and opaque.

This sand is more brittle than that of other parts; its fracture very sharp and short, and the fragments, which are angular and very irregular in shape and size, refract light strongly. It may be so broken down by pressure that no definite structure can be discovered by the microscope even after the addition of reagents; yet, mostly, some larger, though thin and vitreous, fragments exhibit clear, wavy, and delicate lines, which may give rise to various colours by refraction and interference of light. A piece of the sand less crushed, resembles, under the lower powers of the microscope, a mulberry urinary calculus: its surface is tuberculated, and overspread by smaller rounded or slightly angular particles. By a higher power these particles are seen to be spheroidal corpuscles, and to have their surface roughened or spotted by numerous yellowish, strongly refracting points; whilst the entire mulberry-shaped mass has a pale yellow hue by transmitted light.

The addition of caustic ammonia or potash brings out this structure more readily and distinctly. The particle of sand, wetted with a drop of liquor potassae, should be broken down by a gentle rubbing motion and pressure on the slide. By this plan a better preparation is made, and single globules become detached.

The reaction of acids on pineal sand is essentially similar to that on the cerebellar variety, except that the effervescence produced is much more active. After the calcareous contents are dissolved out, an organic matter remains, having a rounded or ovoid form, and concentric mark-
ings, just as in the case of the cerebellar corpuscles. In the minute con-
creations the constituent amyloid bodies become visible, and between them
a sort of connecting tissue, mostly exhibiting fine tortuous lines, like
white fibrous membrane, but occasionally seeming to be structureless.
By the operation of the acid, moreover, many of the apparently com-
 pound corpuscles are resolved into simple ones, of the usual amyloid form.
The agency of acids on the fractured, glass-like fragments, renders the
previously invisible or indistinct wavy marking appreciable, and frequently
unfolds to view true concentric globules. Prolonged action, or the use
of very strong acids, reduces the structures to a delicate film, or to a mere
granular stratum. The amyloid bodies of pineal sand far exceed in size
those obtained from the cerebellum, as well as those from other regions.
Still they are found also of almost all dimensions. In figure they are
less spherical than other varieties, their hilum or nucleus rarely central,
and their markings generally do not form concentric circles regularly
disposed, but are similarly arranged to those of potato starch, around the
excentric nucleus. Again, they possess less organic material and more
carbonate of lime than do amyloid bodies elsewhere derived.

Sand of the Choroid Plexus.—Dr. Todd,* who refers to the writings
of Van Gherent, Valentín, and Bergmann for more complete details, pre-
sents the following succinct account of the calcareous concretions in the
choroid plexuses:

"These internal processes of the pia mater contain minute crystalline forma-
tions, a kind of very fine sand, which, however, is not constantly present.

"The grains are deposited in the meshes of the vascular plexuses. Sometimes
they accumulate in masses so as to be visible to the naked eye, or easily recog-
nised by the touch. In general, however, they are microscopic, in form globular,
and connect themselves with the minute vascular ramifications like bunches of
grapes. They are found principally in the choroid plexuses of the lateral ventri-
cles, and in that portion of the velum interpositum which embraces the pineal
body. In the former they are most numerous at that part which was called by
the Wenzels glomus, where the choroid plexus turns up from the inferior corner
into the horizontal portion of the lateral ventricle."

If the earthy granules are not constantly present in the choroid, as
Dr. Todd affirms, they nevertheless are very rarely absent, for, in my
experience, I have always discovered them in some stage or other of de-
development. Certainly, most of my observations have been made on the
brains of the insane; a circumstance which, if Bergmann be right that
the sand especially abounds in such, may explain the fact of my having
constantly detected its presence. Still, I must add, that in each of the
fewer examinations of the choroid, in individuals not insane, which I
have made, the like constant existence of the amyloid corpuscles has been
signalized. The cysts so frequently formed on the choroid plexuses con-
tain among their fluid an abundance of sand, many of the particles of
which are oftentimes visible to the naked eye, and form excellent objects
for microscopical study. The corpuscles in these cysts are, for the most
part, single; yet now and then some two or three may be found agglomer-
ated. They vary much in size, the largest being about $\frac{3}{4}$ th of an
inch, while the smallest are not more than $\frac{1}{100}$ th. But whatever the

* Anatomy of the Brain and Spinal Cord, p. 29.
dimensions, their calcification always seems nearly or quite complete, and although many of them have a rim surrounding an inner globule, it is not met with in the same early fibrous condition as in the corpuscles within the meshes of the choroid.

In the plexus itself the spherical grains are best brought into view after the addition of liquor potassa. They are seen amid the vascular network, and very often enclosed by the loops of the vessels. They present themselves in various stages of growth, are mostly solitary and spheroidal, or a few may be aggregated, or more rarely a sufficient number coalesce to constitute a mulberry-like calculus, visible to the eye and tangible to the touch. Equal, and even greater, disparity of size exists between these corpuscles in the plexus, than between those formed in the cysts. The generality of them are more or less opaque, looking yellow, orange, or even nearly black by transmitted light; they are, as a rule, spheroidal in shape; yet some are oval or ovoid, and a few club-shaped. They all appear made up of concentric laminae regularly arranged around a central point or nucleus. The majority also exhibit a rim or border, separated from the corpuscle which it surrounds by a more or less distinct line. This rim has a fibrous appearance, the lines in it following, but rarely so regularly and completely, a circular or concentric disposition. The relative size of the border and of the enclosed corpuscle varies; still it would seem that the expansion of the former has a limit, and that the latter gradually encroaches on, and eventually replaces it, when the calcification of the entire spheroid is complete. Indeed, so long as this margin retains a fibrous character, the corpuscle may be considered incomplete, since to become entirely calcareous is its natural tendency; for the rim offers room for further growth, the nidus for further calcareous deposit. The greater amount of organic matter in the composition of the border is shown by the action of reagents,—the mineral acids do not produce effervescence in it as in the contained portion, and acetic acid causes it to swell. By it, as seen in its varying relative width, the affinity between completely earthy globules and those spheroidal masses quite fibrous throughout is established. These fibrous balls are very common in the choroid; they have a milky opacity, a rather granular appearance, indistinct concentric striae, and do not effervesce with acids, or, at all events, not in an appreciable manner, but swell up with acetic acid. Indeed, between such completely fibrous bodies and those entirely calcareous, every intermediate stage occurs,—i. e., amyloid bodies in all stages of development and growth.

In course of time, as above implied, earthy matter fills the fibrous margin, and so far assimilates it with the condition of the centre. Yet subsequently to this change, some difference would appear to subsist between the two; for, by pressure, the marginal ring may be cracked, and the central body be forced out as if it were a nucleus; and examples are not uncommon of completely calcified corpuscles having several fissures through a yet distinct rim, not in any degree penetrating the enclosed globule. On the other hand, I have met with specimens in which an unbroken circumference has enclosed a central mass so fissured as to represent two elongated corpuscles side by side, or otherwise so divided by several unequal and irregularly radiating lines as to suggest the idea of its breaking up by self-division into several segments.
Some of the amyloid bodies of the choroid have no distinct rim; such, when fissured very much, resemble aggregated masses. Another variety appears as clear, translucent, earthy globules, indistinctly laminated, and without evident dark centres.

The amyloid bodies of the choroid plexuses have more regularly-disposed and evident circular markings, a more distinct centre or nucleus, are more spheroidal, less brittle and vitreous, and have a deeper colour and less transparency, than those of the pinal body. The more globular form may probably be, in a great measure, attributed to their place of development being the loose fibro-vascular plexus, wherein their growth is uninterrupted by pressure. The last-named circumstance will also afford an explanation of the comparative infrequency of coalescence.

The chemical reaction of sand from the choroid is much the same as that from other parts, but more closely resembles the cerebellar than the pineal variety, in the less active effervescence caused by acids. Nitric acts more energetically than hydrochloric acid; yet whichever acid be employed the corpuscles swell—but only or chiefly in the surrounding rim; the colour is discharged, and they become clear and transparent; the concentric markings acquire greater distinctness, and a small, clear space, devoid of circular striæ and apparently granular, frequently displays itself in the centre as a nucleus. When the dissolution of the amyloid bodies is more complete, the central portion continues still distinguishable from the surrounding margin in the more hyaline membrane left.

Of calcareous sand in other parts of the cranial contents no special description is necessary, as it resembles in all essential points the varieties already described, but more closely the cerebellar and choroid forms. Its deposition is more common in the velum interpositum than in other portions of the pia mater. However, the detection of amyloid corpuscles in simple lymph exudation is sufficiently remarkable to justify an account of the circumstances under which it occurred being here introduced.

It was in the case of a young woman, who died, in 1851, with chorea. The actual cause of death was the inability to swallow food, owing to its passage through the fauces producing severe spasms or convulsions. It was likewise a remarkable fact that this patient's mother and grandmother had both suffered from chorea.

I am indebted to my friend Dr. N. Parker for the portion of brain, and for much valuable assistance in investigating the subject of the present communication. The following account of the examination of the brain is extracted from notes made at the time.

The consistence of the cerebral substance natural; the grey lamina shallow and pale. The inner surface of the dura mater, over one hemisphere, exhibits a superficial gelatinous and reddish-yellow effusion, from 2 to 3 inches in diameter. On the surface of the hemisphere opposite is a similar effusion, occupying the meshes of the pia mater, and of a remarkably deep yellow colour. This effusion especially penetrates one of the sulci, and the nerve matter in contact with it is softened and broken up, and the débris mixed with it. The pinal body contains the usual calculous matter: the choroid presents some minute cysts containing sand within them.

A microscopical examination showed that the red gelatinous effusion
Observations on Brain Sand and Amyloid Bodies.

on the dura mater held many amyloid bodies, both single and aggregated. The bile-coloured exudation in the pia mater contained them in much greater quantity, and many of the aggregated corpuscles formed considerable concretions. Amyloid particles were also found in the cerebellum.

Together with calcareous corpuscles, the effusion exhibited rhombic, haematin crystals, of a deep orange colour, unalterable by acetic and nitric acids. The effused matter was converted into a corrugated, membranous, brown mass by nitric acid.

The chemical composition of brain-sand may be gathered from the account of the reaction of each variety previously given. Phosphate and carbonate of lime constitute the chief portion; but a small quantity of the triple phosphate of ammonia and magnesia, and, according to Van Ghert, a trace of carbonate of potash, also enter into the composition of amyloid corpuscles. Both Valentin* and Kölliker+ represent the carbonate as more abundant than the phosphate of lime; but this, at least, does not seem to be the case with the cerebellar sand. In the pineal the statement is more probable, since effervescence is so very active in that variety. Valentin (op. cit.) states that brain-sand exposed to the action of fire blackens, and is with difficulty reduced to an ash even under the blow-pipe.

The organic basis or matrix of the corpuscles is nitrogenous, and apparently albuminous in composition. As noted in the remarks on cerebellar grit, the relation of the animal with the inorganic material may be of the nature of chemical combination.

The action of the various chemical reagents shows that the growth of the fabulous particles is exogenous, that new laminae are successively deposited on the outside, and that calcification proceeds from within outwards. The choroid corpuscles illustrate this point best.

On testing the fluid of choroid and pineal cysts enclosing sand, I found nitric acid produce numerous fine, prismatic crystals, clustering in a stellate manner. Hydrochloric acid developed none. Sulphate of magnesia with liquor ammonia, and also the latter by itself, threw down the characteristic crystals of triple phosphate both from cystic fluid and from water in which pineal sand had been placed under the microscope.

The recent announcement by Virchow‡ of the presence of a substance occurring in the form of starch grains, and having the reaction of cellulose with iodine, and the still later researches of H. Meckel§ on cholesterin, have induced me to examine the starch-like corpuscles of the choroid with reference to the questions of composition thereby raised. I have selected the choroid corpuscles for this investigation because they are obtainable in all stages of development. I have tested both for starch or cellulose and for cholesterin the amyloid bodies equally in their earliest fibrous stage, and in the organic matrix of their later existence, the calcareous matter having first been dissolved out by acids, but have failed to meet with either of those substances. In all cases the animal basis of

§ Annalen des Berliner Charité Krankenhauses, Jahr iv. Heft 2.
brain-sand has stained of a yellow, orange, or reddish brown colour. The same result has attended the application of iodine to some concentric corpuscles obtained from the walls of the lateral ventricles,—the locality in which cellulose granules are stated to be especially found. I have employed the simple aqueous solution of iodine, as recommended by Virchow; an aqueous solution strengthened by the addition of iodide of potassium, and the ordinary tincture of iodine. In some experiments I have also used both iodine and sulphuric acid, dilute and concentrated.

Nevertheless I do not consider my observations at present sufficiently extensive and precise to pronounce definitively on the question, or to demonstrate the presence or absence of chemical affinities between the calcareous corpuscles I have undertaken to describe and those nearly structurally similar "corpora amylacea" revealed by Virchow; or, lastly, those particles stated by Meckel to be cholesterol in nature.

Of the origin of calcareous sand in the cranial contents no satisfactory account can be offered. The circumstance of similarity of form is some argument for that of origin; and yet the very different conditions, as to tissue, connexions, &c. under which brain-sand occurs, negatives the notion of a common origin of all the varieties.

It may be advanced as a general fact, that in all forms of brain-sand, the calcareous substance is deposited in a pre-existing fibrinous plasma. Such, indeed, holds true of earthy deposits in other parts of the body besides the head,—i.e., calcification is a secondary phenomenon; but in them the change appears, according to Dr. Handfield Jones' valuable researches, mostly or always associated with fatty degeneration, which is not the case with the amyloid brain-corporcles, at least, so far as I have been able to make out. Dr. Jones, indeed, has mentioned an example of a choroid plexus, where "numerous whitish concretions of oval shape, situated beneath the epithelium, appeared as vesicles, with a distinct envelop enclosing oily contents. One such concretion, of the size of a small seed, consisted of perfectly normal fat-cells," whilst each epithelial cell "contained a distinct drop of reddish-yellow, oily-looking matter, of larger size in some than in others. Many such drops were seen floating free, as well as some colourless ones." He further records the examination of—

"A portion of one hemisphere of perfectly healthy appearance, from the brain of a man who died with hæmorrhage into the pons Varolii, and a cyst in one hemisphere. All the minute vessels just pre-capillary were coated over with a deposit of orange-yellow refracting corpuscles. These were very similar to those commonly met with in the spleen, sometimes occurring singly, but for the most part in groups. They were little affected by liquor potasse or acetic acid, and were mingled with a few colourless oily granules. They were situated chiefly in the areolar sheath of the vessels, and did not encroach upon the inner coats; the circular fibrous tissue in particular was unaltered. The smallest vessels were much less affected, but they and the capillaries sometimes appeared less purely homogeneous than is natural, as if dotted over with granules. There was slight atheromatous deposit in the basilar artery."

Now although these descriptions do not justify the inference that the "concretions" and "corpuscles" were actually akin to amyloid bodies, yet

* See British and Foreign Medico-Chirurgical Review, for April and July, 1855, Art., On Fatty Degeneration.
the similarity in position, in form, and in relation to vessels, is suggestive of an analogy between the two. However, I do not think it can be contended that a fatty degeneration of a fibrinous plasma necessarily precedes a calcareous deposition: each change may surely be primary and final. It could be wished, particularly with reference to the "orange-yellow refracting corpuscles," that Dr. Jones had tried the action of acids upon them, for, as he says, in a subsequent paragraph,* "not only calcareous granules, but calcareous amorphous matter, may simulate the aspect of oil."

It is a curious question, to which no solution at present offers itself, why calcareous matter should so invariably form in the pineal body, for it surely is no integral, normal constituent of it. Its frequent presence in the choroid plexuses, and in the pia mater generally, may hold some relation to their vascular nature. Indeed, I have thought to detect a special relation between the amyloid corpuscles and the small arteries.

In notes, made at the time (1851), on the microscopical appearances of the large accumulations in the cerebellum, in the case above narrated, I have written, that,—

"Besides being aggregated in more or less considerable masses, the amyloid corpuscles also existed free as microscopic objects, and in this condition seemed to stand in some particular relation to the small arteries, many of which were transformed into earthy cylinders, and were apparently impervious to blood, whilst the large vessels of the brain showed no sign of atheromatous deposit."

Moreover, I have noted, relative to the second case quoted in this paper, that, "in the choroid plexus many isolated amyloid corpuscles were seen in apparently a peculiar relation to the vessels." Among the arteries, about one or two removes from capillaries, many were seen containing red or orange blood, distended and frequently varicose, constricted at short and nearly equal distances. This condition was also met with where the vessels formed loops.

"Besides these distinct and red-coloured vessels, were other tubes, exactly resembling them in form, in curvature, and in dimensions, but perfectly colourless, or nearly so, and looking like earthy canals or cylinders. Like the true vessels, they, moreover, displayed constrictions, as if jointed at nearly equal distances: in some examples, the constrictions were so deep as to nearly sever the canal. In the vicinity of these jointed tubes, were perfect and distinct amyloid corpuscles, mostly single, and, what was of especial interest, some of these corpuscles seemed attached to the calcareous branching tubes, and, in some specimens, were partly surrounded by, terminating one-half of a loop of a partially altered vessel.

"At one spot of the fragment examined were two corpuscles, in apparently different degrees of development;—the one, refracting light less than completely earthy particles, exhibited a series of concentric laminae around a reddish nucleus, which looked exactly like a detached constricted portion of a vessel; the other, in close proximity, with decided refracting power, appeared a more advanced calcareous corpuscle."

In an extract from Dr. Todd's work on the brain, previously given, it is stated that the microscopic globular particles "connect themselves with the minute vascular ramifications like bunches of grapes;" and Dr. Hooper† has described earthy particles attached to a filamentous vessel.

† Morbid Anatomy of the Brain.
I would here also recall the particulars of the second of the two microscopic examinations quoted from Dr. Jones.

This association of calcareous amyloid bodies with calcified minute arteries may be accidental; or, as is allowable to surmise, the calcareous transformation of the corpuscles—to which they always tend—may determine the like process in the contiguous vessels. However this may be, we may assume that the organic basis of the amyloid corpuscles is derived from plastic exudation of the arteries in the areolar or connective tissue around them; that this exudation assumes a rounded, corpuscular character, from the loose nature of the medium surrounding it, that it has an exogenous growth in the superposition of successive laminae, and that it presents a singular tendency to calcareous transformation.

In my two recorded cases, the minute vessels were alone found calcified; in the one case this happened with the cerebellar, in the other with the choroid vessels. Among the latter, I find this change not uncommon; it is accompanied by an enlargement of the tube, and often by a varicose appearance. The calcification of the minute blood-vessels has been well described, and its important pathological bearings illustrated by Mr. Paget.* According to this eminent observer, the calcification is essentially associated with fatty degeneration; and this opinion is ably supported by Dr. Handfield Jones.† But in whatever manner it originates, this state of the vessels must everywhere dispose to rupture and hemorrhage; and it therefore results, as a natural deduction, that some effusions of blood into the lateral ventricles may take place from diseased vessels of the choroid plexus,—in other words, apoplexy may thence arise.

Among the varieties of cerebral sand, Kölliker describes‡ "rounded, stalactitic, or club-shaped, angular masses, with an uneven surface, and simple, or branched, or reticulated, cylindrical rigid fibres;" and afterwards adds, "it is quite certain that this cerebral sand, when it occurs in the form of long, branched, reticular masses, is developed simply in the bundles of connecting tissue." On the other hand, Rokitansky speaks of the brain appearing as if filled with stiff wires, which are actually calcified small arteries, and in this view he has the support of others. It is certain that the lesser cerebral arteries do calcify, and form rigid, cylindrical, branching fibres, and between such and the stalactitic and club-shaped masses, with an uneven surface, every variety occurs; and in each the vascular nature is demonstrated by the continuation of the calcareous mass with the sound arterial tubes. Still the statement of Kölliker may be correct with respect to some branching earthy fibres; but it is questionable whether any such filiform productions should be classed with cerebral sand, which they resemble in nothing but their calcareous composition.

The production of cysts on the surface of the choroid plexuses is not uncommon; such are of a rounded figure, with elastic fibrous walls, collapsing, when punctured, with force enough to spirt out their fluid contents. In one case, I met with a delicate tesselated epithelium apparently lining the sac. Less commonly a cyst grows from the pineal gland, and sometimes more than equals that body in size. How these cysts

* See the Report of the Pathological Society for 1851-52.
originate I am not prepared to state. I here mention them only with
reference to their sabulous amyloid particles, which exhibit no organic
relation to vessels, and none even to exudation matter, as they float
isolated within the cavity of the cyst, or lie loosely on its walls. The
only explanation that occurs to me, rests on the chemical composition of
the circumambient fluid, which, as elsewhere stated, is similar to that of
the corpuscles;—it is, that these sandy particles are formed by accretion
of molecules from the fluid, just as in the case of calculi in the bladder.

The following quotation from Dr. H. Jones* may throw some light
on the appearance of amyloid corpuscles in the products of inflammation,
as recorded in a previous page:

"Extravasated blood which is undergoing absorption, is described by Rokitansky
as exhibiting, besides various quantities of yellowish, red, or brown pigment,
free fatty matters of different kinds, in the form of small, dark, outlined, separate,
or coalescing molecules, of great clear drops, of cholesterin crystals, together with
the finest dust-like substance of albuminous, oily, or earthy nature."

The substance last named may furnish the rudiments for the building
up of the future calcareous concretion in the fibrinous plasma, which,
from some unknown formative power, assumes a corpuscular form. Kölliker writes,† "In other cases, it (cerebral sand—the form!) appears to
be a spontaneous incrustation of fibrinous coagula." This notion implies
that of the calcification advancing from periphery to centre, and is op-
posed by the observations recorded in this paper. In the second case, as
above described, the amyloid bodies in the gelatinous effusion on the dura
mater were the most difficult to account for. Those in the detritus of
brain-substance, in the exuded matter on the surface of the hemisphere,
and in the meshes of the pia mater, may naturally be conceived to have
originated prior to the disease causing the effusion and softening.

Before quitting the subject of the genesis of cerebral sand, I must not
omit to notice an observation recorded by Mr. Busk,‡ which, if con-
firmed, and the deduction derived from it be admitted, will invest the
origin and nature of calcareous corpuscles with new interest. That dis-
tinguished microscopist writes, that, in the corpora striata of the first
brain he examined for cellulose, he "could find few or no starch-grains,
but here an appearance presented itself which seems to be connected with
their formation. Many particles of sabulous matter or crystalline cor-
puscles of the ordinary 'brain-sand' were met with, all of which, instead
of lying like the starch-grains, in the midst of unaltered nerve-substance,
were lodged in irregular masses of what appeared a fibrinous or immature
connective tissue-substance; and, in this instance, upon the addition of
iodine, each mass of crystals was found to be immediately surrounded by
an irregular thickness of a transparent matter, which was turned not
blue, but a light purplish-pink, by that reagent—a substance, in fact,
closely resembling in that respect the very early condition of the cellulose
wall; for instance, in *Hydrodictyon,*—an immature form, as it may be
termed, of cellulose." In a second case examined by Dr. Busk, he "did
not notice the quasi cellulose-deposit around the particles of brain-
sand."

In seeking out the affinities of cerebral sand, I examined earthy deposit in other parts besides those named (p. 471)—as, for instance, in the calcified coats of arteries, in the calcareous matter of the interior of an old goitre, and in that of altered tubercle, but in none did I find it combined with animal tissue, forming laminated concentric corpuscles. The situation of the Pacchionian bodies within the cranium, and their fibrous nature, led me to examine them, but I failed to find any structures resembling the amyloid grains described. However, Mr. Busk states* that he not only met with true corpora amylacea (Virchow) in much-developed Pacchionian granulations, but also “other concentrically-laminated bodies, which formed botryoidal masses imbedded in a stroma of immature connective-tissue: these bodies, which might, to distinguish them, be termed ‘chalcedonic corpuscles,’ were rendered yellow by iodine.”

The industry chiefly of German microscopists has brought to light the existence of laminated, concentric corpuscles in many tissues, and even in several secretions of the body. In the case of many of them, it has been endeavoured to establish an identity with the corpora amylacea—the cellulose grains of Virchow; but, probably, the affinity of the majority of them is with the laminated particles of brain-sand. This affinity is indicated in several among them, not only by similarity in physical conformation—which is, indeed, per se, inadequate to do so—but moreover by their calcareous composition. Among such intimately allied bodies are the spherical grains in the urine of the horse, originating principally in the prostate gland, and which, like the calcareous corpuscles of the brain, have concentric markings, a more or less defined nuclear space, but, unlike those, present also radiating striae, and fracture in a more radiating manner. These prostatic concretions are well described, and their origin traced by Virchow, in a communication to the Würzburg Academy,† to which I would refer also for an excellent summary of the many varieties of amyloid corpuscles.

It does not seem at present desirable to extend the consideration of the affinities of the brain-sand corpuscles, and particularly as it is to some extent entered upon in the analytical review of the cellulose question, contained in the present number.

ART. III.

Historic Data, &c., in reference to some points of Infantile Pathology. By W. Hughes Willshire, M.D. Edinburgh, Physician to the Royal Infirmary for Children, &c.

(Continued from No. 24, p. 529.)

No. II.—*Scurfulous Meningitis. Syn. Granular, Tubercular Meningitis, Acute Hydrocephalus; Whytt’s Disease; Dropsy in the Brain; Water on the Head, &c.*

Whether the ancients were familiar with that affection which, in modern times, has so generally been denominated “acute hydrocephalus,” is a

point difficult to determine. Dr. Joy* affirms that Hippocrates "was
certainly acquainted with it—clearly characterizing some of the most
characteristic features of the disease;" and Dr. Copland remarks,† that
he notices an affection "which has a marked resemblance to the symptoms
of the acute or subacute form of this disease, and, at the same time, assigns
water on the brain as its cause;" but that acute hydrocephalus, "notwith-
standing the remark of Hippocrates already referred to, was formerly
confounded with cerebral fever, or fever with determination to the brain."
Nearly a century ago, thus wrote Dr. Whytt:** "Hippocrates, in his
second book, 'De Morbis,' has enumerated the signs of water on the brain,
as his words have been rendered by all the translators. But εγκεφαλω
more properly signifies upon than in or within the brain; and
that Hippocrates speaks here of water lodged between the dura mater and
the cranium can scarcely be doubted, since he proposes to evacuate it by
making a perforation into the upper part of the cranium, προς των
εγκεφαλων, which operation could have been of no use, had the water been
contained within the brain itself." (p. 726.) Akermann is of much the
same opinion as Whytt, but Gölis thinks differently, considering that
Hippocrates does allude to acute hydrocephalus. Lænnec and Frank
coincide with Gölis, whilst M. Littre, whose labours in connexion with
the Hippocratic treatises attach importance to his opinion, thinks that
though acute affections of the brain are referred to in these treatises, yet it is
impossible to distinguish the acute hydrocephalus of children. Dr. Adams,§
in his analysis of the books περὶ νουςων, (by some ascribed to Hippocrates,
and by others to some member of the school of Cnidus,) remarks, "Eight
diseases of the head are described, but in such terms that we fail to
recognise the distinguishing features of each. Besides these, a little way
further on, the author describes several other diseases of the head, including
hydrocephalus, the symptoms of which are given with great precision—
namely, acute pain about the bregma and temples, alternate rigour and
fever, impairment of the sight, double vision, vertigo, &c. He recom-
mends erinhines, purgatives, and even trepanning of the skull. Even of
this disease several varieties are described in striking terms." After
reference to the passages sub judice, we confess ourselves unable to arrive
at a determinate judgment upon the point at issue; for whilst, on the one
hand, the οὖν οἵτινες ιατρὶς διὰ των βρεγμάτων, &c., incline to the one
opinion, the advice, επειτα ανακυμησας στενώσας,|| before puncturing
the head, inclines us to the other; for surely it would be impossible for the
patient to take any food to recover or support him in the state he must
be in immediately preceding the attempt at puncturation. We must
assume stupor or coma to be present, as indicative of the necessity for this
operation, the case not having been benefited by the treatment already
adopted, but having proceeded from bad to worse. The only way that
occurs to us of attempting to reconcile the discordancy, is by rather the
far-fetched one of assuming that the ancient writer (whoever he was) was

* Cyclopaedia of Practical Medicine, vol. ii. p. 452.
† Dictionary of Practical Medicine, vol. i. p. 669.
‡ Observations on the Dropsy in the Brain, never before published, p. 725, contained in the
§ Hippocrates (Sydenham Society's edition), vol. i. pp. 91, 92.
acquainted with that peculiar and deceptive remission of symptoms which sometimes occurs in acute hydrocephalus, and which has been termed "the lightning before death." Of this we have seen two or three very marked examples, the patient suddenly emerging from his state of danger, becomes conscious, recognises his parents, and may even be got to swallow food; but which remarkable change is soon followed by another, the harbinger of death.

According to Dr. Copland,† "from Hippocrates to Rhazes, no mention is made of internal hydrocephalus. But this latter writer states in his book on the diseases of children, that the head sometimes acquires an increased bulk, owing to the collection of fluid within the cranium," whilst Ettmuller‡ remarks, that Andreas Vesalius was the first who alluded distinctly to effusion into the ventricles, though Hieronymus Mercurialis, who flourished at the beginning of the sixteenth century, hints that the collection of water in the ventricles is a thing that may possibly occur, but adds, that apoplexy must necessarily follow. In Dr. F. Adam's learned commentary upon Paulus Ægineta,§ further references may be found to the older writers. We must at present content ourselves in respect to this point with the following extract from the work of Fabricius.|| premising that it is very certain that up to the eighteenth century, the common term of hydrocephalus was used in a very vague and general sense, and that internal and external hydrocephalus, cephalæematoma, caput succedaneum, simple acute meningitis, cerebral congestion, either primitive or secondary, &c., were constantly included under one and the same denomination. "It appears (says Fabricius) that Galen intimates that hydrocephalus is a particular disease of certain parts of the head, and not a dropsy of the whole head. Aëtius confirms it, and Paulus, in laying down the varieties of hydrocephalus, says, that there are four—one in which the fluid settles between the brain and its involuerum; another, in which it occurs between the membranes and the bones; a third, in which it is between the bone and pericranium; and a fourth, in which the fluid is between the bone and the integuments; all of which varieties constitute general dropsy of the head, and indicate also the particular parts of the latter which are affected. The same varieties of hydrocephalus are given by Aëtius also, but with the addition of another—viz., in which the fluid is collected in musculis temporum. The causes of hydrocephalus are some external and some internal. Amongst the former, Paulus alludes to a new-born child, whose head was pressed by an unskilful obstetrician. Another cause is contusion, or a blow [collisio], or a rupture of one or more vessels, likewise indicated by Paulus. A third is the cold atmosphere to which the child's head may have been for some time exposed. A fourth is the drinking of too much water or wine by the pregnant woman during gestation, or by the nurse whilst suckling. Also laxity of the vessels or openings, a relaxation of the local vessels (as Aëtius says, loc. cit.), by which matters exhale and collect." Fabricius himself then goes on to say, that he determines two chief forms of hydro-

‡ Opera om., tom. 1 pp. 446, 447.
§ The Seven Books of (Sydenham Society's edition), vol. II. p. 221.
cepha, the first including the various kinds dependent upon "serous humidity," as laid down by the old writers just alluded to, and whose cause is internal; the second, embracing those varieties "not containing pure serum, but feeculent blood mixed with it, which has issued from a vein ruptured by contusion, and the cause of which is external."* Now, in this classification of Fabricius, we see the complete separation made between the true serous or hydrocephalic effusions, and the class of cases indicated in modern times by the terms of cephalhæmatoma and caput succedaneum. It is true that he still talks of "hydrocephalus from the rupture of vessels" (p. 413); yet that he was aware of the true nature of this class of cases is clear, as also that he recommended a treatment identical with that advised by some even at the present day. He says, "if the abscess has arisen from contusion and rupture of the vessels, and in which not only watery humidity, but also feculent blood is contained, the intention is to discuss and evacuate it, which is effected by stupes, &c." (p. 414.) The first distinct treatise that we know of, calling especial attention to cephalic tumours of this character arising during birth, and completely separating them from hydrocephalus, is the one of Heins,† published in 1743. a subject afterwards more fully treated of by Michaelis in 1799,‡ by Klein, Zeller, Nagele, &c., and which, in later years, has been so fully investigated by Valleix and others. With regard to the distinct recognition of the acute hydrocephalus of modern times, and its discrimination from other forms of "serous or watery humidity of the brain," the first record of its having been made, and which we have been able to refer to, is the paper of Petit, published in 1718.§ In his remarks on "hydrocephalon," the writer states that there is a third variety of the disease, "in which there is an excessive augmentation of the fluid naturally in the ventricles of the brain;" and further, "that this is the only form that I have met with in the practice of surgery, or in the examination of bodies, so that I am led to believe the other species are very rare." Petit's first variety of this ventricular dropsy is plainly nothing but congenital hydrocephalus; but his second is undoubtedly "acute hydrocephalus," as it supervenes "in the course of difficult dentition, the verminous affections and strong convulsions which afflict children." The connexion of the disorder with scrofula is even pointed out, as it is said that "the malady happens likewise to such children as have some vice of the lymph, or obstruction to the conglobate glands."|| In concluding his paper, Petit admits that his observations are insufficient to warrant him in hazarding a theory of the pathogeny of the disease.

In 1733* Andrew St. Clair, professor of medicine in Edinburgh, described "The Histories of a Fever and of an Epilepsy," the latter case appearing to have been one of acute hydrocephalus in a child of four years of age, whose lungs (be it remembered for future consideration) "were full of tubereles . . . the bloodvessels of the brain were all greatly

† Dissert. de Capitocephalibus parius laborioso nascentibus. Lips., 1743.
distended with blood, and in the ventricles about six ounces of water were found."* About the same time also an account was given† of "A hydrocephalum with remarkable symptoms, by Mr. John Paisley, surgeon in Glasgow," a perusal of which, however, only entitles us to say that we believe the author was acquainted with acute hydrocephalus. M. Rillic, quoting from Bricheteau (whose work unfortunately we have not been able to refer to), alludes to a M. Duverney as having made the first distinct reference to this affection as early as 1701. Whatever uncertainty may exist as to how early acute hydrocephalus had been recognised, most writers allow that Robert Whytt, in 1768,‡ was the first to lay down the correct symptomatology of the affection. So well was this done, too, that M.M. Rillic and Barthez remark, "that we cannot too strongly admire the descriptive talent and great power of observation evident in each page of this interesting monograph." As regards the pathology of the malady, however, Whytt does not merit such praise, though for many years his vague and erroneous views completely guided a great school of pathology in reasoning upon the nature and causes of the affection. Whytt assigned as its immediate cause "such a state of the parts as makes the exhalant arteries throw out a greater quantity of fluid than the absorbent veins can take up," (p. 735.) such immediate cause being produced by "a laxity or weakness in the brain, whereby the small exhalant arteries of the ventricles will throw out the lymph faster than the absorbent veins can imbibe it," by compression of the skull at birth, the pressure of a tumour on the neighbouring trunks of the absorbent veins, from too thin and watery a state of the blood, and from "a suppression of urine," the result of some chronic affection. In the same year that Whytt's observations appeared, some "remarks," &c., were published by Dr. Fothergill, chiefly to show that the disorder arose from the rupture of a lymphatic vessel in the brain, and that its cure was to be deemed as scarcely within the compass of our art. From the time of Whytt (1768) to that of Quin in 1779-80, most writers regarded the ventricular effusion or dropsy as the essential element of the disorder, however much they differed as to the cause of the former. It was, in fact, considered to be the lesion giving rise to the various symptoms characterising acute hydrocephalus. Quin, however,§ endeavoured to demonstrate that the dropsy was not the essential phenomenon, but that the disease had its origin in a morbid accumulation of blood in the vessels of the brain, sometimes rising to a certain degree of inflammatory action, and which often produced, but not always, an effusion of fluid before death. Dr. Edward Ford adopted in part the idea of Quin, whilst, in 1785, Cullen,‖ in drawing the distinction between the acute and chronic forms, maintained the former to be an apoplexy—apoplexia hydrocephalica—because "it is never evident to the senses, because its symptoms differ very much from hydrocephalus, which is evident; and, finally, since its proximate cause as well as symptoms approach so very much those of apoplexy." It has been stated¶ that Cullen here had in view that form of the disorder afterwards denomi-

nated by Goelis and the Germans wasser-schlag, or water-stroke. But
this opinion we cannot coincide in, seeing that Cullen's words, "paulatim
adoriens," &c., forbid it. In 1789 Dr. Rush,* though believing that the
effusion of fluid was the consequence of a preceding inflammation, showed
that death might occur, and not more than a teaspoonful of fluid be found
in the ventricles. Dr. Percival† "was among the first who appears to
have been aware of the fact that, however nearly acute hydrocephalus
may approach true inflammation, it is no more identical with it than the
adhesive form of inflammation is the same as the diffused, or as erysipelas;"
besides this, "he demonstrated its frequent connexion with scrofula"
(Copland). It is unnecessary to refer to any other writers of the eight-
teenth century, or of the commencement of the nineteenth previous to
Dr. Cheyne, with the exception perhaps of Dr. Garnet. This author, in
1801,‡ maintained "that the disease depends upon, and is accompanied
by, a plethoric state of the vessels of the brain, occasioning a considerable
degree of inflammation, and generally, though not always, producing an
extravasation of fluid before death; and he seems to think that the symp-
toms which usually show themselves in this disease do not depend upon
the effused fluid, which he conceived to be the consequence of the disease
rather than the cause of it. In so far he has acquiesced in the views of
Quin" (Cheyne). In 1808 appeared the first edition of a work which
has deservedly held a high character, and in which nevertheless the
pathology of the affection of which it treats appears to us to be but
vaguely and unsatisfactorily determined. We allude to the work of Dr.
Cheyne,§ who, in his second edition (1819), thus writes: "Although I
refer most of the symptoms of the disease to the morbid state of the
circulation in the brain, I am equally far from thinking, with Dr. Rush,
that this action resembles that which takes place in phrenitis." (p. 29.)
"In its first stage hydrocephalus is evidently attended with a consider-
able increased arterial action; this disease differs essentially from
fever, apoplexy, or phrenitis; several diseases seem to produce a
disposition to hydrocephalus, but in so far as we know, scrofula alone is
liable to mutual conversion with hydrocephalus; to conclude, hy-
drocephalus appears to consist in a diseased action of a particular kind,
but of what kind we can as little explain as we can the nature of the
scrofulous or the syphilitic action." (p. 34.) Between the publication of
the first and second edition of Dr. Cheyne's treatise, a work appeared
in Germany which soon acquired considerable reputation,|| and which, as
regards its account of the symptoms and differential diagnosis of acute
hydrocephalus, well deserved it. In it Gölis affirmed "acute ventricular
dropsy" to be "always the secondary disease of previous inflammatory
turgescence and inflammation (encephalitis) of the meninges, or of the
vessels of the brain itself (phrenicula, according to Rush, Markus, Stark,

* Medical Observations and Inquiries.
† Medical Facts and Observations. Manchester, 1791.
‡ Observations on Hydrocephalus.
Sprengel, Girtarner, Rand, Lieuteaud, Henke, and Speyer);" such view of its inflammatory nature being determined by the symptoms and pathognomonic signs of encephalitis and the result of a particular therapy. (p. 13.) Four stages of the disorder are described by Gölis, and its diagnosis from "worm and mucus fever," typhus fever, and internal chronic hydrocephalus, given. The form of the affection called wasser-schlag, or water-stroke, was (we believe for the first time) clearly described as a sudden effusion of serous, lymphatic, &c., fluid within the brain, occurring either idiopathically or as a consequence of other diseases, and inducing death in a few hours. Between the years 1818 and 1825, Abercrombie, Hall, and Gooch insisted upon the necessity of drawing the distinction between true hydrocephalus, or inflammation of the brain, and a state of exhaustion (hydrocephaloid disorder—the apoplexia ex inanitione of older writers, in the opinion of some), which is apt to be mistaken for it, and treated accordingly. In 1825 an able monograph was published by M. Senn, of Geneva, in which it is laid down that "the denominations of inflammation of the membranes and acute hydrocephalus designate the same affection," which is, in truth, inflammation of the meshes of the pia mater, and the most frequent termination of which is death. For, according to Senn, it is most likely that those writers who have spoken of curing a half, the fourth, or even the fifth part of their patients, have mistaken other affections for inflammation of the membranes.

From the time of Quin (1780) to that of Senn (1825) or Guersant (1827), the prevalent opinion was that the fundamental or essential lesion of acute hydrocephalus consisted in inflammation, though opinions varied as to the primary or precise seat of the latter. According to Gölis (1815) it was in the arachnoid; Pierry (1822), Parent du Châtelet, and Martinet (1825) in the arachnoid of the base; according to Coindet (1817) it was seated in the cerebral ventricles; to Brachet (1818), in the lymphatics; whilst Abercrombie placed it in the central substance of the brain itself and the lining membrane of the ventricles, and Lallemand regarded the inflammatory action as sometimes commencing in the brain and then invading the membranes, and other times as beginning in the membranes and afterwards involving the brain. By Senn (1825), as we have just seen, the meshes of the pia mater were held to be the locality. There were several exceptional opinions to the above, however, advanced between the time of Quin and Senn. Mitivie (1823) and Brichet- teau (1829), though alluding to the post mortem evidences of inflammatory action, still regarded the effusion as the chief characteristic phenomenon in the malady; whilst Dr. Nicholl (1821) and Dr. Shearman (1825) again supported the views of Formey (1810) and Smith (1814); and all, though differing in some subsidiary points, viewed the effusion as a consequence of simple excitement of the cerebral circulation independent of inflammation, or as the result of a condition of erythism of the brain (Nicholl) either of a "sensitive" or "torpid" character. The latter term, "torpid erythism," being one which Dr. Bennet has remarked upon as being rather peculiar. Dr. C. Smith "has argued against inflammation, and in favour of
debility, as the cause of the effusion, but whilst he has strenuously contended for the latter pathological condition as respects the tone of the extreme vessels, he has admitted the existence of accelerated circulation, and its influence in producing the disease."* Notwithstanding these and some other exceptional opinions, we may assume that the general belief was that the essence of acute hydrocephalus consisted in inflammatory action of the meninges, and the ventricular effusion was of a secondary and less essential feature in the malady. The next important point in the history of the former to be noticed is, that whilst many writers seem to have regarded the inflammation as of the pure simple kind, or possessing no specificity of character, a few others drew attention to the not unfrequent complication of the disorder with the scrofulous diathesis, (Percival, Petit, Cheyne, &c.), St. Clair commenting, as we have seen, upon the coexistence of tubercles in the lungs. Even Willis, as long ago as 1672,† indicated the association of what he calls tubercles with cerebral disease—viz., "Nec minus a phlegmone et abscessu, quam ab hujus modi meningitis, nodis et tuberculis nonunquam cephalalgiae lethalis et incurabiles oriuntur." And Bichat, in the preliminary remarks to his 'Anatomie Générale,' observed, "that the serous tissue belongs to the brain in the form of the arachnoid, to the lungs by the pleura, to the heart by the pericardium, to the gastric visceræ by the peritoneum, &c., is a matter of no consequence. Everywhere it becomes inflamed after the same manner, dropsical effusion uniformly ensuing. Everywhere it is subject to a kind of eruption of little whitish tubercles, as if miliary, of which, I believe, no mention has been made, but they nevertheless merit great consideration." Notwithstanding all this, no pathologist seems as yet to have pointed out and insisted upon the necessity of another element besides the inflammatory one, and by which the latter is very greatly modified in acute hydrocephalus.

The first approach appears to have been made by M. Guersent. In the year 1827, M. Guersent‡ remarked that the inflammation of the meninges constituting acute hydrocephalus presented such peculiarities as to lead him to denominate it "granular meningitis" in the registers of the hospital; but although he thus separated the meningitis of hydrocephalus from other inflammations, he did not connect the granular deposit met with in the former affection with the morbid deposit tubercule. In 1829, Charpentier§ likewise spoke of certain "granulations," but no association of them with the tuberculous element was pointed out. This was left for M. Papavoine to effect, who, in 1830,|| published two cases of "tuberculous arachnitis," in one of which effusion into the ventricles, or hydrocephalus, existed. The meningeal granulations or tubercles were described with care, and two forms indicated, viz., plates or layers, and granulations. The coincidence of the meningeal granules with tuberculous deposit elsewhere was remarked upon, as also the apparent occurrence

* Copland, op. cit., p. 670.
† De Animæ Brutorum. Oxon., 1672.
of the former previous to the inflammatory action in the meninges, and in one case the existence of the tuberculous granules without the sequence of inflammation.

The important pathologic element of acute hydrocephalus, thus clearly pointed out by M. Papavoine, now became apparent to observers. In 1833 a most admirable paper was published by Dr. W. W. Gerhard,* illustrated by the history of 32 cases, "all of which had been regarded as examples of the affection known under the names of hydrocephalus acutus and meningitis, and which had offered on dissection a lesion of the cerebral organs or membranes. It will be seen that all the subjects, with the exception of 11 and 12, presented tubercles in other organs than the brain," and in the latter or its membranes were either granulations, yellow opaque substance, or "evidently tuberculous matter." The author, therefore, was induced to regard this form of cerebral disorder as closely analogous to the deposition of tuberculous matter in other organs. "Those who think his evidence sufficiently strong, may adopt his own conclusions without agitating the question of the inflammatory or non-inflammatory nature of the disease." (p. 105, vol. xiv. op. cit.) In 1835, MM. Fabre and Constant,† in the same year also M. Ruffe,‡ and, in 1836, M. Piet.§ further developed the tuberculous character of the granular meningitis of acute hydrocephalus, and the profession in this country were somewhat surprised by the appearance of the valuable papers of Dr. Hennis Green in the 'Lancet,'|| upon the same subject—viz., "tuberculous meningitis."

"If," says Dr. Green, "we have ventured to introduce the above new term in medicine, we have not done so without long reflection, and the support of an extensive series of pathological observations. We are prepared to prove that the disease commonly called acute hydrocephalus is accompanied, in a very great majority of cases, by an inflammation of the meninges with the deposit of the tubercular matter in the form of granulations or cheesy matter; we, therefore, prefer abandoning the term hydrocephalus, because all physicians of the present day are agreed that the effusion forms no essential part of the disease, and in adopting in its stead, at least for the form we treat of, a denomination which has the advantage of denoting the pathological change and its most striking character." A critique on Dr. Green's paper was published in the same volume of the 'Lancet' by Dr. Herbert Barker, who remarked that "there can be little doubt that the scrofulous diathesis exists in a great majority of the cases of acute hydrocephalus, yet there are several predisposing causes independent of scrofula, most, if not all of which, Dr. Copland has mentioned, and the influence of which Dr. Green, from his observations, would appear too greatly to limit." In 1837, the second edition of Charpentier's work we have before referred to made its appearance, and in which, in allusion to the "tuberculous granulations," the author observed that "these abnormal products are no doubt frequently met with in children dying of this malady, and we were, we believe, one of the first to point them out; but it is an error to consider them as

‡ Gazette Médicale de Paris.
§ Thèse sur la Meningite-tuberculeuse.
necessary for its development. If M. Ruz has met with them in nearly all the bodies he has examined, it is simply because nearly all the children have been scrofulous. It is, however, more reasonably affirmed by him that those granulations which are more frequently found in the fissure of Sylvius, between the commissures of the optic nerves in the choroid plexus, in a word, at the base of the brain, are, when they become agglomerated, a frequent cause of the effusion in the ventricles, from the disturbance they give rise to in the venous circulation." Notwithstanding some opposition to the views first mooted by M. Papavoine, they gradually assumed a firm position, so that M. Guersent, in 1839, wrote an able and elaborate article* on "Tuberculous Meningitis," and asserted that "this species of meningitis presents constant alterations and anatomic characters very different from those of ordinary meningitis," and that he had always described, in his clinical lectures, hydrocephalic children as phthisical patients qui mouraient par le cerveau. Without reference to further authorities, we may consider the present epoch of the subject carried on to the year 1843, in which appeared the systematic work of MM. Rillich and Barthez. By this time all competent observers preserving the diagnosis between caput succedaneum, cephalhematoma, congenital and chronic hydrocephalus, dropsy of the membranes, hydrocephaloid disorder, meningeal congestion, and inflammation of a secondary character in the course of fever, &c., and acute hydrocephalus, affirmed the latter to be connected with the scrofulous or tuberculous diathesis, to be marked by an almost specific form of inflammation of the membranes, to be denominated granular, the granulations being shown to be analogous to the tuberculous granulations of other serous membranes. Further, the granular meningitis of acute hydrocephalus was asserted to occur chiefly, if not alone, in subjects presenting tuberculous deposit in other organs of the body, that the effusion into the ventricles was of a non-essential or secondary character, and that it was even doubtful if there was such a thing which could be legitimately called idiopathic or essential acute hydrocephalus.

During the next epoch—from 1843 to our present time (1853)—while the more important laws just referred to have been substantiated, several other important points in the history of meningitis we shall find have been elucidated or discussed. In the first place, we are indebted to MM. Rillich and Barthez for showing that the diagnosis applied to the meningeal affections of children had not been sufficiently exact in its character, or at any rate, that if one or two (as we shall presently show) had carried out a deeper analysis than most observers, still that this analysis had not been carried to the extent it ought, and its terms not sufficiently and clearly laid down, or almost unattended to in practice. The defect pointed out by MM. Rillich and Barthez was the following: that no sufficient diagnosis had been drawn between granular or tuberculous meningitis, or the ordinary acute hydrocephalus and simple or non-tuberculous, non-specific inflammation of the cerebral membranes. In 1843, the authors in question drew the line strictly and rigidly between the two affections (simple and tuberculous meningitis), and

* Dictionnaire de Médecine, tom. xix. p. 393.
the following extract from the historic note appended to their
chapter will illustrate the position of the question up to their own
period. "We know of no monograph upon simple meningitis.
Nevertheless, M. Guerent, in his article, *Meningitis*, in the 'Dic-
tionary of Medicine,' has separated simple from tuberculous in-
flammation. According to him, the former is more frequent in new-
born children, whilst from two to five years of age, its frequency, in
comparison with the tuberculous form, is but as 2 to 12. M. Guerent
says nothing special as regards the symptoms it presents in infancy,
and affirms that it may pass into the state of chronic hydrocephalus.
As we have already said, the isolated facts published in later years
have not sufficient authenticity to enable us to decide whether some of
them relate to the malady we are discussing. Exception, however,
is made to the observations of M. Hache in the 'Journal Hebdo-
maire,' of M. Rufz in the 'Gazette Médicale,' and to those of
M. Durand in the 'Clinique des Enfants.' " The account published
by Albert,* of an epidemic of (as it is termed by him) acute hydro-
cephalus, seems in some respects to answer to "simple meningitis;"
but as the post-mortem lesions are not described, it is impossible to
arrive at a satisfactory judgment upon the matter. Beside the
elucidation of the above points, the question as to whether there
really is such an affection as idiopathic acute dropsy of the cerebral
ventricles, is, during the coming epoch, vigorously argued. In allud-
ing to the views of MM. Rillet and Barteix, we shall prefer seeking
our illustrations from the more advanced opinions published by the
former in 1846-7, requesting the reader to bear in mind, however,
that it was as early as 1843 that these eminent investigators first
drew attention to the subject.†

From the literature of our own country during the following period, it
is unnecessary at present to do more than refer to the views of Dr. Risdon
Bennett, published in 1843,‡ and of Dr. Thomas Smith, in 1845.§ Ac-
cording to the former, there are four varieties of the affection usually
understood under the term of acute hydrocephalus. In one set of cases
"the disease consists simply in inflammation of the brain and its mem-
branes;" in another, and "by far the largest class of cases, the disease
is essentially the result of scrofulous action, and may or may not be
attended by the signs of inflammation,"—"but that meningitis, chiefly of
the base, is a very frequent secondary lesion, and is usually of a manifestly
strumous character." Thirdly, there are cases in which "the essence of
the disease appears to consist in some alteration in the condition of the
nervous matter, probably allied to irritation;" and "there is a class of
cases distinct from the above, but closely allied to them, which may
generally be traced to some source of exhaustion," and which include
"the cases described by Dr. Hall and others, under the designation of
hydrocephaloid disease." On the other hand, Dr. Smith, being struck with

† It is necessary to bear in mind that the second edition of the Traité Clinique et Pratique,
&c., has been published since the present paper was written.
§ On the Nature, Causes, Prevention, and Treatment of Acute Hydrocephalus, or Water-
the "unsuccessful treatment of the disease as a mere routine, without hope, without encouragement, without comfort, and without consolation; meeting in consultation in such cases, merely to reflect reciprocal humiliation, and to indulge in reciprocal confessions of incompetency" (iv.), "determined to try to lay down a beacon or two, by means of which even a few lives may be saved, and much misery prevented." (p. v.) The beacons thus referred to by the author "view this malady in the light, &c. of an idiopathic nervous fever of infants, strongly allied to the febris lenta nervosa of adults."

In 1847, appeared the series of papers by M. Rilliet, 'De l'Inflammation Franche des Meninges chez les Enfants (Arachnitis de la Convexité de Parent et Martinet)."* M. Rilliet first remarks, that the denomination of acute hydrocephalus is synonymous with that of tuberculous meningitis, or "meningitis of the base," and that we may employ one term for the other. He then proceeds to point out how many have confounded together all the acute maladies of the brain in children under these two denominations; that along with M. Barthez, he was the first to distinctly separate and describe the simple from the tuberculous form of meningitis; but that, notwithstanding, since then, MM. Delcour, Bouchut, Barrier and the able Professor of Therapeutics at the Faculty of Medicine, have almost neglected to mention the former variety. The two diseases, however, differ entirely in their causes, progress, termination, and anatomic characters, as well as in regard to treatment,—in fact, they differ from each other as much as do pneumonia and phthisis. Both MM. Rilliet and Barthez believe that every meningitis developed under the influence of the tuberculous diathesis is itself tuberculous, with granulations deposited in the meshes of the pia mater, near the inflamed parts; in other words, the meningitis of tuberculous subjects and tuberculous meningitis are one and the same affection.† Both occupy the base of the brain; both consist in a thickening of the pia mater, and in an infiltration of false membranous matter or concrete pus in its meshes; both are accompanied by ventricular effusion, and often coincide with cerebral tubercles; and in both, tuberculous deposit is never wanting in some other organ. In simple meningitis, on the contrary, it is the pia mater, and sometimes the arachnoid, of the convexity or of the ventricles which are inflamed, often to considerable extent, and infiltrated with pseudo-membranous and purulent liquid deposits. The inflammation of the convexity, moreover, is only exceptionally accompanied by ventricular effusion, and does not coincide with meningeal or cerebral tubercle, or with miliary granulation in other organs, as does tuberculous meningitis,—the disease usually representing acute hydrocephalus. "These differences, which M. Barthez and myself have already‡ expressed in detail, are so decided, that if we are shown the brain of a child in which the fissure of Sylvius is agglutinated, and

* Archives Générales de Médecine, &c., tom. xii., quatrième série, p. 385.
† In a note contained in the new edition of the 'Traité Clinique et Pratique,' &c., MM. Rilliet and Barthez assert they have been misunderstood in reference to the above points. They remark—"We speak of meningitis which becomes developed under the influence of the tuberculous diathesis, and not of that which may be simply developed in tuberculous subjects, for there cannot be the least doubt that a child may be attacked with a truly inflammatory meningitis notwithstanding the presence of some tubercles." (Op. cit., vol. i, p. 99.)
‡ Traité Clinique, &c.
pseudo-membranous or concrete purulent infiltration exists at the base, whilst the arachnoid and the pia mater of the convexity are uninflamed, we do not hesitate to affirm, on this simple examination, and without further microscopic investigation, that most probably there are granulations in the meninges, that the ventricles are or have been distended by serous effusion, and that there certainly exists tuberculous deposit either in the lungs or bronchial glands, or elsewhere.” “We could affirm that the acute symptoms have been preceded by prodromata, that the outbreak was insidious, that the meningitis was announced by vomiting, constipation, and moderate cephalalgia, without acute fever; that the intelligence was intact at any rate during the first week, and that the disorder lasted from fourteen to twenty-one days.” (p. 396.) “On the other hand, on being shown the brain of a child, where the convexitics of the hemispheres are covered with purulent deposits or false arachnoidian membranes to considerable extent, we do not hesitate to affirm, without fear of being contradicted by experience, that no tuberculous deposit is to be found either in the meninges, brain, or elsewhere; that the outbreak was abrupt and violent, introduced by convulsion if the patient was very young, by vomiting, constipation, and violent headache if the child was older. That the symptoms were followed after from one to three days by formidable phrenesis, and that the course of the whole malady was very short—viz., three, four, or six days.”* Further, simple acute meningitis (ménigite franche) is very rare, in comparison with tuberculous meningitis or acute hydrocephalus. In a further essay by M. Rilliet,† it is remarked that external and internal meningitis offer no sensibly different symptoms to those of simple peripheral meningitis, and that, therefore, they had been previously included‡ under the same description. But whether the like held good when isolated inflammation of the ventricular membrane is compared with peripheral inflammation of the arachnoid and pia mater is another matter. Into the discussion of this point we need not enter, but shall simply content ourselves with making the following extract from M. Rilliet’s observations in the paper above alluded to. “The greater number of pathologists au courant with modern views, agree in admitting that the effusion met with in the disease known under the name of acute hydrocephalus by Whytt and Fothergill, is nothing but a result of tuberculous inflammation, or of tuberculization of the meninges. In other terms, they are unanimous in denying that serous effusion into the ventricles constitutes a regular primitive affection. We lay stress upon the term primitive, because secondary hydrocephalus, independent of all cerebral lesion, is far from being rare; no physician being ignorant, that during convalescence from scarlatina, in edematous children, severe cerebral complications often arise, as the result of ventricular effusion. The same thing is occasionally witnessed after measles and some other disorders.”§ In 1847, appeared the useful compendium on paediatrics, in the ‘Bib-

† De l’Inflammation limité à la Membrane Sérueuse Ventriculaire et sur sa terminaison par une Hydrocéphalie Chronique: Archives Gén. de Méd., &c., tom. xv. p. 493, 1847.
‡ Traité Clinique, et Arch. Gén., 1846.
§ See upon this point a paper by M. Rilliet, on Encephalopathia Albuminurica, in vol. xxi. of the Journal für Kinderkrankheiten (p. 69), Aug. 1853.
lothèque du Médecin Praticien,' under the direction of Dr. Fabre. In it there is certainly a chapter having for its title the old term "Acute hydrocephalus," but it commences with observing, that this term, after having occupied for ages one of the first places in infantile pathology, is now almost erased from the nosologic list. Having allotted, then, the various affections formerly included under this common title, their proper places, and given them their true designations—viz., simple meningitis, tuberculous meningitis, &c., &c., it is proper to determine whether there really exist any facts warranting the description of such a disease as hydrocephalus. Before doing so, however, it is necessary that the significance of the term be subjected to analysis. "If it be meant to imply an effusion independent of any alterations of the fluids and solids of the body, we shall probably be right in not admitting hydrocephalus, although the presence of any such presumable alterations may with difficulty be demonstrated; nay, we have perhaps reason for contesting its existence, independent of some marked disturbance past or present. But on the other hand, if by the term hydrocephalus we are to understand an effusion of serous fluid unaccompanied by actual lesions of the parietes of the containing cavity, or an effusion whose symptoms are due to the mechanical action, such effusion itself exerts on the neighbouring structures; in other words, if we bestow upon this term the same sense that we have given, and which everybody else gives, to other dropsies of the serous membranes, such as of the peritoneum, pericardium, pleura, &c., then hydrocephalus exists, and that under two phases."* The two forms described by the author are the simple and chronic, this latter being only a variety of the ordinary chronic and congenital hydrocephalus, may here be left unnoticed; with respect to the other, the simple acute or essential hydrocephalus, the conclusion is arrived at that "the cases in which an effusion of fluid has been shown to have suddenly taken place without previous or coincident inflammation, are very rare, but nevertheless such cases have occurred without doubt. . . . Hydrocephalus becomes essential when the cause which produces it limits its entire action to the production of the cerebral effusion; consequently, in our view, essential hydrocephalus must be primitive." (p. 174.) We may just remark that this essential hydrocephalus of the writers in the 'Bibliothèque' represents certain forms of the <wasser-schlag or water-stroke of Gölis and the Germans. "Acute hydrocephalus" is, therefore, described by them under the two forms of meningitis, simple and tuberculous, the latter being considered, however, to represent the disease καρτεβζυνθην, and which is in the main illustrated, of course, by the views of MM. Fabre and Constant, previously alluded to. In 1847, Dr. West† advocated opinions accordant with the advanced pathology of the continental writers, affirming that "inflammation of the brain occurs in early life under two different conditions. It now and then comes on in previously healthy children, but occurs much oftener in connexion with the tuberculous cachexia, or as the result of tuberculous deposit in the brain or its membranes. The term encephalitis may be properly used to denote the cases of simple inflammation of the brain, while we may with advantage restrict the term acute hydrocephalus to cases of cerebral inflammation in

scrofulous subjects." In the same year also* Dr. Willshire expressed himself in much the same terms, maintaining "acute hydrocephalus" to be ordinarily meningitis of a tuberculous character, but admitting that "there occur also a limited number of cases in which there are seen evidences of inflammation of the pia mater at the base, sometimes at the convex surfaces of the brain, too, in which the effusion is always concreta, but yet no distinct tuberculous matter or granulations are to be detected by the most careful observation. These cases, accompanied often by effusion into the ventricles, run the same course, present the same category of symptoms, as do the others, and occur in a like scrofulous constitution. These are cases of scrofulous meningitis." Between tuberculous or scrofulous meningitis and simple acute meningitis the distinction was also drawn. In Dublin, Dr. Valentine Duke,† in 1849, supported the doctrine that "acute hydrocephalus" is tuberculous meningitis, and preserved the separateness of the latter from the simple acute affection. But in 1850, from the same school quite opposite doctrines proceeded, as will be seen from the following analysis of Dr. Churchill's opinions.‡ The latter writer preferred denominating our present disorder by "the simple terms prefixed to his chapter," and which were these three—acute meningitis, acute arachnitis, acute hydrocephalus. The affection thus included is said to be an inflammation of the membranes of the brain, and it is maintained that between the several forms described by the author there is very little difference of symptoms and character as met with in practice. (p. 126.) The reader is cautioned against supposing he will always find the exact series of symptoms laid down by the various writers on tubercular meningitis, "for nothing can be more variable than they are," (p. 126.) and it is "better to include both [acute and tuberculous meningitis] under one name, and to describe them as two (out of many) phases of the same disease." (p. 115.) An attempt has been made to distinguish between them, but without success, except in extreme cases, but in the majority the course and symptoms are so similar, that unless we have some collateral circumstances to guide us no positive diagnosis is possible. (p. 133.)

In the period we have just glanced over there have been a few observers who, agreeing as to the spirit of the doctrine that "acute hydrocephalus" is a specific meningitis, and without denying the close relationship which exists between the scrofulous or tuberculous diathesis and the meningitis in question, yet demur to the opinion that the exact tuberculous nature of the granular deposit or exudation itself met with in the cerebral membranes is plainly determined. It has also been a matter of dispute in what relationship of cause and effect the granular deposit and the inflammatory process going on stand in towards each other, some viewing the granules as giving rise to or exciting the inflammation, while others believe the latter to cause the granular deposit. Upon these points we cannot dwell in detail, but must refer the reader to the treatises of M.M. Rilliet,

* Medical Times, July 3, 1847. See, also, Lancet, for 1853, 4.
† An Essay on the Cerebral Affections occurring most commonly in Infaney and Childhood. Dublin, 1849.
‡ The Diseases of Children. Dublin, 1850.
Beequerel, and Lebert, &c.,* closing the intricate matter before us with the following references to the lately advanced (1853) opinions of M. Bouchut, and of M. Henri Hahn (1853).

According to the author of the ‘Traité Pratique,’ &c.,† there are two forms of meningitis—viz., simple and granular. The two forms are quite different from each other, and the latter constitutes the acute hydrocephalus of Whytt and others. Granular meningitis is especially developed in children who are already a prey to the tuberculous cachexia; in these cases a latent inflammatory process is present in the membranes, a process capable of determining the formation of granulations. The latter themselves are then capable of exciting acute inflammation, upon the occurrence of which (whether from this or other causes), and its superaddition to already established lesions, the fatal disorder supervenes.

“Microscopic analysis has demonstrated in an incontestable manner, that these granulations of the serous membranes and of the pia mater are composed only of fibro-plastic tissue, and not of tuberculous matter.” (p. 235.) “I have never been fortunate enough to observe, as some respectable writers have done (Barrier, &c.), the gradual transformation of these fibro-plastic granulations from the simple minute point of whitish fibrine which is their origin up to the tubercle which is their last degree of development. The intermediate state between these two extremes is always wanting, and we are even yet ignorant as to whether the tubercles of the periphery of the brain are primitively developed in the cortical substance, and afterwards contract adhesions with the pia mater, or whether they have their birth in the latter, and afterwards involve the brain.” (p. 244.)‡ Finally, according to M. Hahn,§ the last essayist on our present subject, the greater number of cases registered in France, Germany, and England, as those of acute hydrocephalus, are represented by “tuberculous meningitis.” The latter constitutes Whytt’s disease, whose true nature nevertheless, it is remarkable, is still unrecognised by some, and which is only explainable by the confusion in which the denomination of acute hydrocephalus has involved the matter. Under this latter term essentially different diseases have been comprised, but it is as meningal inflammation, influenced by the tuberculous diathesis, that the mass of cases so denominated must be regarded. In affirming this, “it must not be concluded that this meningitis is always found in constant connexion with cerebral or meningeal tuberculisation. For although in children dying from tuberculous meningitis cerebral or meningeal tubercles are pretty frequently observed, yet they are not always so.” (p. 12.) Thus substantiating, we may remark, the views already alluded to as taught in 1847 by the author of the present paper.||

‡ A critique on MM. Bouchut and Robin’s views will be found in vol. iii. (just published) p. 336, of the Traité Clinique et Pratique, &c., of MM. Killet and Barthez.
§ De la Ménigite Tuberculeuse Étudiée au Point de Vue Clinique. Par Henri Hahn. Paris, 1852.
|| See Medical Times, 1847.
The Action of Liquor Potassae on the Urine in some Chronic Diseases.

By E. A. Parkes, M.D., Professor of Clinical Medicine in University College, London.

The influence of liquor potassae on the urine in health and in acute rheumatism having been considered in the two former papers,* I proceed to relate the experiments made to determine the effect of this remedy on the urine in certain chronic diseases. The experiments were conducted by choosing patients in whom no rapid morbid change was going on, and by determining the amount of the urinary constituents before, during, and after the administration of liquor potassae.† As the disease was nearly stationary, and as the diet and the other external circumstances remained, as far as possible, the same, it does not appear that any important source of fallacy can have interfered with the accuracy of the results.‡

The amount of the urinary constituents varies considerably from day to day, being sometimes more, and sometimes less, than the average of several days; but it would appear that in the state of health and in chronic diseases which present no rapid changes, the lessened excretion of one day is compensated by the increased excretion of the next, and the average of five or six days is the same as the average of the next five or six days. In the following experiments, therefore, after the patients had been in the hospital a short time, so as to become accustomed to the diet, the urine was examined during six or seven days; liquor potassae was then given for an equal length of time, all other medicine being, of course, avoided, and then, the potash being discontinued, the analyses were continued for another five or six days.

In the two last cases, the sulphuric acid was the only ingredient whose quantity was determined with regularity.

The liquor potassae was administered in half-drachm or one-drachm doses with water, and at times when the stomach was presumed to be freest from acidity. It has already been shown that if the potash be neutralized by the acids which are present in the stomach during digestion, it does not produce the same effects as when it is taken unneutralized into the system. In the one case a neutral salt merely passes into the circulation; in the other, the alkalinity of the blood is increased.

I have thought it advisable to give all the items of the experiments, and also to mention, when such is known, the weight and height of the patient, though I have based no calculations upon them, as it was not necessary for my present purpose.

* See Nos. 21 and 25.
† The liquor potassae was prepared according to the London Pharmacopeia, = 6.7 per cent. of pure potash.
‡ For the convenience of calculation, the urine was measured in cubic centimetres (1 cc. = \(\frac{1}{1000} \) liter), and this measure has been kept in the tables. All the other weights are English grains. The urea and chloride of sodium were determined (according to Liebig's plan) by my assistants, Mr. de Tunzelmann and Mr. Nesfield. On the accuracy of these two gentlemen I have perfect reliance. I determined myself the other ingredients—viz., the solids, by evaporation; the sulphuric and phosphoric acids by baryta, and by washing and weighing the precipitates. I preferred this plan to the method by test solutions, as being more certain—at least, in my hands. The uric acid, the creatine, creatinine, and the earthy bases, were not determined, as it was impossible to examine into every point; but the aggregate quantity of these substances can be easily ascertained by a simple calculation.
In the following observations the cases are related in the briefest possible manner, and merely for the purpose of showing the nature of the disease under observation.

Case I. Clement Hall, aged 30, height 5 feet 4 inches, weight 114 lbs. Chronic lead paralysis, the extenders of the arms being greatly, and the flexors slightly, affected. The health otherwise very good; no disease of the nervous system, and no disease of any of the thoracic or abdominal organs.

Table I.

<table>
<thead>
<tr>
<th>Date</th>
<th>Food</th>
<th>Medicine</th>
<th>Solids</th>
<th>Urea</th>
<th>Cl Na</th>
<th>SO₄</th>
<th>Ph O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 10</td>
<td>Meat 3y., bread 3 lb., potatoes 2 lbs., milk 3y., green h.</td>
<td>None</td>
<td>1175</td>
<td>602 540</td>
<td>...</td>
<td>...</td>
<td>24 727</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Lost</td>
<td>1387</td>
<td>650 674</td>
<td>428 305</td>
<td>117 754</td>
<td>30 486</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>1266</td>
<td>351 846</td>
<td>87 982</td>
<td>25 672</td>
<td>14 663</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>800</td>
<td>465 300</td>
<td>359 302</td>
<td>55 554</td>
<td>21 310</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>1900</td>
<td>579 880</td>
<td>...</td>
<td>...</td>
<td>29 059</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>1000</td>
<td>659 300</td>
<td>...</td>
<td>...</td>
<td>25 443</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>1650</td>
<td>518 792</td>
<td>409 470</td>
<td>120 432</td>
<td>28 590</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>Liq. pu. 3li</td>
<td>1512</td>
<td>679 190</td>
<td>349 132</td>
<td>116 765</td>
<td>28 863</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>1512</td>
<td>679 190</td>
<td>349 132</td>
<td>116 765</td>
<td>28 863</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>1250</td>
<td>676 066</td>
<td>415 027</td>
<td>78 890</td>
<td>30 797</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>1250</td>
<td>676 066</td>
<td>415 027</td>
<td>78 890</td>
<td>30 797</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>Lost</td>
<td>1535</td>
<td>763 505</td>
<td>35 4 147</td>
<td>120 505</td>
<td>34 794</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>1675</td>
<td>657 840</td>
<td>338 206</td>
<td>155 190</td>
<td>25 564</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>1035</td>
<td>...</td>
<td>322 155</td>
<td>111 554</td>
<td>29 283</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>1225</td>
<td>526 900</td>
<td>274 253</td>
<td>75 656</td>
<td>20 831</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>1375</td>
<td>593 725</td>
<td>329 065</td>
<td>106 150</td>
<td>23 868</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td>1900</td>
<td>739 740</td>
<td>321 152</td>
<td>176 616</td>
<td>25 338</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td>970</td>
<td>572 680</td>
<td>262 010</td>
<td>119 814</td>
<td>23 238</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td>1475</td>
<td>580 985</td>
<td>335 233</td>
<td>149 031</td>
<td>23 475</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td>1135</td>
<td>475 028</td>
<td>254 113</td>
<td>79 033</td>
<td>22 584</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>1135</td>
<td>475 028</td>
<td>254 113</td>
<td>79 033</td>
<td>22 584</td>
</tr>
<tr>
<td>July 1</td>
<td></td>
<td></td>
<td>800</td>
<td>559 860</td>
<td>321 960</td>
<td>73 130</td>
<td>27 400</td>
</tr>
</tbody>
</table>

Averages in each 24 hours.

<table>
<thead>
<tr>
<th>Solids</th>
<th>Urea</th>
<th>Cl Na</th>
<th>SO₄</th>
<th>Ph O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before liquor potass ...</td>
<td>...</td>
<td>569 693</td>
<td>...</td>
<td>346 514</td>
</tr>
<tr>
<td>During liquor potass ...</td>
<td>...</td>
<td>661 672</td>
<td>...</td>
<td>366 826</td>
</tr>
<tr>
<td>After</td>
<td>...</td>
<td>568 423</td>
<td>...</td>
<td>293 736</td>
</tr>
</tbody>
</table>

Thus this man took in each 24 hours about 8 grains of pure potash, and if we refer to the amount excreted before and during the use of the medicine, we find that there was an increase in the solids of the urine of 72 grains daily, in the urea of 20 grains, and in the sulphuric acid of 3½ grains. There was no increase, but even a slight decrease, in the phosphoric acid. The chloride of sodium was increased. The augmentation in the urea, chloride of sodium, and sulphuric acid, leaves 14 grains of solids still unaccounted for. It is to be presumed, then, that the extractives were increased.

* The phosphoric acid is excluded from the averages.
CASE II. John Flemming, aged 22, height 5 feet 6 inches, weight 117lbs. Chronic eczema of both forearms, and slightly of both thighs; duration of the disease several years.

Table II.

<table>
<thead>
<tr>
<th>Date</th>
<th>Food</th>
<th>Medicine</th>
<th>Urine of 24 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Quantity in cubic cent.</td>
<td>Solids</td>
</tr>
<tr>
<td>May 3</td>
<td>Bread 1/l, meat, potatoes &c., gruel 1/l, milk 3 1/4</td>
<td>None</td>
<td>550</td>
</tr>
<tr>
<td>" 4</td>
<td>Same, but no meat</td>
<td></td>
<td>1060</td>
</tr>
<tr>
<td>" 5</td>
<td>Same, with meat</td>
<td></td>
<td>650</td>
</tr>
<tr>
<td>" 6</td>
<td>Same, with meat</td>
<td></td>
<td>1300</td>
</tr>
<tr>
<td>" 7</td>
<td>Same, with meat</td>
<td></td>
<td>1300</td>
</tr>
<tr>
<td>" 8</td>
<td>Same, with meat</td>
<td></td>
<td>1075</td>
</tr>
<tr>
<td>" 9</td>
<td>Same, with meat</td>
<td></td>
<td>1775</td>
</tr>
<tr>
<td>" 10</td>
<td>Same, with meat</td>
<td></td>
<td>860</td>
</tr>
<tr>
<td>" 11</td>
<td>Same, with meat</td>
<td></td>
<td>1075</td>
</tr>
<tr>
<td>" 12</td>
<td>Same, with meat</td>
<td></td>
<td>1475</td>
</tr>
<tr>
<td>" 13</td>
<td>Same, with meat</td>
<td></td>
<td>1350</td>
</tr>
<tr>
<td>" 14</td>
<td>Same, with meat</td>
<td></td>
<td>1090</td>
</tr>
<tr>
<td>" 15</td>
<td>Same, with meat</td>
<td></td>
<td>775</td>
</tr>
<tr>
<td>" 16</td>
<td>Same, with meat</td>
<td></td>
<td>1270</td>
</tr>
<tr>
<td>" 17</td>
<td>Same, with meat</td>
<td></td>
<td>1270</td>
</tr>
<tr>
<td>" 18</td>
<td>Same, with meat</td>
<td></td>
<td>1060</td>
</tr>
<tr>
<td>" 19</td>
<td>Same, with meat</td>
<td></td>
<td>960</td>
</tr>
<tr>
<td>" 20</td>
<td>Same, with meat</td>
<td></td>
<td>870</td>
</tr>
<tr>
<td>" 21</td>
<td>Same, with meat</td>
<td></td>
<td>775</td>
</tr>
<tr>
<td>" 22</td>
<td>Same, with meat</td>
<td></td>
<td>697</td>
</tr>
<tr>
<td>" 23</td>
<td>Same, with meat</td>
<td></td>
<td>697</td>
</tr>
<tr>
<td>" 24</td>
<td>Same, with meat</td>
<td></td>
<td>698</td>
</tr>
<tr>
<td>June 1</td>
<td>Same, with meat</td>
<td></td>
<td>1150</td>
</tr>
<tr>
<td>" 2</td>
<td>Same, with meat</td>
<td></td>
<td>960</td>
</tr>
</tbody>
</table>

Averages in each 24 hours.

<table>
<thead>
<tr>
<th></th>
<th>Solids</th>
<th>Urea</th>
<th>Cl Na</th>
<th>SO₄</th>
<th>PhO₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before liquor potassae</td>
<td>600-151</td>
<td>371-599</td>
<td>95-793</td>
<td>29-215</td>
<td>10-948</td>
</tr>
<tr>
<td>During "</td>
<td>689-649</td>
<td>454-503</td>
<td>106-123</td>
<td>33-475</td>
<td>12-367</td>
</tr>
<tr>
<td>After "</td>
<td>527-249</td>
<td>372-857</td>
<td>82-375</td>
<td>29-011</td>
<td>10-914</td>
</tr>
</tbody>
</table>

This patient took in every 24 hours at least 8 grains of pure potash, except on three days, when he took 12 grains. The solids were augmented by 30 grains, the urea by 80 grains; the sulphuric acid by 4 grains, and the phosphoric acid by 5. The chloride of sodium was increased. After treatment the amount returned to the average before treatment, except in the case of the solids, which were diminished. That the increase of the urea was apparently more than that of the solids, was probably caused by the examinations of the two substances not being always made on the same day. As the patient did not take meat regularly every day, a calculation has been made to see if this change of diet at all affected the results, but it is found not to have done so.
The Action of Liquor Potassee.

CASE III. Thomas Martin, aged 40, weight 112lbs. Chronic phthisis; both lungs affected to a considerable extent, chiefly (as proved by post mortem examination some months subsequently) by grey infiltrated tubercle.

TABLE III.

<table>
<thead>
<tr>
<th>Date</th>
<th>Food</th>
<th>Medicine</th>
<th>Urine of 24 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Solids</td>
</tr>
<tr>
<td>Oct. 27</td>
<td>(Meat flee, bread</td>
<td>Ol. morrh. 3iss.</td>
<td>2000</td>
</tr>
<tr>
<td>„ 28</td>
<td>“</td>
<td>“</td>
<td>1460</td>
</tr>
<tr>
<td>„ 29</td>
<td>“</td>
<td>“</td>
<td>2100</td>
</tr>
<tr>
<td>„ 30</td>
<td>“</td>
<td>“</td>
<td>1735</td>
</tr>
<tr>
<td>„ 31</td>
<td>“</td>
<td>“</td>
<td>1785</td>
</tr>
<tr>
<td>Nov. 1</td>
<td>“</td>
<td>“</td>
<td>1790</td>
</tr>
<tr>
<td>„ 2</td>
<td>“</td>
<td>(Liq. pot. 3iss.)</td>
<td>2135</td>
</tr>
<tr>
<td>„ 3</td>
<td>“</td>
<td>(no ol. morrh.)</td>
<td>2225</td>
</tr>
<tr>
<td>„ 4</td>
<td>“</td>
<td>“</td>
<td>2250</td>
</tr>
<tr>
<td>„ 5</td>
<td>“</td>
<td>“</td>
<td>2300</td>
</tr>
<tr>
<td>„ 6</td>
<td>“</td>
<td>“</td>
<td>2400</td>
</tr>
<tr>
<td>„ 7</td>
<td>“</td>
<td>None.</td>
<td>1700</td>
</tr>
<tr>
<td>„ 8</td>
<td>“</td>
<td>“</td>
<td>1475</td>
</tr>
<tr>
<td>„ 9</td>
<td>“</td>
<td>“</td>
<td>950</td>
</tr>
<tr>
<td>„ 10</td>
<td>“</td>
<td>“</td>
<td>2900</td>
</tr>
<tr>
<td>„ 11</td>
<td>“</td>
<td>“</td>
<td>340</td>
</tr>
<tr>
<td>„ 12</td>
<td>“</td>
<td>Ol. morrh. 3iss.</td>
<td>1100</td>
</tr>
<tr>
<td>„ 13</td>
<td>“</td>
<td>“</td>
<td>1530</td>
</tr>
<tr>
<td>„ 14</td>
<td>“</td>
<td>“</td>
<td>1040</td>
</tr>
<tr>
<td>„ 15</td>
<td>“</td>
<td>“</td>
<td>1450</td>
</tr>
<tr>
<td>„ 16</td>
<td>“</td>
<td>“</td>
<td>820</td>
</tr>
</tbody>
</table>

Averages in each 24 hours.

<table>
<thead>
<tr>
<th></th>
<th>Solids</th>
<th>Urea</th>
<th>S O₃ †</th>
<th>Ph O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before liquor potasse, and during cod-liver oil</td>
<td>689.180</td>
<td>396.770</td>
<td>18.928</td>
<td>8.912</td>
</tr>
<tr>
<td>During liquor potasse</td>
<td>751.725</td>
<td>408.758</td>
<td>20.873</td>
<td>14.598</td>
</tr>
<tr>
<td>After</td>
<td>643.910</td>
<td>271.533</td>
<td>16.960</td>
<td>9.759</td>
</tr>
</tbody>
</table>

This patient took 6 grains of pure potash in each 24 hours. During this time the solids were augmented by 172.565 grains, the urea by 40.018, the sulphuric acid by 2 grains, and the phosphoric acid by 4.6 grains. The effect of the withdrawal of the cod-liver oil may have had some influence, as it appears from Bischoff's experiments that fat limits the metamorphosis of tissue, and therefore its withdrawal would necessarily lead to an increase in the urinary solids, on account of the augmented decomposition which would then go on. The extraordinary augmentation of the urinary solids may then have been partly due to this cause. It will be observed that, as the urea was not increased to anything like the same amount as the solids, there must have been a great excretion either of the chloride of sodium or of extractives; unfortunately, the amount of the chloride of sodium was not determined.

* This patient had meat four days in the week, and a pint of soup the other days.
† On the 26th and 27th there was only a trace of chloride of sodium in the urine.
‡ Much vomiting. This observation is omitted from the averages.
§ Ibid.

28-XIV.
CASE IV. James Ely, aged 14. Chronic peritonitis; fluid in the peritoneal cavity. The cause of the peritonitis could not be determined; there was no evidence of its being tuberculous; there was no lung tuberculosis, and no disease of the liver or other organs. The pyrexia was very slight, and the general health apparently little affected.

Table IV.

<table>
<thead>
<tr>
<th>Date</th>
<th>Food</th>
<th>Medicine</th>
<th>Urine of 24 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>hyd. c. crbs., and pulv.</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>Bread, bj, milk, oil.</td>
<td></td>
<td>640</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>4</td>
<td>540</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>6</td>
<td>1450</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>7</td>
<td>700</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>8</td>
<td>1040</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>9</td>
<td>700</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>11</td>
<td>1075</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>12</td>
<td>540</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>13</td>
<td>725</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>14</td>
<td>467</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>15</td>
<td>540</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>16</td>
<td>794</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>17</td>
<td>815</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>18</td>
<td>815</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>19</td>
<td>389.702</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>20</td>
<td>1370</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>21</td>
<td>750</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>22</td>
<td>705</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>23</td>
<td>1080</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>24</td>
<td>880</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>25</td>
<td>689</td>
</tr>
</tbody>
</table>

Averages in each 24 hours.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>395.909</td>
<td>255.123</td>
<td>40.845</td>
<td>17.964</td>
<td>10.159</td>
</tr>
<tr>
<td>During</td>
<td>476.397</td>
<td>309.643</td>
<td>70.565</td>
<td>25.635</td>
<td>10.838</td>
</tr>
</tbody>
</table>

The two last observations have been disregarded, as the time was too short for a fair comparison; their average is above that of either of the previous periods in the case of all the ingredients, but it is probable that had the examination been carried on for 4 or 5 days more, the lessened excretion of these days would have reduced the high average of the two days in question.

This boy took in each 24 hours about 8 grains of pure potash (or perhaps a grain more); the solids were increased by 80 grains, the urea by 54, the sulphuric acid by 7½; the phosphoric acid was unaltered. There was an increase in the chloride of sodium. The increase in the urea, chloride of sodium, and sulphuric acid, accounts for all the increase in the solids, so that the extractives were, in this case, unaffected.

* Ascites disappearing.
CASE V. John Synin, aged 45. Chronic pleurisy of many months' duration. It seemed probable that the lower part of the left pleura was covered with thick, tolerably solid exudation, and that the breathing power was diminished from this cause. The chief symptoms were dry cough, dyspnoea on exertion, abolition of vocal fremitus over lower lobe of left lung, dull percussion note, and very feeble vesicular respiration, with slight crackling and grating friction in same position, but without bronchial respiration; voice slightly bronchophonie; no dilatation nor contraction of side; expansion movements lessened; heart not displaced. Supplementary respiration in the right lung.

Table V.

<table>
<thead>
<tr>
<th>Date</th>
<th>Food,</th>
<th>Medicine,</th>
<th>Sulphuric acid in each 24 hours,</th>
<th>Remarks,</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 5</td>
<td>{ Bread subs, milk 3 tiv. }</td>
<td>{ Blue pill, antimony, and opium. }</td>
<td>30'250</td>
<td>Very slight ptysalism.</td>
</tr>
<tr>
<td></td>
<td>{ barley-water OJ. }</td>
<td></td>
<td>30'818</td>
<td>Urine lost.</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>25'332</td>
<td>Urine lost.</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td>24'875</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td>32'012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td>31'304</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>23'589</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td></td>
<td>32'440</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>{ Liq. potassae 3lij, }</td>
<td>26'887</td>
<td>Copious vomiting before taking the medicine.</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>{ pot. iodidi grs. xv. }</td>
<td>26'750</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
<td>28'590</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>32'989</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>32'440</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td>26'887</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
<td>37'25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td></td>
<td>30'144</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td>40'042</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td></td>
<td>41'296</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>{ Same diet, fish added. }</td>
<td>35'187</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>{ Liq. potassae 3lij. }</td>
<td>47'676</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td></td>
<td>42'676</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td></td>
<td>39'688</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td></td>
<td>40'042</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td></td>
<td>44'138</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td></td>
<td>42'953</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>{ None. }</td>
<td>25'155</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>30'742</td>
<td></td>
</tr>
<tr>
<td>July 1</td>
<td>1</td>
<td></td>
<td>26'254</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>27'183</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>30'742</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>30'742</td>
<td></td>
</tr>
</tbody>
</table>

Averages in each 24 hours.

<table>
<thead>
<tr>
<th></th>
<th>S02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before liquor potassae, and during slight ptysalism, five days</td>
<td>28'817</td>
</tr>
<tr>
<td>During liquor potassae and iodide of potassium, six days</td>
<td>30'943</td>
</tr>
<tr>
<td>During liquor potassae alone, nine days</td>
<td>30'742</td>
</tr>
<tr>
<td>After liquor potassae, six days</td>
<td>30'355</td>
</tr>
</tbody>
</table>

During the administration of 8 grains daily of pure potash, and of 15 grains of iodide of potassium, the average excretion of sulphuric acid was increased by one grain daily; the iodide of potassium being then discontinued, and the potash increased to 12 grains, the average excretion of the sulphuric acid was increased by nearly 11 grains. It fell almost to the former average when the potash was discontinued. None of the other urinary ingredients were determined. In this case the diet was
altered by the addition of fish during the use of the potash, and after the cessation of the remedy. It is evident that this change had no effect on the excretion of sulphuric acid.

Case VI. James Holton, aged 16. This was a complicated chronic case; there was enlargement with tenderness of the liver, with slight jaundice, without deficiency of bile in the stools; the spleen was not enlarged; the alimentary canal was healthy; the urine was not albuminous; it contained bile, and deposited at first copious red lithates. There was a little dry bronchitis. There was no fluid in the pleura. The following were the cardiac signs. Bulging in cardiac region; heart's impulse neither seen nor felt on first admission; precordial dulness increased upwards to the first left cartilage, and transversely to the right of the sternum; no valvular murmurs; after a few days slight unequivocal friction at the third left cartilage, and at the adjoining part of the sternum. During the patient's stay in the hospital (more than a month) there was a very slight diminution in the amount of precordial dulness, but no increase of friction. It was supposed that the bulging and extended precordial dulness were attributable to fluid in the pericardium, and from the friction at the base it was presumed that the fluid was the result of inflammatory action. The patient had not, and never had had, any rheumatic symptoms; there was no evidence of renal disease; there had been no previous scarlatina, variola, measles, typhus, or typhoid fever, or any specific disease which could explain the pericarditis.

Table VI.

<table>
<thead>
<tr>
<th>Date</th>
<th>Food</th>
<th>Medicine</th>
<th>Sulphuric acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 15</td>
<td>{ Bread buns, milk 3½p,</td>
<td>None</td>
<td>24.960</td>
</tr>
<tr>
<td></td>
<td>barley-water 0½j.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Averages in each 24 hours.

<table>
<thead>
<tr>
<th></th>
<th>80₉₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before liquor potassae</td>
<td>35.36₉</td>
</tr>
<tr>
<td>During</td>
<td>37.01₉</td>
</tr>
<tr>
<td>After</td>
<td>27.35₉</td>
</tr>
</tbody>
</table>

Eight grains of potash, or perhaps a little more, being taken daily, the excretion of sulphuric acid was increased by nearly 12 grains. The other ingredients were not determined.

The mode of conducting the inquiry, and the results obtained, being apparent from the tables, it seems unnecessary to occupy space by an ex-
tended analysis of the observations. With respect to the method employed, it is presumed that the observations were carried on during a sufficient length of time to neutralize all the chances of error which might occur from the variability of the conditions which are usually supposed to influence the metamorphosis of tissue, and the composition of the urine, such as changes in the amount and kind of food, and of exercise, and differences in the condition of the nervous system.

1. The effect of liquor potasse on the water of the urine cannot be judged of from these cases, as the whole quantity of fluid drunk was not known.

2. As it appears that in health the whole of the potash taken as medicine escapes with the urine, it is to be presumed that it did so also in these cases of chronic disease, in which there was no purging or vomiting, or other condition which tends to cause its passage out of the system by some other channel. As in health, so also in these cases, the potash always caused an increased formation and excretion of sulphuric acid. In three of the cases the increase in the sulphuric acid was enough to furnish an acid for all the potash. In two cases the sulphuric acid was not augmented to such an extent, and in these cases the phosphoric acid was found to be increased to about the proportion which would be required by the alkali. In the other case neither the sulphuric acid nor the phosphoric acid was increased in proportion sufficient to neutralize the increased amount of alkali introduced into the system, and some of the potash either did not appear in the urine (which is improbable), or was in combination with an undetermined acid.

3. In all the cases (3) in which the amount of the chloride of sodium was determined, it was found to be increased during the use of the potash. This was an unexpected result, as observations in rheumatic fever had led to the belief that its excretion is not affected by liquor potasse. But as the urine is not the sole channel of exit of the chloride of sodium, and as the amount of this substance in the urine varies so remarkably, it may be advisable to put out of view the effect of medicines upon it, until its physiological variations are better understood.

4. The solids of the urine as a whole, and the urea in particular, were increased in every case in which they were examined, and, like the sulphuric and the phosphoric acids, their proportion fell to the former standard (or even below it) when the potash was discontinued. This appears to be similar to the effect in rheumatic fever, but it is partly at variance with the observations on the healthy urine, for in this case the solids were found diminished in two cases out of four. The observations on the healthy urine are not, however, comparable with those now made, as the urine of the whole twenty-four hours was not examined, but only the urine passed immediately after the potash had been taken.

If the observations made on the urine of health, of rheumatic fever, and of these chronic diseases, be sufficient to prove that liquor potasse causes an increase in the amount of sulphuric acid, and occasionally in that of the phosphoric acid, it may be questioned whether the four observations now given are sufficient to satisfy the mind with equal certainty that the solids and the urea are also increased by the use of this remedy. But as a similar increase in the organic solids was noticed in acute rheu-
matism, and as the result in the four chronic cases was constant, it is with
confidence assumed that renewed and independent observations will con-
firm the fact.

5. It appears that the inference drawn from the action of the remedy
in health—as to the extractives being increased—held good for one of
these cases. In one (a boy), the extractives were not increased; in the
rest, their amount was uncertain.

6. The effect on the acidity of the urine (as determined by neutralizing
with a solution of soda) was examined in three cases, with the following
results:

The free acidity of the urine was equal in any 24 hours to the following amount of
crystallized oxalic acid.

<table>
<thead>
<tr>
<th>Case</th>
<th>Before Liquor Potassæ.</th>
<th>During Liquor Potassæ.</th>
<th>After Liquor Potassæ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>62'779 grs.*</td>
<td>56'446 grs.†</td>
<td>56'640 grs.‡</td>
</tr>
<tr>
<td>3</td>
<td>32'959§</td>
<td>28'624§</td>
<td>22'267§</td>
</tr>
<tr>
<td>4</td>
<td>13'024*</td>
<td>29'153</td>
<td>32'964¶</td>
</tr>
</tbody>
</table>

For the exact amount of liquor potassæ taken in these cases I refer to
the tables.

It thus appears that the acidity of the urine (which in these cases was
evidently quite unconnected with the amounts of phosphoric or sulphuric
acids) is scarcely affected by moderate doses of liquor potassæ. In fact,
liquor potassæ introduced into a system not deficient in alkali does not
take an acid from some other base, but generates for itself as much acid
as suffices to neutralize it. It is, therefore, of no use to give liquor
potassæ to diminish the acidity of the urine; the carbonates, or the salts
which form carbonates, must be employed for this purpose; but even
then, if the urine be examined after the immediate alkaline effect of the
salt has passed off, its acidity will be found sometimes excessively augmented.

7. An examination was made to see if liquor potassæ caused the
appearance of either nitrous or nitric acid in the urine: Price’s and the
sulphate of iron test were employed, but the results were negative.

It may then be foretold of liquor potassæ, that if taken unneutralized
into the blood (in cases in which no violent disturbance is going on in
the body), it will cause an increased formation of sulphuric acid in all
cases, of phosphoric acid in a minority, and of some other acid (probably
an organic) now and then. It will increase also the organic constituents
of the urine, especially the urea. Its main effect is, then, to hasten the
metamorphosis of some of the albuminous structures of the body, but it
may also act on the saccharine and fatty constituents of the body, though
no evidence of this is given by the examination of the urine. Its utility
in disease is evidently connected with its destructive and eliminating
powers. Whether it is more powerful than other alkaline medicines in
hastening the metamorphosis of tissue, can only be told by future expe-
iment.

* There was only a single observation in each of these cases.
† Average of eleven days.
‡ Average of seven days.
§ Average of five days.
¶ Average of five days.
†† Average of two days.
ART V.

Pathological Observations on the Bodies of known Drunkards. Part II.

By Francis Oston, M.D., Aberdeen.

In a previous article,* the attempt was made to ascertain the injurious effects, of a chronic kind, producible by alcoholic stimuli in excess, on the organs and tissues of the human body, as deduced from the inspection of the cavities after death in 73 individuals known to have been of intemperate habits, and who had all perished suddenly, while in apparent health and vigour, from the effects of accident, suicide, or homicide.

In the present communication, it has been proposed to classify and arrange the results of the inspection of the bodies of 44 additional persons of the same class and habits, who had also perished suddenly, while apparently in ordinary health, but whose death was more directly traceable to the abuse of such stimuli. All of these were known to have partaken of spirits (whisky) in excess immediately prior to their being found dead, or to have been drinking freely for days or weeks previously.

The bodies were examined while fresh, the inspections having commenced, on an average, 25 (24·43) hours after death. Of these, 28 were males, and the remaining 16 were females. The average ages of the former was 50·7; that of the latter, 45·87 years. Four of the males and two of the females were under 35 years of age.

The subcutaneous adipose tissue was abundantly developed in 3 of the males and 7 of the females; the average ages of the former being 53·3, that of the latter 44·7 years. This tissue was deficient in 6 of the females and 10 of the males, averaging respectively 43·6 and 56·8 years of age.

The voluntary muscles were highly developed in 7 of the males, averaging 49·8 years, and much attenuated in 2 of the males and in 3 of the females, averaging together 58·2 years of age. In 1 male, aged 82, the muscles, twenty hours after death, were seen to be dark-red, soft and flabby, and unusually lacerable.

The mass of the blood in 5 of the males was unusually fluid. In 1 of these cases, vibices and spots of purpura were noticed on the surface of the body.

In 1 case the eyelids, and in 1 the legs, were oedematous. In 1 instance the trunk and lower limbs were anasarous.

Two of the males presented chronic ulcers on the lower extremities.

One male had an old dislocation backwards and upwards of the hip-joint. One male had a double hydrocele.

I. ABNORMAL APPEARANCES IN THE HEAD.

1. **Craniun**, unusually thin in 2.—1 male, 1 female; averaging 46 years. unusually thick in 12.—6 males, 6 females; averaging 47·25 years. eburnated in 1 male.

melanotic deposit in the diploe of the, in 1 male. frontal sinuses of the, enlarged and containing pus, in 1 male.

2. **Dura mater**, adherent to the calvarium in 5 cases. partial adhesions between the, and the surface of the brain, in 2 cases. highly injected in 4 cases.

3. **Arachnoid**, thickened in 34 cases. adherent to the dura mater in 2 cases.

serum under the, over the cerebral hemispheres in 36 cases
(coincidently with arachnoid thickening in 34).

blood, in a thin layer, under the, in 1 case.

serum under the, at the base of the skull, in 13 cases.
betwixt the, and dura mater, in 1 case.

within the ventricles in 14 cases.

4. *Pia mater* minutely injected in 12 cases.
(coincidently with ventricular effusion in 6, with effusion at the base
of the skull in 8.)

5. *Brain*, hypertrophied in 2 cases.

indurated in 13;—highly in 5, partially in 2; coincidently with sub-
arachnoid serum in 9, with abundant serum in the ventricles in
2, with serum at the base of the brain in 2, with atrophy of the
septum lucidum in 1, with gelatinous effusion on the surface of the
hemispheres in 1, with cartilaginous thickening of the lining of the
lateral ventricles in 1.
atrophied in 1 case.

softened in 17 (average ages 49 years): generally in 11; in the centre
only in 6.
apoplectic in 1 (blood clots in corpus striatum and thal. nerv. opt.)

indurated in 2 (coincidently with indurated cerebrum).

7. *Choroid plexus*, vesicles in the, in 7 cases (average ages 46 years).

8. *Coronarium*, hypertrophied (with serous cysts in the interior) in 2 cases.

9. *Cerebral arteries*, fatty degeneration of the coats of the, in 1 case.
Abnormal appearances within the cranium, in all, in 43 cases, or in 97-7 per
cent. of the whole.

II. ABNORMAL APPEARANCES WITHIN THE CHEST.

1. *Pleural cavities*, serous effusions into the, in 4 cases.

2. *Lungs*, adhesions of the, to the chest, in 24 cases (both lungs adherent in 12,
the right lung in 4, the left lung in 8).

emphysematous in 17 cases (in 12 both lungs affected).
tubercular cavity in one of the, in 1 case (the right).

blood clots in one of the, in 2 cases (the left lung in both).

hepatizations of portions of the, in 11 cases (both lungs affected
in 4).

bronchitic, in 2 cases.
atrophy of one of the (the left), in 2 cases.
softening of one of the (the left), in 1 case.

melanosis of the, in 2 cases (in 1 in minute scattered patches, in 1
tumours of the size of a horsebean).

Abnormal appearances in the respiratory organs, in all, in 33 cases, or in 75
per cent. of the whole.

Simultaneous abnormal appearances in the head and respiratory organs in 32
cases.

3. *Mediastinum* loaded with fat in 2 cases.

4. *Pericardium* adherent to the heart in 2 cases.

copious effusion of serum into the, in 2 (in 1 purulent, with
flakes of lymph).

5. *Heart*, patch of lymph on the left ventricle of the, in 1 case.

loaded with fat in 9 cases (coincidently with abundant, in 3, and with
deficient subcutaneous fat, in 2).

fatty degeneration of the (partial) in 1 case.
general enlargement (hypertrophy) of the, in 12 cases (in 7 coinci-
dently with abundant fat on its surface).
hypertrophy of the left ventricle of the, in 5 cases (in 2 hypertrophy
concentric).
Pathological Observations on the Bodies of Drunkards.

1854.]

dilatation and attenuation of the right, in 14 cases.
tricuspid valve of the, affected in 4 cases (thinned and looped in 2,
fringed with warty vegetations in 1, cartilaginous in 1).
mitral valve of the, affected in 7 cases (fringed with warty vegetations
in 1, ossified in 2, cartilaginous in 2, cretaceous in 1, patent
in 1).
aortic valves of the, ossified in 3 cases.
pale and flabby in 9 cases.

6. Aorta, dilatation of the ascending, in 2 cases.
bony plates in the ascending, in 2 cases.
bony plates in the abdominal, in 1 case.

7. Pulmonary artery, dilatation of the, in 1 case.
Abnormal appearances in the pericardium, heart, aorta, or pulmonary artery, in
all, in 26 cases, or in 59 per cent. of the whole.
Abnormal appearances within the chest, in all, in 38 cases, or in 86·3 per cent.
of the whole.

III. ABNORMAL APPEARANCES WITHIN THE ABDOMEN.

1. Omentum loaded with fat in 4 cases (in 1 reaching to the pubis, in all coinci-
dently with abundant subcutaneous fat, in 1 with abundant fat
about the heart).

2. Stomach unusually small (atrophied) in 7 cases.
 highly congested in 6 cases (interior reddening uniformly on expo-
 sure to air).
 melanotic spots on the interior of the, in 2 cases.
 false melanosis of the, in 12 cases.
 inner membrane of the, softened, in 2 cases.
 cartilaginous thickening of the pyloric extremity of the, in 1 case.
 hour-glass contraction of the, in 4 cases.
 hypertrophied, in 2 cases.
Abnormal appearances in the stomach, in all, in 24 cases,* or in 54·5 per cent.
of the whole.

3. Intestines, unusual contraction of the, in 3 cases (in 2 in the larger, in 1 in
 the smaller intestines).
 displacement of the (serotal hernia), in 1 case.
 softening of the mucous coat of the, in 2 cases (in 1 general, in 1
 limited to the duodenum).
 atrophy of the, in 1 case (the colon thinned and translucent).
 hypertrophy of the duodenal portion of the, in 1 case.
 adhesions between the folds of the (at the sigmoid flexure of the
 colon), in 1 case.
 lipoma of the duodenal portion of the, in 1 case.
Abnormal appearances in the intestines, in all, in 8 cases, or in 18·18 per cent.
of the whole.

4. Liver, general enlargement (hypertrophy) of the, in 19 cases (with adventi-
titious lobes in 1).
 partial enlargement of the, in 2 cases (left equalling the right lobe).
 cirrhosed, in 1 case.
 nutmeg, in 9 cases (in 6 granular, in 3 unusually firm).
 granular, in 10 cases (with great enlargement in 8, with fatty patches
 in 3).
 fatty degeneration of the, in 20 cases (in 5 extensive, in 15 partial).
 softened, in 1 case.
 adherent to the peritoneum, in 1 case.
 anaemic, in 8 cases.
 unusually congested, in 1 case.

* In one additional case the coats of the stomach at the great cul-de-sac had been acted on
by the gastric juice.
Abnormal appearances in the liver, in all, in 36 cases, or in 81.8 per cent. of
the whole.
5. Spleen indurated (hepatized), in 5 cases.
 hypertrophied, in 7 cases.
 softened, in 7 cases.
 capsule of the, thickened and cartilaginous, in 1 case.
Abnormal appearances in the spleen, in all, in 18 cases, or in 40.9 per cent. of
the whole.
6. Kidneys, extensive fatty degeneration of the, in 6 cases (surfaces granular
in 3, in 3 coincidently with fatty liver, in 2 with granular liver,
in 2 with abundant fat about the heart).
 hyperemia of the, in 9 cases (coincidently with nutmeg liver in 3,
 with granular liver in 3, with fatty liver in 3, with albuminous
 urine in 1).
 hypertrophy (enlargement) of the, in 14 cases (in 2 confined to the
 right kidney, in 2 kidneys lobulated, in 2 cortices pale and atteinuated,
in 1 tubuli obliterated, in 3 extensive fatty degeneration,
in 4 marked hyperemia, in 3 substance softened, in 2 atrophy of
the left kidney, in 2 albuminous urine. In 9 coincidently with
hypertrophied liver, in 6 with nutmeg liver, in 6 with granular
liver, in 5 with fatty liver).
 general atrophy of the 3 cases (both kidneys in 1, right kidney in
 1, left kidney in 1).
 partial atrophy of the, in 6 cases (tubuli wasted in 2, cortices in 4).
 partial fatty degeneration of the, in 5 cases (tubuli wasted in 1,
cortices attenuated in 1, surfaces granular in 1, urine albuminous
 in 2, coincidently with fatty liver in 3).
Abnormal appearances in the kidneys, in all, in 28 cases, or in 63.6 per cent. of
the whole.
7. Uterus and its appendages:
 Steatomatous tumour in the uterine wall, in 1 case.
 Serous cysts in the ovaries, in 5 cases (in both in 3, in the right in 1, and
 in the left in 1).
Abnormal appearances in the female generative organs, in all, in 5 cases, or in
31.2 per cent. of the sex.
8. Peritoneum studded with minute tubercles, in 1 case.
9. Abdominal cavity, serum in the, in 2 cases.
Abnormal appearances within the abdomen, in all, in 41 cases, or in 93.1 per
cent. of the whole.
Simultaneous abnormal appearances in the head, chest, and abdomen, in 35
cases, or in 79.5 per cent. of the whole.
Simultaneous abnormal appearances in the head and chest, in 37 cases, or in 84
per cent. of the whole.
Simultaneous abnormal appearances in the chest and abdomen, in 36 cases, or
in 81.8 per cent. of the whole.
Simultaneous abnormal appearances in the heart, pericardium, aorta, and pulmona
y artery, and in the organs of respiration, in all, in 21 cases, or in 47.7
per cent. of the whole.
Simultaneous abnormal appearances in the heart, lungs, liver, and kidneys, in
all, in 11 cases, or in 25 per cent. of the whole.
Simultaneous abnormal appearances in the heart, liver, and kidneys, in all, in
14 cases, or in 31.8 per cent. of the whole.
Simultaneous abnormal appearances in the liver and kidneys, in all, in 25 cases,
or in 56.8 per cent. of the whole.
Simultaneous abnormal appearances within the head and in the organs of cir
culation (pericardium, heart, pulmonary artery, and aorta), in all, in 25 cases,
or in 56.8 per cent. of the whole.
Entire absence of morbid appearances in none of the cases.
PART FOURTH.

Chronicle of Medical Science.*

ANNALS OF MICROLOGY.

BY ROBERT D. LYONS, M.B., T.C.D., M.R.I.A.
Honorary Professor of Anatomy to the Royal Dublin Society, &c. &c.

[Second Year.]

PART II.—PATHOLOGICAL MICROLOGY.

BLOOD AND BLOODVESSELS.

Blood Cells.—The relation of the white to the red corpuscles, estimated heretofore as 1:8 or 1:10, is, according to more recent observations of Donders and Moeschott, much below this; they estimate it at 1:373; their results are based on the examination of blood from seven individuals at different periods of life. They found the proportion to be, in the ages between 2½ and 12 years, 1:226; 30 to 50 years, 1:346; old men, 60 to 80, 1:381. In females, after menstruation, the numbers were as 1:247; females not menstruated, 1:405; in pregnant women, 1:281. The colourless corpuscles increase after food, and are diminished by fasting. Food rich in albumen increases the quantity of the colourless cells.

* We regret to have to omit the Surgical Report from this number, owing to the indisposition of the reporter. During the months of June, July, and August, we received the undermentioned foreign journals, from which the Reports are chiefly compiled, as it is presumed that the British journals have been already in the hands of our readers.

GERMAN.
5. Zeitschrift (Henke's) für die Staatsarzneim. 1854, Heft 2.
9. Schmidt's Jahrbücher. 1854, Nos. 6, 7, 8.

FRENCH.

AMERICAN.
15. American Journal of the Medical Sciences. April, July.

EAST INDIAN.
17. Indian Annals. No. 2, April.

SPANISH.
It is further stated, that during the periods of menstruation, and also during pregnancy, the number of the white corpuscles increases.

Blood Crystallization.—Bezlin† states, that previous to the publication of Funke and Kolliker's observations, Donders had found crystals in the intestinal canal of leeches which had drawn blood a few days previously. The author has repeated these observations, and finds that in from six to seven days crystals commence to form in the blood contained in the leech, but may be best seen after five weeks. These crystals (according to Bezlin) are not soluble in alcohol or ether; they are dissolved by a concentrated solution of soda, giving an orange-red colour, which sometimes passes into green. They are soluble in ammonia, which produces a peach-blossom colour. By nitric acid the colour is changed to a yellow brown, then to a black, brown black, chestnut brown, and lastly, to a murky dark green. From these and other reactions, he concludes that the crystals consist neither of albumen nor fibrine (Kunde has found them in defibrinated blood) but of haematin.

New Formation of Bloodvessels.—Mayer‡ (Dr. Jos.) has investigated the formation of bloodvessels in plastic exudations in the serous membranes, and in wounds of the skin. The small red points and strie in fibrinous exudations, considered by Hunter as the first stage of the formation of new bloodvessels, he believes, in the majority of cases, to be nothing more than blood-corpuscles which have escaped with the exudation, and which are destined to undergo the usual metamorphosis of extravasated blood. He combats Vogel's views that the new formation of capillaries in exudations originates in branched cells which contain blood, and subsequently unite to form a network. It would appear, however, that the points and strie in other cases, especially in older exudations, actually present small vascular networks. From the results of observations and experiments, he concludes that the new vessels which appear in an exudation are to be regarded as direct prolongations of those of the tissues on one or both sides of the exudation. The vascular networks in false membranes and wounds are, in fact, prolongations of the capillary vessels already existing before the inflammation; the prolongations are formed at first as fine solid threads, which gradually become thicker, and hollowed so as to admit the passage of bloodvessels; here and there they present spindle-shaped, or triangular enlargements, in which a secondary nucleus, generally single, is produced. In the neighbourhood of the new vessels, as well in false membranes as in the granulations of cutaneous wounds, spindle-shaped and stellate cells occasionally appear, which are generally transformed into elastic fibres. The vessels first formed are but simple capillary tubes, but by subsequent addition of nuclei and fibre cells become converted into vessels of a higher order—arteries and veins. The time within which vessels are formed is variable: in his experiments, Mayer has observed them on the fifth day, but usually on the ninth.

Degenerations.

Fatty Degenerations.—This interesting and important pathological process has been considered at length in former pages, and we shall at present merely give references to the later investigations. The fatty degeneration of the placenta has been studied by Barnes and Drutt.§ Mettenheimer and Michaelis|| have made observations on the fatty changes of tubercle and cancer.

Fibroid and Allied Degenerations.—We refer to the valuable critical essays of Dr. Handfield Jones on these changes, in recent numbers of this journal.

Lardaceous or Cholesterine Degeneration.—An analysis of H. Meckel's researches on this curious and interesting form of disease has been given in another place.

* Schmidt's Jahrbücher, No. 6, 1854, p. 273.
† Ibid., p. 274.
‡ Ibid., p. 281; No. iv. p. 13, 1854.
§ Medico-Chirurgical Transactions, 1854.
|| Ibid., No. 3, p. 363, &c.
|| Ibid., No. 5, p. 190.
Cellulose.—Virchow* continues his researches on the animal substances exhibiting cellulose reactions. He considers it to possess some of the qualities of starch and some of those of cellulose, and that it is probably isomeric with both. Like cellulose, it has the iodine-sulphuric acid reaction; it differs from starch in the incompleteness of the iodine reaction.

CHANGES IN PERMANENT TISSUES AND ORGANS.

Pathological Changes in Cartilage.—Nuscheler† has published an inaugural thesis on this subject; he recognises the following pathological changes,—fibrous degeneration, softening, ossification, and maceration. We do not find any notice of the important researches of Queekett and Redfern, which have added so much to our knowledge on the structure and diseases of cartilage. He ascribes the fibrous degeneration to a splitting of the hyaline substance, concurrently with which the cells are undergoing dissolution, their contents being set free, and filling the interfibrous space or passing to the surface. The cells either retain their usual form, or may become enlarged, rounded, and filled with endogenous cell-formations; nuclei of different sizes, granular masses and fat molecules are to be seen between the fibres. The fibres are first rendered transparent by acetic acid, and then completely dissolve, while the granular nuclei resist its action. In the process of softening the cells undergo a somewhat similar change to that which takes place in the fibrous degeneration, but they may be entirely broken up in parts, and thus cavities, clefts, and deep excavations may be formed, sometimes reaching down to the bone; these spaces may become filled with a fibrous growth.

Two kinds of ossification are recognised in cartilage by this author as well as H. Meyer; one a simple impregnation of the cartilage with calcareous salts, but without further change. In the second form round wartlike processes spring from the surface of the cartilage; they appear at first soft and gelatinous, consisting on the surface of normal or fibrous cartilage, and internally of a mass of cartilage cells, in which ossification subsequently takes place; the bodies thus formed may become detached. By maceration the author denotes changes occurring in cartilage exposed to the action of pus contained in a joint, resulting either from inflammation of the synovial membrane, or from the opening of an abscess; various degrees of injury to the cartilage may be thus induced, even to complete destruction to the bone. When the cartilage substance is absorbed, it is never replaced by true cartilage, but only by fibrous tissue. The researches of Richet‡ on the state of the parts in the neighbourhood of joints affected with white swelling may be compared with those now quoted.

Lymphatic Glands, Hypertrophy of.—Verneuil§ has determined the histological conditions of the lymphatic glands in some cases of simple hypertrophy. The glands (cervical) were regular in form, round, easily cut, presenting a granular surface when torn, and homogeneous throughout, without any traces of septa or lymphatics. Under the microscope, the natural glandular elements were found, only in much increased quantity. By scraping or pressure a reddish-white turbid juice was obtained, miscible with water, which contained numerous transparent, for the most part regular, round, nucleated lymph-corpuscles; here and there granular cells, three or four times as large as the corpuscles, and with a more or less clear nucleus. Fragments of the glandular substance examined with a low power, exhibited granulations similar to the so-called acini; these granulations, when isolated, showed, with higher power, a vesicular, generally transparent envelope, the contents of which were the corpuscles above described.

TUMOURS.

It is unnecessary to dwell on the importance of the minute and accurate investigations which are being now prosecuted by so many observers into the histology

* Virchow's Archiv, vi. 3, 1854.
† Schmidt's Jahrbucher, No. 7, p. 20, 1854.
‡ Mémen de l'Acad. de Méd., xvii.
of tumours. We shall not here discuss the questions of specialism and essentialism in pathological histology. The primary object in this great inquiry is manifestly to determine all the possible histological forms of tumours; it will then remain for the clinical branch of the science to decide, by careful observation, whether any special clinical history attaches to special histological forms. Doubtless too much has been asserted, and too much denied already, and quite prematurely, on both sides of the question; its actual solution is to be obtained only by the careful collation and comparison of the results of both methods of research.

Sarcoma.—This term, embracing the fibro-plastic tumours of Lebert, is still much used without any definite signification. The chief constituent of sarcomatous tumours are the spindle-shaped cells; but Förster's* investigations show that others also occur in various modes of combination. These tumours vary in size, have the general habitus of cancer-masses, but exhibit no abundant juice on section, and there is no vascular fibrous mesh-work. The spindle-shaped cells are not to be confounded with the muscular contractile fibre-cells, which are long, narrow, ribbon-like, only gradually taper to the ends, and have a long narrow nucleus often invisible without the addition of acetic acid. These contractile cells do not exist isolated, but form a fibrous mass, and can be separated only by careful manipulation. The spindle-shaped cells of sarcoma, on the contrary, as well as those elongated fibrous cells which occur in fibroid, carcinomatous, and other growths, and which generally seem only as a transition stage for the production of areolar tissue, are usually broader, their ends rapidly diminish, and the oval nuclei are clearly visible, the contents of the cells and nuclei are somewhat granular; when these walls are united together in masses, the texture has a fibrous appearance. Larger and smaller cells are also formed, some presenting round, oval, or angular contours. The spindle-shaped cells are developed from free nuclei, which are found in every sarcoma; but Förster seems not to admit an endogenous growth, except of nuclei; he has observed cells with 2, 4, 6, 8, 12, and more nuclei, with marks of division to complete separation. Many large mother cells are found filled with nuclei; they finally burst, throwing free the nuclei, which subsequently become developed into cells. In the spindle-shaped, as well as in the mother cells, a fatty metamorphosis sometimes takes place. The tumours are formed of masses of those cells placed end to end, areolar tissue occurs principally in the base, and capillary loops pass through all parts of the growths. With regard to the formation of fibres from fibre-cells, this author has made the following observations. In many places single spindle-shaped cells pass into single fibres, becoming more and more prolonged; the nuclei also become elongated: uniformly they are brought out clearly by acetic acid, while the cells and fibres, on the contrary, become dissolved by this agent. The elongated nuclei themselves seem sometimes to pass into nucleus-fibres. In other parts the fibre-formation seems to take place by the splitting of a cell into many fibrille; the nucleus, though elongated, remaining distinct, and being recognisable by its resistance to acetic acid; the nucleus itself sometimes enlarges considerably, a secondary nucleus becomes developed within it; prolongations from it unite with similar ones from other cells, and thus is developed a system of connected (anastomosing) corpuscles, the areolar-tissue corpuscles of Virchow, according to Förster's view.

This author has studied the first development of sarcoma in certain small soft growths, known as epulis on the gums, circumscribed fleshy growths on the conjunctiva, and which are found to consist of the spindle-shaped cells and nuclei embedded in the natural tissues of the parts. The nuclei, which, he says, are entirely analogous to those of the normal tissues, exhibit constantly an endogenous growth by partition. These tumours he considers to be usually of a benign nature, and only in isolated cases do they form malignant growths. It may be remarked here, that this is a quite correct use of these two much-abused words;

* Schmidt's Jahrbücher, No. 6, p. 291, 1854.
they are here employed to denote clinical features of certain tumours of known anatomical structure, not, as they too often are, as a subterfuge for our ignorance of both the clinical and histological nature of tumours occupying no defined place in our categories. Relapse after extirpation is possible, but secondary extension of the disease is rare. It must be remembered that, under the name of epulis, another totally different form of growth may occur, that described by Robin, consisting of the polynucleated plates, and well named by Paget as Myeloid tumour. Other forms of disease also occur in this situation.

Papillary Tumours.—These consist of papillated growths springing from the normal structures. The papillae consist of simple or compound solid masses of connective tissue, covered with cylinder or plastic epithelium, and containing each a capillary loop. Externally, the tumours present sometimes a strawberry or cauliflower appearance; sometimes they occur as a soft velvety polypi; sometimes in compact masses; sometimes they originate in hypertrophy of normal papillae; sometimes they are entirely new formations. They occur as warts and condylomata on the skin, and are also found on the mucous membranes, as those of the stomach, rectum, urinary bladder, and vaginal portion of the uterus; also in bones, and in parenchymatous organs. They have been found of considerable size, and in two cases Förster has observed them complicated with carcinoma. The small papillae will be found to consist of a layer of epithelial cells investing masses of connective tissue, in which, on the addition of acetic acid or caustic soda, a capillary loop becomes visible. These combinations of papillary tumour and cancer constitute, doubtless, the “Zottenkrebs,” or papillated cancer. Some of the papillary tumours in which the epithelial element was in excess would appear to correspond with certain of the epitheliomata of Hannover and others.

Enchondroma.—Förster† found in an enchondroma of the finger the texture of the retiform and hyaline cartilage, and many ossified points. In some parts, large cells, presenting the usual reactions, lay so close, that no intercellular substance was found between them, cell-walls and contents forming a homogeneous substance in which the nuclei lay embedded. Some of these nuclei presented numerous endogenous formations, or secondary nuclei; in others, these nuclei again included others, so that a large body was formed with numerous concentric rings. The cells, he believes, are thus formed by an endogenous process. In some parts of a fine section, the cells were fused together, and only the nuclei remained visible; these latter either became elongated, or angular and pointed with prolongations, whereby they anastomosed with each other (similar to the arrangement described by Virchow in the connective tissue corpuscles). In the ossified portions, the nuclei, which had no cell-walls, presented numerous angular prolongations, like the osseous-corpuscles; many of them contained new endogenous nuclei; those nuclei which retained the cell-wall were partly angular, and furnished with prolongations which sometimes pierced the cell-membrane. In other parts, the intercellular substance was opaque, and filled with granular calcareous deposit. The author concludes that the bone-corpuscles are the result of ossification of the nuclei of cartilaginous cells. (Compare these observations with those already cited in ‘Annals of Micrology,’ No. 22, p. 538.)

Fibroid Tumour.—Förster‡ has found these tumours to consist of a homogeneous or finely-fibrous structure, with large fibrous or stellate elongated bodies (either without a nucleus or with a very indistinct nucleus), unchanged by acetic acid; the fibrous prolongations of adjacent bodies unite here and there. He coincides with the opinion of Virchow that the corpuscles are hollow, and that the prolongations form a system of communicating tubes for the conveyance of nutriment.

* Förster, loc. cit.
† Schmidt’s Jahrbucher, No. 6, p. 299.
‡ Ibid.
Structure of Ranula.—C. O. Weber has examined the structure of this affection in two cases. The microscopic examination showed the wall of the sac, which was covered with the mucous membrane of the mouth, to consist of a pretty strong connective tissue. The inner secreting surface of the tumour was vascular, and presented an investment of a single layer of polygonal epithelial cells. The fluid contents, mixed with a little blood, were thick, greenish, opalescent, and showed under the microscope epithelial elements, and so-called mucous corpuscles; on addition of acetic acid, the fluid quickly coagulated, but did not lose its transparency; chloride of iron produced no red colour. The results of the examination of the second case were nearly similar.

Simple Dermoid Tumour of the Eye.—Virchow gives a notice of this form of growth more fully investigated by Ryba. It presents, more or less, the complete structure of the cutis; is apparently of congenital origin; and, in the course of later life, becomes further developed. The formation of hairs is not constant. The seat of these tumours may be partly on the sclerotica, partly on the cornea.

Epithelial Cancer.—Under this head Förster considers formations, some of which, at least, we should be disposed to place with epithelium, in accordance with a more strict pathological classification. He says that it is characterized by the tessellated epithelial shape of its cells, by its slow course, the generally more favourable result which attends operations for its removal, and the greater rarity of relapse. These characters agree with those assigned to the purely epithelial growths; but Förster states it as his opinion that the formation in question is entirely independent, as to its origin, from the normal epithelium, and that its cells have the same modes of genesis as those of ordinary carcinoma. He describes them as found under three groups—those possessing large nuclei, those similar to the cells of the mucous membrane of the mouth, and, thirdly, cells like those which occur in the encysted tumours of the skin, especially those of the so-called cholesteatoma; there are several transitional grades between these forms; we also find horny or atrophic cells, like those of the epidermis. The majority of the cells are, however, large and flat, uniform in outline or split, angular and multiniform; their outline is sharp, their contents homogeneous or granular, and they contain from 1 to 2 nuclei of 1-300—is-1-200 in diameter. They lie usually joined together at the angles, and when viewed from the surface, appear like an epithelial membrane; but when seen from the edges they present a fibrous appearance. It is needless to point out how most of these characters agree with those assigned to epithelioma. Between the cell-masses are found the "nest"-like bodies, with a consecutive arrangement of compressed cells, like the corpora amylacea, the cells around being so disposed as to present the aspect of a fibrous stroma. A true struma of connective tissue, and with capillaries passing through it, is often present.

Certain metamorphoses take place in the elements of this epithelial formation, or so-called—and, as we hold, wrongly so-called—epithelial cancer. 1. Shrinking and contraction. The cells become contracted and small, like those of the epidermis, forming solid plates in which no trace of a nucleus remains visible, or is only brought to light after the action of acetic acid. Sometimes the cell-contents become altogether changed to a fatty matter; and then the scales, with a shining fatty aspect, and closely pressed together, present the polyhedral network known as cholesteatoma. In the advanced condition of horny change, the solid scales break up gradually into small fragments, and in the end become a molecular powder; with this process a fatty change may be combined, and then crystals of cholesterol, and occasional crystals of calcareous salts, will be found. The fatty metamorphosis has been but seldom observed by Förster; it occurs chiefly in degenerated and softened lymphatic glands. Colloid metamorphosis appears to have been frequently noticed, and in two forms: in free nuclei, which enlarge and form

† Ibid., p. 555.
‡ Schmidt's Jahrhuch, loc. cit., p. 169.
shining, opaque, spherical vesicles; these bodies sometimes present a secondary nucleus; the altered nuclei sometimes form the centre of the "nests" above described. Bodies with concentric rings are also produced in this change, but the vesicles never become so large in epithelial as in alveolar cancer; but, as in the latter, the colloid masses are often set free by the bursting of the cells. The process may be thus traced throughout: the nuclei gradually increase in size; their contents, at first dark and granular, become clear and shining, being changed to a colloid mass; the contents of the cells are pressed against the cell-wall; if a second nucleus is produced, the same process is gone through; sometimes two colloid vesicles are developed in a doubly-nucleated cell. The colloid vesicles may become very large and then burst, setting free their contents; fatty granules are produced within them, or new nuclei are formed which, in a similar manner, expand and form new cells. This metamorphosis takes place, but to a small extent, in some masses of epithelial formations; at other times it takes place to such a degree, that the structure has the appearance of hyaline cartilage, the cells lying close together, and the colloid vesicles appearing like shining cartilage-cells. Occasionally, this author (Forster) has found growths in which the cells fused together formed a homogeneous and finely-granular intercellular substance in which the nuclei, having undergone the colloid change, and containing endogenous secondary nuclei, lay embedded like cartilage-cells. The albuminous metamorphosis is most like the colloid, similar processes of expansion and endogenous nuclear formation being observable in both.

Development of Epithelial Cancer.—Forster considers the growth to originate in the nuclei imbedded between the fibres of the subcutaneous areolar tissue, or in those of the cutis; whether the nuclei are produced by endogenous growth, or by partition of the nuclei of the areolar tissue, is undetermined. Forster concludes, from his observations, that epithelial cancer is a variety of cancer in general. We have already, on more than one occasion, expressed our views as to the existence of an epithelial disease capable of assuming the form of tumour, and often very malignant in its nature, but which is not cancer. That there is a true cancer of the skin and mucous membranes must be admitted, and we believe the affections are very often confounded; no doubt also they may sometimes exist in combination. But if they be not the same in structure, and if there be but even slight differences in their clinical results, we hold it to be inconsistent with the strict requirements of pathological science, to confound the two diseases under one convenient name, which saves the trouble of exercising such rigid diagnostic acumen. Cancer may or may not be a special pathological entity, may or may not be constant as a mode or type of diseased action; but this, at least, we may say about it, that its phenomena are distinct from those of other diseases, and it is unphilosophic to make superficial resemblances, such as exist in the case of cancer and epithelial disease, the grounds for confounding the two under one term, however convenient such a proceeding may be.

Papillary Epithelial Cancer.—Schuh* recognizes three forms of this disease; flat cancer, granular epithelial cancer, and epithelial cancer which presents a simple surface, or branched cauliflower mass, invested with a layer of plaster-epithelium. When occurring in the sexual organs, the masses are much branched, long, papillary, and he considers them entitled to the terms epithelial papillary cancer, or papillary epithelial cancer. The remarks we have made in reference to the views of Forster apply with equal force to the statements of Schuh, who, while making strictures on the want of logical accuracy in other investigators, falls into the common mistake of using the terms "cancer" and "malignant" as convertible. He gives a very good description, however, of the growth and structure of the epithelial disease which affects the penis. On section he has observed in the diseased mass three substances clearly distinguishable; a white, thick, almost

callous mass into which the corpora cavernosa and surrounding areolar tissue become changed, a small one-line thick, whitish yellow, or reddish layer, and an outer cauliflower-like growth. This last consists of a thick papillary mass, one to six lines deep; the papille are of various length, shape, and thickness, some cylindrical, some club-shaped, some conical, standing parallel or springing out in bushy masses from a single point, partly single and independent, partly branched and of cock’s-comb appearance; some united, so as to form loops or serpentine shapes. On the surface is found a layer of large polygonal cells, with a single well-marked nucleus, also occasionally long and epithelial cells. The deepest layer is a white fibrous mass, many lines thick, investing the corpora cavernosa; the whole of these structures may be replaced by the white fibrous tissues, in extreme cases, which also may involve the prepuce. Under the microscope this callous substance appears obscurely fibrous, and contains many elastic fibres, the remains of the normal tissue, as Förster thinks; besides which there may be seen everywhere epithelial cells.

Areolar Cancer.—Förster thinks the origin of this formation is to be traced to the masses of nuclei which are found between the bundles of fibres; they present the usual reaction, are round or oval, and in all respects resemble the connective tissue nuclei; they are somewhat contracted by acetic acid, but their outlines become more distinct; the larger ones have usually granular contents, and but one nucleolus, which itself is not constant. These nuclei are usually single, but show traces of subdivision, and it is undetermined whether they originate in the primary blastema, or by subdivisions of the nuclei of the normal connective tissue. No cell-wall is observed to form about them, but they increase gradually by addition to their contents. Much larger nuclei are found, $\frac{1}{10}$ to $\frac{1}{20}$ in diameter, the contents of which are entirely homogeneous, their molecular contents having been removed; from them are gradually formed the colloid-containing bodies, with fine delicate walls and shining homogeneous contents, which shrink up on the addition of acetic acid, and often become split into irregular masses, which sometimes escape by bursting of the wall of the vesicle. By means of such nucleus-vesicles the surrounding fibrous tissue becomes pressed asunder, and thus are formed the first colloid-containing network spaces, which, by subsequent disease, have become visible to the eye as such, with the characteristic gelatinous appearance. These vesicles burst without undergoing further development, their contents becoming free, but only rarely forming a homogeneous mass; more usually a portion of the wall remains, giving the half-moon form. The vesicles sometimes reach a very large size, $\frac{1}{2}$”, without bursting, and also occasionally present endogenous formations, the included nuclei passing through the same stages as the primitive ones, or sometimes escaping and then undergoing changes; sometimes the endogenous formation proceeds to the extent of forming numerous connective layers of vesicular walls, producing the appearance of a stout vesicle; these layers become more visible by the action of acetic acid. Very complex bodies are often thus formed. The stroma in which these bodies are contained usually consists of the thickened surrounding areolar tissue; sometimes it originates in the contractile fibre cells of the muscular coat, which however soon disappear, only the connective tissue remaining, the areolar tissue meshes become gradually extended, so that in a single space a heap of the colloid vesicles will be found; in other parts, however, a very fine areolar network surrounds each of the single vesicles. With the increase in number and size of the vesicles, the connective tissue also continues to grow, and numerous fibre cells are formed in its meshes. In the opinion of Förster, the growth of the areolar cancer is completely analogous to that of carcinoma; an areolar fibrous network or stroma surrounds transitory nuclei, from which are developed not nucleated cells, but bodies as above described, filled with colloid matter. Sometimes the alveoli of the colloid mass may be recognised on section by the naked eye, large cyst-like spaces being formed; this takes place by the expansion of some contiguous areolar spaces, and the disappearance of the fine
tissue investing the included vesicles, so that finally a closed cavity is formed, with fibrous walls, and filled with colloid contents; the inner wall of many of the cysts becomes gradually smooth and homogeneous, and finally become invested with a single layer of plastic-epithelium; many large cysts are formed by the fusion of smaller ones. Förster says he has easily demonstrated the transition from simple areolar tissue to the cyst formation; he differs in this view from Rokitansky, according to whom, one of the nucleated vesicles constitutes the primitive cyst, the connective tissue with its vessels and epithelial layer being subsequently formed around it; a new generation of nuclei is developed in the contents of the original vesicle, and thus possibly a large cyst becomes formed. Concretions are occasionally found within the colloid vesicles, varying in size and number from a few small calcareous granules to masses which completely fill them; fatty metamorphism of the contents may likewise take place. The special primary seat of alveolar cancer appears to be in the mucous membrane of the stomach, and the intestines, and the peritoneum, especially in the neighbourhood of the rectum; but it is also found as a primary deposit in other organs, as the mammae, the kidneys, and the liver. The secondary propagation of alveolar cancer appears somewhat less frequent than that of carcinoma; the modes of propagation are, however, similar in both; the neighbouring lymphatic glands are most frequently affected. The colloid metamorphosis of the nucleus and cell-contents in alveolar cancer is, according to Förster, not peculiar to this form of growth, as he says that its occurrence is not infrequent in many physiological and pathological tissues, without, however, the production of alveolar cancer; he states that he has seen this metamorphosis in nuclei and cells of glands, in the kidneys, liver, prostate, and the glands, en grouppe, of the mucous membranes. This is a most important observation in connexion with the difficult questions of special or non-special pathological histological elements, and is worthy of much careful investigation. Förster describes this process as either commencing in the change of the nucleus into a vesicle filled with shining contents, which splits up and shrinks on the addition of acetic acid; or the change may proceed at the same time in the nucleus and cell-contents, so that finally both pass into each other. The colloid vesicles thus formed subsequently burst, and their contents swim about in the gland secretion, in which they may be recognised as irregular shining masses. He has most frequently seen this process in the kidneys, next in the prostate, where the nuclei appear to form the basis for the concentric deposits known as prostatic concretions. This metamorphosis is very frequent in the thyroid gland, constituting the so-called colloid stroma; the small cells which invest the normal spaces imbedded in the highly vascular connective struma of this gland are, by the change of their contents, and that of their nuclei, transformed into large shining spheres, which either discharge their contents or present within an endogenous formation of similar colloid bodies, of various number and size. By the accumulation of these colloid masses, the normal spaces or vesicles of the gland become much distended, and enlarged, their cellular investment disappears, and large spaces or cysts filled with colloid are then formed. In pathological formations this colloid transformation happens most frequently in epithelial cancer, commencing either in the change of the nucleus, or in that of the cell-contents, as elsewhere, and often proceeding to endogenous formations; the colloid nuclei and cells often form the central basis of the so-called concentric globes or masses of epithelial cancer. Colloid metamorphosis occurs but rarely in carcinoma or sarcoma. Alveolar cancer sometimes much resembles the compound cystoid-tumours; in such form it may be found in the ovary, originating probably in the Graafian vesicles, and in the mammary gland, in which it is formed by changes in single aëni, or in expanded milk ducts.

Formation and Extension of Cancer-cells in the neighbourhood of Cancer.—SCHROEDER VAN DER KOLK* has made some observations on this subject, which we shall give at length in an early number.

* Schmidt's Jahrbücher, No. 5, p. 164, 1854.
Cavernous Blood-tumours—Teleangiectasis of Authors.—Rokitansky* continues his researches on these tumours, the chief seat of which is in the liver, then in the subcutaneous connective tissue, and the cutis, on the face in the substance of the lips, on the trunk, and the limbs. Rokitansky has also seen cases of cavernous tumours in the bones of the cranium, on the dura mater and pia mater. He has seen two cases in which these tumours on the temples admitted of extirpation. The tumours are always in connexion with several smaller or larger veins, so that they are either seated on them, or the veins are involved in the mass of the tumour. He has seen one on a branch of the saphena, near the groin; also on the superior longitudinal sinus. Those in the liver are generally seated on the branches of the vena porta. In the extremities, as remarked by Schuh, they are placed on the fasciae, sinews, or periosteum. There is generally but one tumour in each individual case; but several instances of multiple tumours have been observed. This form of tumour consists, as may be seen on a full section, or better, on pressing out the blood and examining the structures under water, of a meshwork or loculated structure, composed of lamella and bands of different strength and thickness; in many cases a double network may be seen. The spongy structure thus formed, contained in its spaces, fluid venous blood, generally in quantity sufficient to fill and expand the tumour, so that it projects from the surface of the organ in which it is seated, as is the case in the liver. In many instances, the blood in the tumour is coagulated; there are often found here and there in the spaces, round, ossified bodies of concentric structure, resembling the so-called vein-stones. The blood may be entirely evacuated by a cross section, so that it is evident the spaces communicate. The bands and network are sometimes of hyaline structure, sometimes lightly striated, here and there slightly corded, or they may consist of a completely fibrous tissue, in which are found oblong nuclei, spindle-shaped caudate cells. He has never noticed organic muscular fibres; elastic fibres are rarely met with; and it is only in the earlier condition of the tumour that an epithelial investment of the spaces is observed. Though he has followed the development of the cavernous tumours from their primary origin, yet he regards it as similar to that of other network tissues, including the stroma of cancer; a hyaline loculated mass is developed, which produces cells in its interior, or a naked cell-mass may be formed, in which loculi are afterwards produced by partial absorption. The hyaline masses sometimes become elongated, and thus form secondary tubes, some of which are branched, and contain in their interior nuclei and nucleated cells; and thus is formed a tissue which corresponds with that of the papillary cancer, everywhere invested with the contents of network spaces—viz., blood. Within these are also formed other structures, which are of importance, as being the basis of a vascular growth of a special kind, which is to be considered afterwards. Rokitansky regards the cavernous tumour as a new formation; the communication with the veins he supposes to take place subsequent to the first origin of the tumour, and in the following manner. The meshwork bores its way through the veins, the inner surface of which, when in connexion with the cavernous structure, will usually be found rough and villous, and covered with a felt-like mass, which, on further examination, may be shown to be the tissue of the cavernous growth, which has made its way into the vessel. The anastomosis of the cavernous spaces, with one or several veins, and then being filled with blood, must be regarded as a secondary occurrence, which has been clearly established by the observations made on small tumours which contained no blood, not having as yet opened into the sources of their blood-contents.

Cavernous Tumour of the Brain.—Luschka* has met with an instance of cavernous tumour seated in the anterior lobe of the left hemisphere of the brain in a case of suicide, which presented no other abnormal conditions. His views with regard to the pathology of the disease, its structure and mode of formation,

* Zeitschrift der Gesell. der Aertze zu Wien, p. 256, 1854.
are almost identical with those of Rokitansky. The tumour, of the size and form of a pigeon's egg, was removed with great facility from its seat, and had no apparent vascular connexions. The contents of most of the cavernous spaces was blood, which presented corpuscles of natural form and size; some of the cavities contained crystals of cholesterine, fat-granule cells or corpuscles, and fine molecular calcareous granules. Luschka likewise remarks the similarity of the cavernous tissue to cancer stroma, as noticed by Rokitansky. The bands of the fibrous meshwork present various appearances, some fine and delicate, others strong; the fibres are of different diameters, from that of the finest connective-tissue fibrille to 0.006 mm in breadth. In the thicker bands, round or oblong nuclei were visible, many of them appeared hollow and tubular, the central cavity being separated by a sharp line from the fibrous wall. It was several times noted that the cavity of the hollow bands communicated with that of some of the little club-like masses which were attached by a pedicle to parts of the meshwork. These little pyriform bodies were scarcely 0.1 mm in length; they were attached by a longer or shorter stem or pedicle to the fibrous tissue, and played by their free extremities in the cavities of the tumour. Many of these bodies were hollow, and, as before remarked, communicated frequently with the tube-like bands. Rokitansky has also described this system of tube-like bands with structureless walls, with simple and sometimes double contour, and containing granules, nuclei, and cells.

In an able memoir* on cavernous tumours, characterized by his usual profound and extensive research, Virchow differs in several most essential particulars from the views of Rokitansky and the other observers we have cited. He has found the trabecular bands to consist almost entirely of long fibre-cells, probably smooth muscular fibres; they are long, narrow, and clear, and present an oblong, narrow nucleus. They may be easily isolated after treatment, with a 20 per cent. solution of nitric acid. On the addition of acetic acid, the connective-tissue becomes clear, and exhibits numerous oblong nuclei, mostly in regular rows. He concludes that the muscular fibres are arranged in rings around the cavernous spaces. Virchow's views, as to the relation of the tumours to the pre-existing vessels, differ entirely from those of Rokitansky. He believes that the cavernous tumours in the liver are developed, not between, but in the place of the elements of this organ, so that a certain group of acini becomes replaced by them. The whole vascular system of the part gradually becomes converted into a cavernous cestasis, which stands in direct connexion with the veins and arteries around; without that a special capillary apparatus is demonstrable. The process begins with an increase of the connective-tissue of the liver, which is quickly followed by the disappearance of the secretory part of the gland. In the young connective-tissue, at first rich in nuclei, the vessels enlarge, while their walls become thickened, and unite with the surrounding tissue. There is also a new formation of smooth muscular fibres. He believes the cavernous structure to have considerable analogy with the placenta. A remarkable passage is cited from Cruveilhier, in which it appears the similarity of the stroma of the then so-called varicose formations, and that of cancer, was long since (1835) fully pointed out, and which Rokitansky must have overlooked. Virchow has seen only one example of cavernous tumour of the external parts.

Vascular Tumour.—Rokitansky† has met with two instances of a peculiar form of tumour, one from the eyelid of a child half-a-year old, the other from the integument of the forearm. They were remarkable for a gland-like lobular structure, with an interlobular connective-tissue. On microscopic examination, in whatever direction a section was made, a trabecular structure was presented, and the growths seemed formed of an aggregate of blood-conducting tubes, which ran in a determinate direction, lying parallel to each other. On cross section, the

* Virchow's Archiv, Band vi. p. 4, 525.
† Zeitschrift der Gesell. der Aerzte zu Wien, p. 267, 1854.
circular mouths of these vessels were shown varying in diameter from 30-1000mm to 75-1000mm. On first view, the appearances on section showed the greatest similarity to a section of the cortical substance of the kidney. He considers the tumours to be an example of new formation of vessels. The tubes present hyaline structureless outer and inner walls, which appear independent of each other; and between them are found oblong nuclei and caudate cells. The tubes give off branches, and sometimes end in cecal branches. The mode of development of these vessels is not yet sufficiently determined; but Rokitansky believes it to be connected with the new formation of blood. He believes the tumours under consideration to be identical with those described by Schuh, as alveolar blood or vascular spongy tumour. They are not to be confounded with teleangiectasis, with which they have nothing in common; they are rather to be designated as a fasciculated vascular new formation.

Cholera Typhoid—Renal Affection.—In a memoir of some extent on this subject, Dr. Ludwig Meyer* claims priority for the observations of his friend, the late and much to be lamented Reinhardt, over those of Frerichs. This question, however, we shall not enter into; it will suffice to state, that Reinhardt's papers contain important results of original investigations on the affections of the kidney, including those manifested in the cholera typhoid.

Meyer investigates the relation which the degree and development of the affection of the kidneys have to the secondary diseases of cholera, which it is often found to accompany. The urine examined during the stage of reaction in several cases was of a dark-red colour, albuminous, and exhibited, under the microscope, a large quantity of fibrinous-cylinders, with blood-corpuscles, and renal epithelium; the latter already showing a partial fatty degeneration. Some of the cylinders were tortuous, others of remarkable length, and some few exhibited branchings. Many kidneys in various stages of the disease were examined. Meyer has obtained the best preparations by boiling in dilute acetic acid, their sections subsequently showing the structure very clearly, and particularly the Malpighian bodies. He has been able to control his own observations by comparison with those of Reinhardt. Meyer has seen no case of cholera, however sudden and brief, in which the kidneys did not show some alteration. In the case of a strong labourer, who died after nine hours' illness, the kidneys exhibited the peculiar opaque condition of the first stage, appearing as if saturated with albumen; microscopic examination showed the changes in the renal epithelium described by Reinhardt—namely, infiltration of dark protein-like molecules, soluble in acetic acid, and strong adherence together of the cells, so that they could be pressed out in the form of cylindrical tubes. Another characteristic is the very early occurrence of fatty degeneration, and the irregular and diffuse manner in which it is presented, the smallest sections never exhibiting throughout a uniform change. This important memoir must be studied at length; we merely note the points of histological interest.

QUARTERLY REPORT ON PATHOLOGY AND MEDICINE.

By E. A. Parkes, M.D.,
Professor of Clinical Medicine in University College, London.

I. THE DISEASES OF THE BLOOD.

1. The Occurrence of Pigment in the Blood. By Dr. J. Planer. (Wien Zeitschrift, Feb., 1854.)

1. The occurrence of a large amount of pigment granules in the blood has been long known. Meckel, Virchow, and Hessei have described it as frequently happening after intermittent fevers. In many of these cases the pigment appears to cause no injury to the system, but in other instances, and Dr. Planer describes many of these, very sudden death ensued, with symptoms that led to the diagnosis of a disease of the brain or of typhus. In other cases again, the collection of pigment was associated with dropsy and albuminuria, but whether it had any intimate connexion with these symptoms was doubtful.

Dr. Planer relates all the cases of pigment in the blood which have been discovered in the dead house at Vienna during the last two years. He refers first to the—

1) Cases in which there were Cerebral Symptoms.—The pigment in the blood was found in the state of black, or more uncommonly of brown yellow, brown or (very rarely) red granules, many of which were united together by a clear hyaline substance, which was soluble in acids and alkalies. Meckel observed pigment cells very rarely; Virchow more frequently; Planer never. Planer also never saw in the pigment masses anything like a nucleus. Besides these masses, the aggregation of the pigment grains sometimes forms black or brown flakes of the most variable form; these flakes are sometimes evidently constituted by a hyaline substance, in which black pigment is embedded, and, in two cases, in the blood from the right ventricle. Planer found two hematoidin crystals adhering to this clear substance. The relative number of the pigment masses, as compared to the blood globules, was not determined. In some cases the capillaries seemed almost choked up with them. Planer did not find that the colourless corpuscles of the blood were more numerous. The pigment was always found in the blood of the heart; it was not more common in the blood of the portal or splenic vein than elsewhere. The pigment masses were little affected by reagents. Meckel found them decolorized by chlorine, but Planer does not confirm this.

In addition to being in the blood, pigment was found in these cases in the organs, especially in the spleen, and it was found in this organ even in cases in which other organs and the blood contained very little of it. The special seat of the pigment in the spleen was not determined; its form and general characters were exactly the same as in the blood. Virchow and Meckel have found the pigment in cells in the spleen, but Planer found only the agglomeration of the pigment granules by the hyaline substance.

In the liver the pigment granules were often very numerous. They were found to be sometimes in the vessels, but it could not be determined whether they were wholly thus placed, or whether some part of them lay outside the vessels between the cells. The livers thus affected were of normal size; the cells were normal, or contained more fat than usual, and also brown granules of bile-pigment, which was, however, easily distinguished by its appearance, as well as by its chemical reactions from the pigment in the blood.

The cerebral substance was often affected with this pigment change, and in this case it was certain that the pigment was in the vessels; in some cases the flakes
already referred to as seen in the blood in the heart and large vessels were, in the
cerebral capillaries, of such size that it seemed impossible they could pass. In
fact, Planer conjectures that the extreme abundance of pigment granules in the
cerebral vessels must have been caused by the fact that they could not pass through
the cerebral capillaries, which (especially in the grey substance) are the finest in
the body (Kölker).

Meckel describes a case which occurred in Vienna, in which there were in the
grey substance numerous punctiform hemorrhages produced by blocking of vessels
through pigment, and since this time several cases of the same kind have been
seen by Planer.

Besides the spleen, liver, and brain, the kidneys were found to contain pigment,
both in the vessels of the cortical substance, and of the Malpighian capsules.
Some pigment was also found external to the vessels, and perhaps was the resi-
duum of punctiform hemorrhages, but no fresh punctiform hemorrhages, such as
occurred in the brain, were ever seen in the kidneys.

The pigment was found in the pulmonary vessels in very variable quantity. In
the vessels of the other organs of the body its quantity was unimportant, except
in the lymphatic glands, where it was sometimes abundant.

After making these general remarks, Dr. Planer relates 19 cases on which they
are based, and refers also to 10 other cases whose histories he does not give. The
cases are too shortly reported, but it is evident that they belong to a class not
seen, or but very rarely seen, in this country. In 12 of the 19 cases, the patients
were comatose when brought to the hospital, and in most of them the coma had
set in suddenly sometimes with, and sometimes without, previous symptoms of
malaise or fever. In the 7 other cases, there were symptoms of intermittent
fever, and then gradual fatal stupor came on. In several of the cases there was
paralysis as well as coma.

In the whole 29 cases referred to in this series, there were 14 in which the pig-
ment was in such quantity in the cerebral vessels as to give the grey substance a
remarkably dark slate grey aspect; in 8 of these cases there were numerous
little hemorrhages. In the other cases the pigment was in less quantity in the
cerebral vessels, but still was always found there.

(2.) Cases of Albuminuria and Dropsy with Pigment in the Blood.—19 such cases
were discovered in the dead house; in 12 there had been previous intermittent
fever, or this existed at the time; in the others it could not be learnt whether
there had been previous ague.

The appearances of the pigment in the blood and organs were the same as in the
former series, except that the cerebral vessels contained little of it, and the kid-
neys a great deal. In spite of the albuminuria and dropsy, the kidneys were
normal, except as far as the pigment was concerned, and in no case could it be
safely said that there was Bright's disease.

(3.) Cases in which there was Pigment in the Blood and Organs without appearance
of injury to the health.—26 cases are related in which death occurred from the
following causes: phthisis, 4; typhus, 2; pneumonia, 6; arthritis and pericar-
ditis, 1; peritonitis, 1; pyaemia after operation, 1; puerperal affections, 3; gan-
grenie of the leg, 2; granular liver, 1; marasmus senilis, 4; calculous nephritis, 1.
In all these cases the liver and spleen were as pigmentary as in the other series of
cases; in the blood the pigment was in less amount, and it was scarcely found in
other organs; in only 1 of these 26 cases was the grey substance of the brain
darkly coloured through it.

(4.) Origin of this Disease.—Dr. Planer believes that the development of the
pigment is closely connected with the occurrence of intermittent fever, although
he admits that in several of the cases there was no authentic evidence of previous
ague. He observes that he has in many cases of ague-cachexia got a little blood
during life by pricking the finger, and has been astonished at the number of pig-
ment granules and flakes exactly resembling those found in the dead bodies already
referred to.
Planer remarks finally, that in spite of the number of cases he has seen, this pathological condition is very little understood, because observations on living subjects are yet wanting. It is certain, however, that he has opened up a new and most important inquiry, which promises to give us some new insight into malarious diseases.

2. In our Chemical Report, which will be inserted in our next number, we shall have to notice the controversy which has arisen from Dr. Bence Jones' statement, that ammonia is oxidized and converted into nitrous acid in the blood, and can be then detected in the urine; and Dr. Jaffe's counter statement, that Dr. Jones has mistaken sulphurous for nitrous acid. The paper before us contains additional experiments by Dr. Bence Jones, which certainly do appear to us conclusive as to the accuracy of his original assertion. We defer, however, a critical examination for the present.

II. THE ACUTE SPECIFIC DISEASES.

2. On Black Vomit. By Dr. La Roche. (Ibid., Jan. and April.)

1. Dr. Bache relates briefly fourteen post-mortem examinations. The most novel and interesting point is, that in all the cases the liver, on examination with the microscope, was found to be highly fatty. "The secreting cells were pale, ill-defined, and less granular, than when in the normal state. In the cells, with few exceptions, no nucleus could be detected, but its place was supplied by a single oil globule. This was observed even in those cases in which the granular part of the cells was not so full of oil as in some others. Generally, the cells were so studded with oil globules, as to give one the idea of looking at a number of these latter, which had by chance become agglomerated or entangled by granulation." The same appearances were found by other observers. The fatty nature of these globules does not appear to have been proved by chemical reaction. A tabular view is given of the morbid appearances, similar to that published in Dr. Blair's work on the yellow fever of British Guiana. For this we refer to the paper.

2. Dr. La Roche has published a most elaborate paper on the black vomit. He has brought together the opinions and statements of a host of writers on the subject, and has thus made a most important addition to the literature of yellow fever. To attempt to analyse the paper would be impossible, and is indeed so far unnecessary, as it is only a compilation, though a most useful one; we must therefore content ourselves with directing attention to it. Very good plates are given of the microscopical appearances.

III. DISEASES OF THE ORGANS OF LOCOMOTION.

By an accurate measurement of healthy and hypertrophied muscular fibres, Dr. Hepp has discovered that in the latter case, the enlargement of the primitive fibres is sufficient to account for the increase in size of the muscle, without the hypothesis that the fibres are increased in numbers. The relation of the diameter of the healthy to the hypertrophied fibres was as follows:

- In the heart as 1 to 4.
- In the bladder as 1 to 2.
Dr. Hepp has also made out, that the increase in size in much exercised muscles, as, for example, of the biceps in a strong man as compared with a woman, is due also to increase in the diameter of the fibres, and not to augmentation of their number.

IV. DISEASES OF THE THORACIC ORGANS.

1. The term bronchitis crouposa is used by Dr. Thierfelder to denote the disease in which fibrous casts of the bronchial tubes are coughed up. He relates a case at some length, describes the microscopic characters of the coagula, and discusses the diagnostic points. In all these points, however, there is nothing new. He then refers to all the cases he has been able to find in medical records during 120 years. The following conclusions are then given. 1. The croupous inflammation, which affects a great extent of the bronchial ramifications, without laryngotracheal group, is either an apyretic and very chronic disease, or it is an acute febrile affection, and is then combined with other inflammatory diseases. 2. It is a very rare disease; in the literature of the last 120 years, only five cases of the chronic, and thirteen of the acute cases are recorded. "This is surely much below the real amount."—Ree.] One case now added makes nineteen. Of these nineteen, sixteen have been observed in England, France, and Germany, in the last 80 years. Eight of these occurred in one month in Paris, in the course of an influenza epidemic. The disease is much more common in the cold months. 3. The individuals who were attacked were between 12 and 72 years of age, and almost two-thirds were males. No particular bodily conformation could be discovered. 4. The coagulated exudation fills the bronchial tubes, from the capillary branches to tubes of the fourth, third, even the first order; it lies, without adhering, on the deep red mucous membrane. It shows all the physical characters of the croupous exudation, and appears to be formed by successive pouring out of the material. 5. The auscultatory signs give no decided indications, and the diagnosis must be drawn from the expectoration. In a third of the acute cases, however, there is no expectoration. 6. The severity of the functional symptoms appears to be proportioned, not to the extent, but to the acuteness, of the local symptoms. The apyretic cases run on without marked disturbance of the nutrition and general health; the acute cases are mostly fatal (eleven among thirteen). 7. The pure antiphlogistic treatment is of little use in the chronic cases; large doses of muriate of ammonia, calomel, or iodide of potassium, are the best treatment; in acute cases, calomel.

2. M. Mandl has published two interesting papers on the microscopic examination of tubercle, in which he enters pretty fully into the literature of the subject. He denies altogether that tubercle presents any specific morphologic elements. He states:—I. The tuberculous substance is an amorphous matter strewed with fatty molecules; it is finely granular at first, then diffusent. It infiltrates the elements of tissues, and solidifies in the interstices. The fragments of this amorphous substance, presenting neither determinate form nor size, are analogous to those of all other amorphous exudations. There are no special tubercle-
globules or corpuscles; there are no characteristic elements. 2. The tubercular substance, being an amorphous matter, cannot increase and develop. Tubercles grow only by juxtaposition—i.e., by fresh exudations. This is a proof the more that the progress of the disease is dependent on an incessantly active cause, which cause must be got rid of, if we would root out the tuberculisation. 3. Softening of tubercle is due to a fatty degeneration, which can declare itself before products of inflammation, such as pus and "inflammatory globules," show themselves. 4. This degeneration is a certain proof that tubercle cannot organize itself, as fatty degeneration occurs only in tissues, the nutrition of which is suspended. 5. By means of the fatty degeneration and the products of inflammation, which are joined to it at a later period, tubercle is completely eliminated." 6. If one is permitted to draw a therapeutical inference from these facts, it is, that attention should be directed, first to the cause, and secondly to the modifications which the tubercle undergoes—i.e., the natural course of the disease.

3. Dr. Grohe has investigated the chemical characters of some exudations in the pleura and pericardium. From very numerous observations, conducted on patients with tuberculosis, pneumonia, pleurisypleurisy, and with organic heart affection, he has found that urea is a constant ingredient of great effusions into the pericardium and pleura,—the quantity of the urea was not, however, great either in these effused fluids or in the blood. In some cases of ascites, on the contrary, no urea could be found. The author attributes this to the different physical conditions under which peritoneal effusions are placed, from pleural and pericardiac, on account of the immense absorbing surface of the intestines which is bathed in the peritoneal effusion.

Sugar was present in the effusions only in two cases: one was an epileptic, with both pericardiac and pleural effusions, but of whose history nothing was known. The second case was in a woman, who was admitted into the hospital after seventeen days' illness, in a state of high fever and delirium, and who died two days after. On postmortem examination there was found chronic pneumonia, with formation of abscesses, double pleurisy, pericardiac effusion, chronic cheesy infiltration of the cervical and pelvic lymphatic glands, and parenchymatous catarhal parotitis. The pericardial fluid (but not, apparently, the pleural) contained a large quantity of sugar.

The inorganic constituents do not appear to have been determined, nor is the total number of analyses mentioned. It is merely said that they were numerous.

4. Lumbrici have been found in many parts of the abdomen, and even free in the peritoneal sac; but Professor Luschka communicates an extraordinary case, in which, through the intermediate process of a retro-peritoneal abscess, four lumbrici were found encysted in the left pleura.

A man, 25, who two years before had had slight peritonitis, suffered, in 1852, from return of this complaint, with especial pain in the left lumbar region; death ensued, with typhoid symptoms. In the left pleura, between the lower lobe of the lung, the thoracic wall, and the diaphragm, there was a sac formed of pseudo membrane, in which six lumbrici and a large quantity of brown fluid were contained. An opening in the diaphragm led into a cavity formed by adhesions between the upper end of the descending colon, the left kidney, and the diaphragm, and in which some lumbrici were also contained; this cavity, or abscess, communicated with the descending colon by three contiguous openings, situated on a level with the under part of the spleen. In the colon there were also lumbrici.

5. Dr. Bowditch speaks highly of a new stethoscope invented by Dr. Camman, which has the property of intensifying the auscultatory sounds so much, that respiration, or rales scarcely distinguishable with the common stethoscope, are heard plainly. The puerile respiration of a child is said to be "almost like the rushing of a whirlwind." The nature of the instrument is unfortunately not
described, but it is said that both ears are used, and that the earpieces fit tightly into the meatus. [We will give an engraving of the instrument as soon as we can obtain one.]

V. DISEASES OF THE DIGESTIVE ORGANS.

1. On the Examination of the Feces in Health and Disease. By Drs. Wehsarg and Ubbting. (Inaugural Dissert., Giessen, 1853.)

2. On a Case of Fatty Liver. By Dr. John Bacon. (Amer. Journ. of Medical Science, April.)

1. Two interesting 'Inaugural Dissertations,' on the examination of the feces in health and disease, have been made in the active clinical school of Giessen, under the superintendence of Professor Vogel. The first treatise is more physiological than pathological, but it will be useful to analyse it in this place.

Dr. Wehsarg has examined the healthy feces. He makes a few remarks on the meconium and the feces of sucklings, which includes nothing new. He passes on to the feces of adults: we give his chief conclusions. After describing with unnecessary minuteness the forms, consistency, and colour of the feces, he goes on as follows:

1. The reaction of the feces is usually acid, but also often neutral or alkaline.
 The cause of the alkalinity (ammonical?) is not mentioned.

2. The quantity in twenty-four hours, averages \(\frac{3}{4} \) to \(\frac{5}{3} \) (English); the extremes being, in these observations, \(\frac{3}{1} \), and \(\frac{3}{7} \) (nearly). These differences depend on the peculiarity of the individuals, and also on other circumstances,—such as diet and external conditions. It may be said, as a rule, that the quicker the food passes through the intestines, so much the more copious are the feces.

3. The quantity stands in no determined relation to the weight and height of the individual, but depends much more on his digestive power.

4. A normally firm stool contains on an average, in 1000 parts:

\[
\begin{align*}
\hline
\text{1000}
\end{align*}
\]

But the proportion in different persons varies considerably.

5. The excretion of solids in twenty-four hours averages about \(\frac{3}{8} \) (English). It varies from 247 to 880 grains (English).

6. The quantity of undigested food varies greatly; the average amount is about 52 grains. It does not appear that this amount of undigested food is less in those cases in which the intestinal contents are retained for a long time.

7. At least 48 hours are necessary before the bowels are entirely emptied after a meal. After exclusive flesh-feeding, the excess appears, after 48 hours, in the stools, and so, also, does the excess of cod-liver oil, when very large doses have been taken. Some substances need a longer time, such as grape-stones and fruit-seeds. Other substances are much quicker, such as sulphuric acid, magnesia (4 hours), and carbonate of iron (12 hours).

8. Under the microscope are found remains of food of various kinds; vegetable cells, hairs, spiral vessels; sometimes bread-crust. Muscular fibrilla, coloured with bile, are always present. Starch is often found, and amorphous fat. Finely-divided "fiecal masses"—i.e., granulo-cellular masses without determinate structure, are also seen, and crystals of ammoniacal-magnesian phosphate, in all cases in which the stool is alkaline or neutral. Cholesterine plates have never been found.

9. The "ether-extract," in 24 hours, averages 100—120 per 1000 parts (of the solids). Its range is 85 to 552 per 1000.

10. The alcohol-extract averages 150 per 1000. It is much increased in diarrhoea.
11. In the alcohol-extract, Pettenkofer’s test for bile acids gave only once a positive result. Nitric acid added to the fresh faeces gave only twice an undoubted reaction of bile. Therefore, as a rule, undestroyed bile is not found in the faeces.

12. The water-extract averages 209 per 1000 of solids. It is increased in diarrhoea.

13. The amount of salts in the faeces is, as compared with the amount in the urine, very trifling. Sulphuric acid and chlorine are found only as traces, or frequently are absent altogether, unless large quantities are taken. The chlorine was found oftener than sulphuric acid.

14. The principal insoluble salt is phosphate of magnesia; phosphate of lime exists in very variable quantity; generally there are traces of iron.

Hering has investigated the condition of the faeces in pathological conditions. After taking one ounce of rock-salt, a loose acid stool was passed which contained 20.8 per cent. of solid constituents, and among these were 6.6 per cent. of rock-salt. There was no sulphuric acid or bile-ingredients. A large portion of the rock-salt passed off by the urine.

Two loose stools, passed by a patient with tuberculosis of the intestines, had the following composition:

<table>
<thead>
<tr>
<th></th>
<th>I.</th>
<th>II.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aether extract</td>
<td>11.8</td>
<td>9.5</td>
</tr>
<tr>
<td>Alcohol extract</td>
<td>28.2</td>
<td>35.9</td>
</tr>
<tr>
<td>Water extract</td>
<td>43.9</td>
<td>63.7</td>
</tr>
<tr>
<td>Insoluble salts</td>
<td>5.8</td>
<td>Chlorine 7.3</td>
</tr>
<tr>
<td>Chloride of sodium</td>
<td>9.0</td>
<td>Phosphoric acid 4.8</td>
</tr>
<tr>
<td>Alburnum</td>
<td></td>
<td>8.4</td>
</tr>
</tbody>
</table>

The stool of an hysterical patient contained a large quantity of gas, consisting of sulphuretted hydrogen and carbonic acid; the stool contained, also, albumen, and presented under the microscope many vegetable cells and muscular fibrillae.

Some other analyses of a similar kind are given, and then the following conclusions are drawn from all the observations:

The stools may become changed both as to quantity and quality. In diarrhoea, the water is increased, and, compared to the water, the solids are diminished, but the absolute amount of solids excreted is increased. The quantity of undigested food is greater than natural. The alcohol-extract, which includes the biliary constituents, is increased; the water-extract and the salts are always increased; the earthy phosphates, and especially the magnesia-salts, are increased. Sulphuric acid is present in bilious diarrhoea; iron is present when purgatives have been given, and always when iron has been taken as medicine. Albumen is not present during purgation by medicine in healthy individuals, but is present in intestinal tuberculosis, in typhus, cholera, and dysentery.

2. Dr. Bacon determined the amount of fat in a highly-fatty liver; 750 grains yielded 398.5 grains of fat, = 53.13 per cent. The whole liver weighed 10 lbs., and contained, therefore, 5 lbs. 5 oz. of fat. The subject from which the liver was taken was highly intemperate, but was not tuberculous.

VI. DISEASES OF THE URINARY ORGANS.

5. A new Method of determining the Amount of Urea. By Dr. E. Davy. (Philosophical Magazine, June.)

1. Dr. Alfred Vogel has determined the amount of urea and chloride of sodium excreted in twenty-four hours, in a great number of patients. The now well-known method of Liebig was the one employed. The following are his conclusions:

(I.) In typhus (abdominalis = typhoid fever) and in pyæmia, the excretion of urinary ingredients (urea and chloride of sodium are the only ones determined, rec.) is increased as long as the febrile symptoms continue. The chloride varies especially, according to the food; it is particularly diminished in great splenization of the lungs. The increase of the urea indicates the consumption of the nitrogenous tissues.

(2.) When the fever is over, the quantity of urea falls below the normal amount, in spite of the increased quantity of nitrogenous food; it then, after perfect recovery, returns to the physiological standard.

(3.) In morbus Brightii of both kidneys, without acute complication, the urea is diminished in amount, though the quantity of urine is usually increased. The chlorides vary according to the food, and to the increase and decrease of the dropsy.

(4.) Kidney calculi, or cysts, do not diminish the excretion of water and of urea, if a portion of the kidney is still capable of its functions.

(5.) In rapid absorption of serous exudations, the quantity of water and of the chlorides is greatly increased; the urea is also but moderately increased. Under these circumstances, the amount of the chlorides rises and falls in proportion to the quantity of urine; this is not the case with the urea.

(6.) In polydipsia hystérica the quantity of urine is enormous, but the absolute quantity of the urea and of the chloride is small. The solids of the urine are not augmented with the water; and of the solids (here examined) the chloride passes off more readily than the urea.

(7.) As determined by Heller and Beale, the chlorides diminish in pneumonia, as long as the hepatisation proceeds, and increase after resolution.

(8.) A certain quantity of urea (6—8 grammes = 92½ to 123½ grains in twenty-four hours), is present in the most extreme atrophy, and when no nitrogen is introduced by food into the system.

On looking over the tables, we observe that the largest amount of urea ever noticed was in a case of pyæmia, in which it reached the enormous amount of 1235.5 English grains in twenty-four hours. The next greatest amount was in a case of typhoid fever, in which, in twenty-four hours, 1063·636 grains were passed. (The normal average, according to Bischoff, is 540·540 grains.) The lowest amount excreted was in a case of eacrinoma of the liver, with great atrophy; on one occasion there were only 104 grains excreted in twenty-four hours.

2. The object of Dr. Lamaestre's paper is to call attention to one of the termination of pyelo-nephritis. When pyelo-nephritis has reached a certain point, and the urine and pus cannot be got rid, there is, of course, great dilatation of the pelvis and calyces (as in hydro-nephrosis). The tumour thus formed may finally open in various directions—viz.: (1) Externally, and then usually in the lumbar region. (2) Into the peritoneum; a very rare occurrence. (3) Into the alimentary canal. In the very few instances in which hydro-nephrosis was supposed to have opened into the stomach, great doubt exists whether such was the case. Of four instances referred to by Rayer, three were in hysterical women, and the fourth case is very imperfectly recorded. The opening into the duodenum is also very rare; only one case in medical literature is known to the author. The opening into the colon is much more common, and many cases are mentioned from the time of Avicenna to Rayer. The rupture into the rectum is again uncommon; a case is described by Cruveilhier. (4) Into the liver. The tumour, when on the
right side, has been known to contract adhesions with the liver, and finally, an
abcess, formed partly by the kidney, partly by the liver, is produced. Once the
liquid was known to traverse the liver, and penetrate through the diaphragm into
the lung. (5) With the lung. Only 4 cases are on record (Rayer), and in 3
of these the disease was in the left kidney, and the perforation on the same
side.

All these details are brought together by Dr. Lamaestre, in order to illustrate a
case observed by himself. A woman had a tumour on the right side of the abdo-
men, as large as the head of an adult, extending from the liver to the iliac spine
and umbilicus; it was perfectly dull on percussion, was hard and little painful.
The urine was very thick, and deposited a large greyish (purulent?) sediment.
After death, the tumour was found to be caused by a calculus imbedded in the ureter,
which had given rise to an enormously dilated kidney, containing pus, and commu-
nicating with an abscess in the psoas muscle, which had passed downwards, and
terminated in a cul-de-sac on a level with the little trochanter.

3. Mr. Ranking is of opinion that beriberi is a renal disease, a form of morbus
Brightii. In 11 cases out of 16, he found the urine moderately albuminous. In
8 cases, which were all that were examined, there were blood-corpuscles, casts of
tubes (in 2 cases), and epithelium. In 9 of these cases there was anasarca, co-ex-
istent in one case with ascites. In 14 cases there was numbness without actual
anesthesia. In 6 cases there was paralysis. In 7 cases there were symptoms of
pericardial and endocardial affection. In 5 there was oedema of the lungs. No
post-mortem examinations could be made in any of these cases.

4. In the case of a woman who suffered from pain in the back, and irritation in
micturition, Mr. Harley found a sandy-looking deposit in the urine, which, on che-
metal examination, was found to be composed of silicate of iron. It is an obvious
supposition, that the woman might have introduced the sand into the urine; but in
addition to the deposit, it appears, from an analysis of the urine, that 5-4 grains of
silicate acid were dissolved in the urine, and were passed in twenty-four hours. We
should have been glad, however, to have known how Mr. Harley determined the
quantity of the dissolved silicate acid.

5. We think it better to insert in this place, as well as in the Chemical Report,
an abstract of an interesting paper by Dr. Davy. This gentleman has discovered
what appears a simple, and, according to the present evidence, a accurate mode
of determining the amount of urea. It is founded on a fact discovered by Dr.
Davy, that urea is readily decomposed by admixture with the hypochlorites of
soda, potash, or lime; its constituent nitrogen is given off, and from its amount
the quantity of urea is determined by a simple calculation. The manipulation
appears to be extremely easy; a measured quantity of urine is introduced into a
graduated tube (partly filled with mercury), and then an excess of the hypochlorite
of soda is added and the tube is inverted; in a few seconds the urea begins to
decompose, the carbonic acid is absorbed by the hypochlorite, and the nitrogen
collects in the upper part of the tube. In three or four hours the decomposition
is complete.

Dr. Davy has made some comparative experiments with this and with Liebig's
method; the results very closely accord. Sugar, albumen, bile, and excess of
urinary colouring matter, do not affect the accuracy of the results.

[As this plan is easier and less expensive than that of Liebig's, it is of great
importance to have its accuracy confirmed. We trust that Dr. Davy will give us
more details on this point, as his discovery may possibly turn out to be of singular
value. Circumstances have prevented us from personally testing the plan at
present, and we have not been able to hear that any one else has examined it.]
QUARTERLY REPORT ON MIDWIFERY.

BY ROBERT BARNES, M.D. (Lond.)

Late Physician-Accoucheur to the Western General Dispensary; Physician to the Metropolitan Free Hospital.

I. ANATOMY AND PHYSIOLOGY OF THE GRAVID UTERUS.

ANOMALIES OF GENERATION.

1. Virchow refers to a previous memoir on the dilatation of small vessels, which process he described under the name of cavernous ekstasy, comparing it to the corpus cavernosum of the penis in physiology, and to cavernous tumours in pathology. He ranges the maternal portion of the placenta in the same category. The death of a pregnant woman gave him a new opportunity of confirming and extending his interesting observations on the structure of the placenta. In two instances he has found in the uteri of puerperal women who had died soon after delivery, that the entire uterine mucous membrane is not necessarily separated on delivery. In these cases there was a raw surface at the seat of the placenta, whilst the remainder of the surface of the uterus still bore its mucous membrane (decidua). The decidua serotina is nothing more than that portion of the uterine mucous membrane with which the ovum is in connexion, upon which it rests. The maternal placenta is clearly formed out of an hypertrophy of the uterine mucous membrane, and of vessels at first simple, and later of a cavernous ekstasy of the vessels through the confluence of the dividing walls. In this last, the capillaries, and in part the arteries, but mainly the veins, contribute. Between the ekstic vessels, the tissue of the mucous membrane is, at a later period, for the most part, atrophied. As to the structure of the villi, he finds nowhere in the decidua elements which quite correspond with those of the villus-epithelium. When it is, moreover, remembered that the same epithelial layer is present in extra-uterine gestation, it must, he says, be in the highest degree probable that it is an integral component of the fetus.

The author gives as his conclusions, that we must admit that the fetal villi not only grow through the decidua, but also through the maternal vessels, and that the villi hang free and naked in the maternal blood. In all cases there is, as Schroeder van der Kolk and Goodsir have so much insisted upon, a great cell-layer between the maternal blood and the villi, which the materials which have to reach the fetal blood must pass through. This structure will naturally determine the exchange of materials, and, according to circumstances, may regulate or disturb it; and we may admit that these cells are not unlike the secretion-cells of glandular organs.

2. The case related by Dr. C. O. Weber is remarkable. Matthias Stamratz was born on the 1st Oct., presenting a tumour the size of a child's head attached to the sacrum. The tumour grew perceptibly, stretching the skin, and it seemed certain that the child would gradually sink. It was brought to the surgical

* Arch. für Pathol. Anat., Band III.
† This agrees with the observations of Dr. Duncan, published in this journal, April, 1854.
But if not cast off at once, it may be shed gradually yet completely.
‡ It will be observed that this view of Virchow's entirely confirms that which the reporter expressed in his article on Diseases of the Placenta, concerning the doctrines of Goodsir.
Clinique at Bonn on the 30th Nov., 1853. The tumour was immovably adherent, very soft, and seemingly for the most part consisting of fat; but two fingers were plainly felt united to the sacrum by a broad thick joint. The tumour was removed; suppuratation followed in the wound, but the child eventually recovered, and was sent home at the beginning of 1854. The examination of the tumour showed that the two fingers, which consisted of three complete phalanges, and bore nails, were, by the apparent union of the metacarpal joints and some rudimentary wrist-joints, connected with the sacrum. This formed the basis of the tumour. A very soft fatty tissue constituted the greater portion. Near the surface was found a cyst the size of a goose's egg, containing about two ounces of fluid, yellowish-green, clear matter. The microscopic examination of this fluid showed blood-globules, epithelial-rudiments, and some fat-granules. The chemical examination made by Dr. Boedeker exhibited no pyrin, fibrin, or albumen. It was identified with what Scherer has described under the name of paralbumin.

3. Dr. Thielmann relates the following case of superemation. A peasant-woman, aged 25, had borne, at 20 and 23, girls. In July, 1852, she became pregnant a third time; menstruation appeared twice after conception. On the 26th March, 1853, the first pains appeared, and next morning she was delivered of a girl, small but living; the afterbirth came away normally. The lochia ceased in a few hours. The secretion of milk was so scanty, that the child could not be supported by it. Eight days after delivery, the woman returned to her household duties; but she felt in her left side the movements of a second child. On the 18th May—that is, fifty-two days after the birth of the first child—pains came on, and the birth of a second living girl, somewhat smaller, followed. From this time the secretion of milk went on so freely, that both children derived sufficient nourishment. M. Thielmann says this case was officially certified.

II. Diseases of Women in the Unimpregnated State.

2. On the Treatment of Uterine Deviations by Catheterism and the Intra-Uterine Pessary. By MM. Valleeix, Depaul, and others at the French Academy of Medicine. (Arch. Gén. de Méd., June; L'Union Méd., April, May, June, July, 1854.)

1. Dr. Joachim has found that the establishment of menstruation takes place at different epochs in the different races dwelling in Hungary. In the Magyar peasant girls, between 15 and 16 years; in Jewesses, between 14 and 15; in Slovacks, between 16 and 17. Profuse menstruation is very common amongst Jewesses, whilst the Hungarian women more frequently suffer from retarded menstruation, with nervous symptoms. Protracted menstruation, also, is more frequent amongst Jewesses, which may be owing to the frequent use of the tepid bath. As remedies, the author speaks of vegetable acids, followed by phosphoric acid and preparations of iron.

He adverts to a form of leucorrhoea arising from want of cleanliness, and which may occur in young girls. He recognises a form of leucorrhoea having for its foundation a scrofulous diathesis; in this form the genitals are lax, the mucous membrane relaxed, sometimes ulcerated, the mucous secretion thin and dirty-grey. In these cases, cod-liver oil appears to operate especially upon the affection of the mucous membrane, the iodide of potassium upon the glandular system, muriatic salt-springs upon the sanguification, and sea-bathing upon the skin and nervous system. Syphilitic leucorrhoea is not uncommon amongst the inhabitants of Hungary and Siebenbürgen; the treatment of this is extremely difficult, on account of the singular mode of life of this people. A frequent cause of vaginal leucorrhoea in Hungary is found in the excessive use of spirituous drinks and emmenagogues:
crocus, sabine, and aloes are the chief of these. Discharges of blood are most frequent during the period of evolution. One of the most common causes of metrorrhagia is washing in marshes and fens; amongst delicate girls in the village-schools, chastisement with rods not unfrequently gives rise to uterine hemorrhages.

Simple congestion of the uterus bears a great resemblance to inflammation of this organ; the most common form is the rheumatic. Myorheuma comes on most frequently with fever; in the evening, piercing dragging pains come on in the pelvis, spread over the thighs and loins, and disappear soon to recur, until amidst spasmodic pains, a serous, or mucous, or sanguineous discharge takes place from the womb.

2. A keen and protracted discussion, in the Academy of Medicine, concerning the uses and dangers of the uterine sound and intra-uterine pessary in the treatment of uterine deviations, has recently elicited the opinions and experience of all the eminent obstetric practitioners of Paris. The immediate subject under discussion raised almost every important question in uterine pathology and therapeutics. It is not considered expedient to reproduce at any length the conflicting views elicited concerning many points branching out from the main question; but merely to give a condensed abstract of the more practical points. The occasion of the discussion was an elaborate memoir by M. Valleix, which had been called forth in order to refute the statement, that two fatal cases had occurred in consequence of the use of the instruments referred to.

The first case was related by M. Broca, and death was attributed to inflammation caused by the uterine sound. M. Valleix, analysing the symptoms, seeks to prove that the patient died of intestinal strangulation, aggravated by recent peritonitis, but that the catheterism had nothing to do with the production of these conditions. The second case was reported by M. Cruveilhier: the death was attributed to inflammation caused by the sound and wearing the intra-uterine pessary. M. Valleix calls in question the accuracy of the history of the case; and succeeds in throwing great doubt on the conclusion that the inflammation was owing to the local treatment. He thus proceeds to give the result of his general experience. He admits that accidents may arise during the mechanical treatment of uterine deviations. Out of 108 cases treated by the intra-uterine pessary, he has once seen symptoms of partial peritonitis produced; this, he says, might have been avoided, had he used then a shorter intra-uterine stem, as he has since done. Five times he has seen peri-uterine phlegmon; but the consequences have never been serious. Menorrhagia has been pretty frequent. He has witnessed attacks of hysteria, and ephemeral febrile attacks; but these were of no importance. He then cites the experience of M. Mauvoix, of Geneva, who had supplied him with the rēs dēc of six cases treated without accidents. M. Piachaud had once met with excess of uterine sensibility, and in three cases menorrhagia, but without serious result. M. Gaussaut reported five cases and no accident. M. Caradec, of Brest, several cases without accident. M. Broussoinet, of Montpellier, had ten cases; in two there was acute pain; and in two metrorrhagia. In thirteen cases treated by M. Le Diberder once treatment was suspended, on account of fatigue; and this patient experienced a slight febrile movement the first day. M. Valleix adds these 45 cases to his own 108, and observes, that true accidents happened only six times out of 153 cases, and that these accidents were all subdued.

M. Valleix then considers the pathology of uterine deviations, and the curative value of the mechanical treatment. In order to save space, and to present, in the most comprehensive form, the opinions of the different physicians who took part in the discussion, we shall classify these opinions under two or three heads.

1. The Pathological Value of Uterine Deviations.—M. Valleix admits that some women experience no inconvenience; but contends that in the great majority of instances serious symptoms result. Pain, increased by walking, and tactile examination, painful and frequent micturition, observed in 23 cases; out of 35 of antversion, and in 3 out of 33 cases of retroversion. Defecation was difficult; and
painful 23 times out of 33 cases of retroversion, and 18 times out of 35 cases of anteversion. Then the general symptoms were severe. Metrorrhagia was frequent. Lactorrhoea existed in all without exception. Abdominal and intercostal neuralgia in a great number. Are these symptoms due simply to increased size of the uterus? He admits that in most cases the uterus is enlarged; but contends that since the symptoms disappear when the normal position is restored, that the deviation is the true cause. He further contends, that the enlargement and engorgement cannot be subdued, so long as the deviation is allowed to remain.

M. Hervey de Chegoin contends that simple displacement of the womb may cause serious local and general disturbance, but admits that deviations are sometimes the consequence of engorgement and other uterine disorders. M. Amussat expresses a similar opinion. MM. Valleix, Huguier, and Hervey all agree that sterility may be caused by retroflexion. M. Velpeau strongly contends that mere displacement, and especially retroflexion, may produce the most serious consequences, irritation and inflammation not only of the uterus itself, but of the surrounding structures. M. Robert describes two kinds of deviations: primitive, chiefly the result of sudden mechanical violence; secondary, following upon engorgement or inflammation of the uterus. The primitive deviations may be followed by inflammation and enlargement of the uterus as the effect of the deviation. M. Malgaigne, also, and other speakers, acknowledged that mere deviation was sometimes sufficient to induce local and general symptoms calling for relief. On the other hand, M. Cruveilhier maintained that the uterus, strictly speaking, had no proper axis, that its direction was at the mercy of the surrounding floating organs; hence deviation could not be a disease. M. Depaul advocated a similar view, and referred the symptoms complained of by women in whom deviation existed to primary structural disease of the uterine.

2. As to the Efficiency of Mechanical Treatment.—M. Valleix says, that in about three-fourths of the cases, the intra-uterine pessary has effected a radical cure. He says it has not been shown that there exists any other treatment applicable to all the cases, so effectual and so speedy. In the deviations backwards, the indiarubber pessary may be employed with advantage, on the condition of previously raising the uterus by the sound. He asserts emphatically, that in many cases the cure was definitive, the deflected uterus being permanently restored to its natural position. M.M. Robert, Ricord, and others support the conclusion of M. Valleix, with some qualification. Velpeau thinks the intra-uterine pessary useful in some cases, and that the dangers have been greatly exaggerated. Amussat says, that in 1826, he had contrived an intra-uterine stem, but abandoned the use of it after one unfortunate case, in which a young woman, after taking too long a walk, whilst wearing the instrument, was attacked with inflammation and died. He says, the intra-uterine pessary can only give temporary relief, and is often dangerous. He advocates a mode of treatment he has himself imagined for the relief of retroversion; it consists in producing, by means of slight cauterization of the posterior part of the uterine neck, adhesions capable of maintaining permanently the erect position of the uterus. He cites several cases in which this proceeding was successful. Malgaigne thinks the intra-uterine pessary useful in exceptional cases. Huguier gives it a more extended application. He says it is especially useful in cases of acute deviation—that is, those produced by sudden violent exertion. He also asserts its value in certain cases of obstinate amenorrhoea: in such cases the instrument will frequently bring on periodical menstruation. In retroversion he prefers the air-pessary of Gariel.

Depaul strongly condemns both the intra-uterine pessary and the uterine sound, as useless and dangerous. Dubois admits that in some cases the stem-pessary is easily borne, and sometimes quite harmless. Sometimes, he says, it is followed by temporary relief; but he does not believe it has ever accomplished the end proposed; the inflected uterus has not been restored to its natural form, nor the deviated uterus to its natural position. He has employed the intra-uterine pessary experimentally at the Beaujon in 20 cases. In some the relief obtained was con-
siderable; but in all, the deviation persisted after the treatment was discontinued. He has also examined several patients who had been treated by Dr. Simpson, and has found the deviations existing. When relief follows, therefore, this is not owing to the rectification of the direction of the uterus; it is owing to the subsidence of inflammation, which may be facilitated by the support afforded by the pessary, in the same way as an inflamed testicle is relieved by support. M. Dubois thinks the instrument may be of especial service in certain cases of uterine hyperesthesia, unattended by inflammation or deviation. He says, some of M. Valleix’s successful cases were of this nature.

It is worthy of remark, that several of the speakers cited distinct and undoubted instances of retroflexed or bent uterus; a pathological condition, in the existence of which some physicians do not believe.

III. Diseases of Pregnancy.

The writer observes, that of late many cases of jaundice had occurred in his neighbourhood, and that commonly the affection was by no means dangerous, but that the case was widely different when pregnant women were attacked. He remarked, that all those who were delivered in the course of the disease died in a day or two afterwards, in the midst of the most marked cerebral symptoms. He had collected 11 cases of this nature, and details 4 of the most interesting. The history of all is similar; and they reveal nothing beyond the fact referred to.

IV. Parturition.

1. Case of Spontaneous Premature Delivery Thirty-six Hours after the Apparent Death of the Mother. By Mayer. (Verh. de Phys. Med. Gesellsch. in Würzburg. 1854.)

2. On the Action of Secale Cornutum. By Feist. (Mon. Schr. für. Gebt., i. 4. 1854.)

3. On the Aqueous Extract of Belladonna as a Substitute for Ergot. By Dr. Somar. (Bull. Gén. de Thér. Tom. 47. 1854.)

4. On Turning by the Head by External Manipulation. By Hoffr. Spengler. (Mon. Schr. für Gebt., ii. 2. 1854.)

6. Cesarian Section performed three times on the same Woman. Case reported by Dr. Bajavel, of Carpentras. (Rev. Thér. du Midi. 1854.)

1. The case related by Dr. Mayer is one of remarkable interest. M. H., a well-nourished woman, 45 years old, felt the movements of the child for the fourth time in the middle of November. In March last, hæmoptysis and symptoms of inflammation of the right lung came on with some severity; these increased; and on the 31st March, apparent death came on by suffocation. For the two previous days she had ceased to feel the child. She was removed to the dead-house at 4 P.M. on the 1st April. She had remained, in the meantime, on her back in a warm room, covered up in bed, undisturbed for thirty-six hours. All the members of the family, and others, visited the deceased from time to time, and occasionally sprinkled her face with holy water. No one remarked the death-distortion of the features, or any cadaverous odour. When the undertakers were drawing on a shroud, they observed between the genitals a half-round, bright-red, smooth body, which they took for a prolapsus of the womb. There was a small
spot of blood with fibrine in the bed, surrounded by a larger wet place. The men had not observed the rigor mortis, nor the general loss of heat, nor any cadaverous odour. Early on the 2nd April, a few hours before the time for internment, the men thought to examine the swelling they had seen the day before. Great was their astonishment to find, between the thighs of the corpse, a new-born female child, dead, and connected with the mother by the umbilical cord. Dr. Meyer being summoned, found no absolute evidence of death, such as are commonly found fifty-four hours after death. The internment was stopped. The body examined; several old adhesions were found in the right pleura, and a pleuritic exudation in the right side of the chest; red hepatization and great congestion of right lung. The uterus was of the size of the fist, free from gaseous development, and laying in an oblique direction from right to left, so that the os uteri, widely open, was found behind the horizontal branch of the left os pubis. The placenta was still in organic relation with the fundus uteri; the inner surface of the uterus showed no trace of beginning maceration; the cervix was of a dark bluish-gray, whilst the cornua uteri and the two sides were of a bright red. The uterus' surface not covered by placenta was covered with fresh black blood-clots, which could only be removed by the scalpel. Nothing found in the body could render it probable that death had taken place, as it appeared to have done, fifty-nine hours previously.

The body of the fetus confirmed the account of the mother as to its age, which she estimated to be twenty-one weeks. Dr. Mayer puts the following questions:—

1. Was this woman really or only seemingly dead on the 31st of March? This he answers by referring to the absence of the usual signs of death, and concludes that she had fallen into a deep syncope, favoured by the warmth of the bed and of the apartment. 2. When and through what power was the delivery effected, or did the womb act after death? He replies, the birth took place about forty hours after apparent death, through long and feeble uterine contractions. He excludes the idea of delivery after actual death. 3. Was the child born alive? He answers in the negative. 4. Is it possible that the expulsion of the fetus was effected in the dead mother by the development of gas in the abdomen? The condition of the body observed negatives this. (It seems to the reporter highly probable that the sprinkling of the face with water may have excited some degree of uterine contraction, so that the labour had begun before the removal of the body to the dead-house. The expulsion of the fetus was effected solely by the peristaltic and diastaltic action of the uterus. The case bears some analogy to delivery under profound anaesthesia from chloroform.)

2. The researches made in the Charité at Berlin, leave no doubt that the ergot gathered before the harvest was completely efficacious, and that the ergot gathered after the harvest was wanting in any medical virtue. The manner of preserving it is important; it must be protected from moisture and insects. The indications for the administration of ergot mentioned by M. Feist do not differ materially from those generally admitted.

3. Dr. Soma relates three cases in which he gave the extract of belladonna during labour. He attributes to this remedy more energy and quickness of action than the ergot possesses. He observes that a dose unusually large was tolerated with advantage. He gave two or three table-spoonfuls of a mixture consisting of five ounces of the vehicle, and eight grains of the extract, every ten minutes. The cases related do not appear to be sufficiently numerous or precise to be conclusive as to the power of belladonna in exciting uterine contraction.

4. Hofr. Spengler observes that turning by external manipulation is usually recommended in those cases only in which the liquor amni has not escaped; but he relates a case of shoulder presentation, in which he succeeded in turning by the head long after the waters had escaped. It occurs to him that the woman
should lie upon that side on which the child’s head is felt, and that a hard cushion should be placed at the spot where the head lies.

5. A primipara, aged 30, who had suffered from rachitis in early life, was seized with pains at the normal end of gestation, on the 2nd of February, 1854; the waters broke at 8 p.m.; the head did not come down into the pelvis, and the pains ceased. Turning was tried, but from the contraction of the brim, proved impossible; the conjugate diameter measuring two inches and a half only. The Cæsarian section was determined on at 11 p.m. The placenta was cut through in incising the uterus, and considerable hemorrhave followed. The child, a boy, lived and was reared. Some degree of inflammation followed, but was subdued by treatment. Six weeks after the operation, the patient had quite recovered. The success of this case is justly ascribed to the operation having been performed before the patient had suffered from protracted labour.

6. Madame Crémieux, a Jewess, born about 1788, affected with marked deformity of the skeleton from scrofula, arrived at the end of her first pregnancy in 1812. The child presented by the feet. The late M. Laurans being called by the midwife, tried to extract it, but only succeeded in bringing away the limbs and the trunk, the head remaining in the uterus. M. Barjovel, père, effected the delivery by Cæsarian section; the woman recovered between the thirtieth and fortieth days. On the 27th of February, 1815, she was again in labour. The child presented by the back, and became impacted. M. Barjovel performed the Cæsarian operation again. The child lived down to 1833. The woman suckled her child. On the 22nd of April, 1819, she was again in labour. This time a young surgeon, recently arrived from Paris, was called; he adopted the method of Lauverjac (the transverse section on one side of the abdomen); but the patient sunk the same day of violent hemorrhage.

QUARTERLY REPORT ON FORENSIC MEDICINE, TOXICOLOGY, &c.

By W. B. KESTEVEN, F.R.C.S.,
Member of the Council of the Epidemiological Society.

I. MEDICO-LEGAL PSYCHOLOGY.

Homicidal Insanity.—The case of Mary Ann Brough, tried at Guildford on the 7th August last, has excited considerable diversity of opinion upon the question of the legal responsibility of the prisoner, charged with the murder of six of her children. All the facts of this tragedy have been made familiar to our readers through the columns of the daily newspapers. Those only which bear upon the determination of the sanity or insanity of the prisoner need here be alluded to.

There was medical and other evidence to the effect that the prisoner had been the subject of disease of the brain since September, 1852. Her medical attendant, Mr. Izod, had warned her of danger from mental excitement. Dr. Winslow from a careful consideration of the facts of this case, had arrived at the conclusion that the crime was the result of a homicidal impulse beyond the power of the prisoner to control.

In answer to a question put by Mr. Bodkin, Dr. Winslow expressed an opinion, from what he had heard in the prisoner’s case, that her brain was structurally disorganized, and he said this would render it much more disposed to be affected by any moral shock. He went on to say that the mere fact of an enormous crime being committed without any apparent motive would not alone induce him to come to the conclusion that the party committing it was insane, but he said that if he found any one had killed a near relation without any motive, and that it appeared
they had, up to the time of the act being committed, been on kind and affectionate terms, he should certainly think that, prima facie, it was an indication of insanity, but he should not positively come to that conclusion without regarding all the other surrounding circumstances.

Upon being re-examined, Dr. Winslow said he was of opinion that, at this moment, the prisoner was suffering from disease of the brain.

Dr. Daniel and Dr. Inglefield were then examined, and they stated that they concurred in the opinions expressed by Dr. Winslow.

From the prisoner's statement, it appears that, just before the commission of the deed, "there was something like a black cloud" over her eyes; that she scarcely knew what she was about until after the loss of blood from her attempt to cut her own throat—"that nasty great black cloud was gone then!" and that she then again became fully aware of all that had passed. She had suffered during the whole of that day from headache, for which she had sent for medical aid, but her medical attendant being from home did not see her. She was, moreover, exhausted by watching and nursing her children, who were ill with measles. She had tended them with all the care and fondness which she had ever shown them. She had been known as an indulgent, careful mother. It is hardly necessary here to observe that this history resembles thousands of others, inasmuch as an irresistible homicidal impulse is commonly manifested towards the objects of the warmest affection.

There was, in addition to the circumstances connected with the actual commission of the murders, evidence that her mind had been in a sufficiently disturbed condition to have led her, a short time previously, to have contemplated suicide. A box was found in her room, containing plate and jewellery. "On the top of the box there was a piece of paper, and on taking this up, the prisoner said to the police inspector, "I thought not of doing of it until Friday night." The paper was read; it was as follows:—"All for my daughter Mary. Her father is only seeking to get money from them as never injured him or done him any harm, so help me God. —MARY ANNE BROUGHT." "(Evidence of the police officer.) There were moral circumstances connected with her state of mind which must not be lost sight of. It had transpired that the prisoner had for some time previously been carrying on adulterous intercourse, which had recently been discovered by her husband, who had for that reason lived separately from her, and had threatened to remove their children from under her charge. It was to prevent this last separation, as she alleged, that she perpetrated the crime. "He had left me penniless," she said, alluding to her husband; "he was going to take the children—I thought he should not." "No mere strangeness of manner, no mere eccentricity of conduct, no mere delusion, were of themselves sufficient" (as was justly observed by Mr. Bodkin, the counsel for the prosecution) to establish the conclusion that the prisoner was insane. It was, however, apparent from the evidence of the witnesses, medical and non-medical, that this woman had been suffering for more than a year under disease of the brain—that she had, at the very time of the murders, a deranged condition of the cerebral circulation, caused by the fatigue of nursing and night-watching; this congestion, which had caused a "cloud" over her eyes, had passed away with the loss of blood resulting from her attempt at suicide. Such was the opinion of the jury; such was the opinion of the medical men who gave their evidence at the trial, as well of others who were not called on either side; and such must be the opinion, we think, of all who are capable of examining and judging, the medical facts of the case. We cannot, therefore, express sympathy with the invectives of the daily and other journals which have so angrily discussed the verdict of acquittal on the ground of insanity. The cry raised by some of the periodical literature of the day, with regard to the legal responsibility of this woman, savours too strongly of a demand for blood—a total perversion and misapprehension of the words, "Whoso sheddeth man's blood by man shall his blood be shed." The conclusions of these writers are, for the most part, founded upon an imperfect apprehension of their data, or they flow from a foregone conclusion: they are one and all untenable.
It cannot by any logical deductions be shown that the prisoner committed these acts consciously, and with a full knowledge at the time that she was committing a crime. There was ample ground to conclude that, previously, her brain was diseased; and it cannot be denied that, under such conditions, an uncontrollable homicidal impulse is not an unfrequent result. There was an entire absence of proof of premeditation. The motives which have been assigned are totally inadequate to account for such a deed by a woman who had always been a kind and fond mother.

Testamentary Capacity.—Roberts v. Kerslake and Wife.—An important case has been tried at the Warwick Assizes, August 4th. The will of the deceased Henry Roberts was contested by his sister and brother-in-law. The testator had always been eccentric and peculiar in his conduct, but had shown himself a shrewd and sagacious man of business, and had been very successful in his commercial transactions. About the time of the execution of the will he was suffering under bodily illness, which, it was alleged by the defendants, was of a nature to affect his testamentary capacity. On the other hand, it was maintained by the plaintiff that any appearance of insanity was merely the delirium of bodily illness, and not the delusions of an unsound mind, from which he was entirely free on the date of the signature. The health of the testator had been impaired since 1850; his ailments had been chiefly rheumatism and an affection of the liver. He for some time persistently refused the aid of medicine; but when at last he consented to take medicine, his symptoms were improved for a time. His maladies, however, became augmented, and, on the day before the execution of the will, he was for a short time delirious. Between the date of that occurrence, and his death, he was, at various times, delirious, manifesting delusions on different and totally unconnected subjects. These delusions he did himself recognize to be such as soon as they subsided, as they did at intervals, and he became perfectly calm and composed.

Dr. Franklin, his medical attendant, had witnessed his signature to the will, and deposed to his mental soundness at the time. Dr. Franklin regarded these delusions as the delirium caused by disease of the liver, of which he died on the 1st of February. “Post-mortem examination of the body showed an enlarged and congested liver, and numerous gall-stones. The membranes of the brain were thickened, and there was serous effusion within the cranium. The white substance of the brain bore a diminished proportion to the cortical structure. The puncta cruciata were more numerous than usual. The skull was exceedingly thick.”

Dr. Conolly, who had been many years acquainted with the testator, was also of opinion that the delirium in the present case was the result of the disease of the liver. Dr. Alfred Taylor considered that the morbid condition of the brain may have been the result of disease of four or five weeks’ standing. The delusions noticed during life were attributable to disease of the liver. The evidence adduced on the side of the defendants did not date the delirium before the first week in December. The most was made of the testator’s eccentricities, which, however, it seems, had never prevented the witnesses holding intercourse with him as with any other sane man.

Dr. Winslow was of opinion that the morbid appearances observed within the cranium must have been of some months’ duration. Dr. Winslow referred more particularly, as evidences of the previous long existence of insanity, to the thickened condition of the bones of the skull, the attachment of the dura mater to the medial line of the skull, the vascularity of the pia mater, the effusion of serum under the arachnoid, the thickening and opacity of the serous membrane. “Had I examined the testator’s brain,” observed Dr. Winslow, “and found the changes mentioned, I should, without any further knowledge of the case, have come to the conclusion that the testator died of mania.”

With respectful deference for the opinion of Dr. Winslow, we cannot help thinking that a conclusion so arrived at would have been unsound. The same and greater morbid changes in the substance and coverings of the brain have been
found where, during life, there has not been the slightest mental disturbance of any kind. More frequently still, does insanity exist without leaving its traces on the brain. We should be disposed to doubt whether Dr. Winslow has been correctly reported, to have stated that sub-arachnoid effusion could not exist without deranging the mind.

The pathological conditions of insanity are as yet too little known to render it safe to trust more to post-mortem appearances than to symptoms manifested during life. In the case before us, we do not perceive the difficulty suggested by Dr. Winslow, of detecting the line of demarcation between eccentricity and insanity. Here the eccentricity has been known and recognised for many years; the delirium had been noticed only during the last few weeks of a life then drawing to its close from bodily disease. There had been no fixed or permanent delusions existing during all these years; but, during the last few weeks, changing and shifting delirious ideas, which moreover were sometimes entirely absent. There is a broad distinction to be made between mental derangement, and the delirium of bodily disease.

The testator possessed the power of fixing his attention upon any subject, and manifested correctness of memory, except when delirious. He had shown no sudden change of character; even his wanderings of mind partook of his usual violence or exuitability of temper. We, therefore, cannot doubt the correctness of the conclusion of the jury, that the testator had a testamentary capacity at the time that he signed his will.

Testamentary Capacity.—Duke of Manchester v. Bennett and others.— This case has already been argued twice in court, and is again to be brought before a jury, leave for a new trial having been given. We shall reserve a fuller account of the evidence and opinions on both sides until the event of the ensuing trial. It may, however, be stated here that the will itself was in perfect conformity with the intentions of the testatrix, as expressed long before its execution. The validity of the document was contested on the ground that the Duchess of Manchester was not of sound mind at the time of signing her will. The testatrix had been ill for several months from bodily disease, which caused her at times to be delirious, and to give expression to delusions of a most absurd character. The evidence of Dr. Verity, the medical attendant, as to the matter of fact, was to the effect that the delusions were but the delirium resulting from bodily disease, and that there existed no permanent mental derangement. Other medical witnesses, expressing opinions only upon the evidence placed before them, came to the conclusion that the duchess was insane, and therefore not competent to make a will. Having carefully read the evidence as published, the latter opinion appears to be unfounded, and we anticipate a confirmation of the verdict of the first jury, that the will is valid.

Paigned Insanity.—M. Morel, Physician in Chief of the Asylum at Maréville, has given the following instructive case. Rambaud, convicted of forgery, was admitted in a furious state, attacking his keepers, and talking incoherently. This state continued for several days, but his delirium, when compared with that of others, presented peculiarities which caused M. Morel to suspect its reality, although he was not at that time aware of the cause of his admission. When asked his age, he answered, “It is five kilometres from here to Nancy,” to the question, “Of what country are you?” he replied, “Ah, you would assassinate me, you are in disguise,” &c., &c. The peculiarities of his answers struck even the ordinary attendants; the truly insane do generally, notwithstanding the violence of their maniacal fury, return answers that have some connexion with the questions put to them, if they reply at all, although it is impossible to maintain a conversation with them.

Having been threatened with the cold douche, he became calm, but still incoherent. On its actual application, in the mildest possible form, the following day,
II. Miscellaneous.

Presumption of Survivorship: Case of Underwood v. Wing.—The loss of the Dalhousie emigrant ship, bound for Australia, in October, 1853, will doubtless be remembered by our readers. On that occasion only one sailor survived of all who were on board. Among those who perished were Mr. and Mrs. Underwood, of Bumpstead, in the county of Essex, and their three children. Being entitled to some property, the parents, previously to leaving England for Australia, respectively made their wills; the dispositions of which wills have come before the Master of the Rolls, as a question of survivorship. Mr. Underwood was forty-three years, and his wife forty years of age. They had one daughter aged eighteen years, and two sons of the respective ages of fifteen and thirteen. By their wills the one gave to the other absolutely their respective properties, providing that if the one to whom the same was given should die in the lifetime of the donor, the property should be equally divided among the three children, on their attaining majority; and that in case all their children died under twenty-one, they directed that their property should go to their mutual friend, Mr. Wing. Consequently by the provisions of these two wills, the gift to Mr. Wing was dependant upon the wife dying in the lifetime of the husband, or vice versa; since, if it could be shown that both died at the same instant or point of time, they actually died intestate; the will being void, except in the case of the survivorship of either party. This was, in fact, the ground taken by the plaintiff, who claimed as next of kin to the daughter who survived.

The sailor, Joseph Reed, who survived the catastrophe, stated that he saw Mr. Underwood, and his wife, and two of the children, swept off the deck into the sea by a wave, and that they were not seen afterwards. The daughter was soon after seen struggling in the water; she was extricated by Reed and another sailor, and lashed to a spar, but has not since been heard of.

The point to be established was, that Mr. and Mrs. Underwood did actually expire at the very same instant in time:—a thing of the most extreme improbability. Medical evidence was given on both sides, the greater weight of which was to the effect that the husband must necessarily have survived the wife. Such was the opinion of Dr. Alfred Taylor, Dr. Brinton, Mr. Paget, and, we believe, others. The contrary opinion was held by Mr. Hancock and Mr. Wootton. The latter opinion must, however, be looked upon as wanting support from physio-
logical science, while the former may be laid down as an incontrovertible conclusion. Mr. Underwood was a tall, muscular, and powerful man, with a broad chest, and was a good swimmer. Mrs. Underwood was a little woman, of delicate habit. The scientific presumption from the circumstances and the condition of these two persons is, that the wife would immediately sink, and through fright would perhaps faint, and so be rendered powerless to make any effort to save herself, even if she did not die at once. Having on only her night-clothes, there would not be that physical means of buoyancy from the garments, which sometimes enables drowning women to float after immersion. The bodily conformation of Mr. Underwood would enable him to resist drowning, and maintain himself at the surface for a time. A strong male adult would be certain to make some effort to save himself, and as a good swimmer he would have still more chance; moreover, he would not be so likely to lose his presence of mind as a delicate nervous woman. It is, therefore, consistent with the laws of physiology, to conclude that Mr. Underwood survived his wife.

It was urged on behalf of the plaintiff that death was simultaneous from asphyxia, caused by submersion in the sea. From what has already been said, it is evidently next to impossible that these two individuals, so dissimilar as to physical condition, could have been equally submerged. Even supposing this to have been the case, it is not admissible by the laws of physiology that their hearts should both have ceased to beat at the same instant or point in time. A greater and longer struggle for life would of necessity exist in the stronger of the two. This is to be seen in the efforts for the resuscitation of drowned persons, which will succeed with strong healthy males, and will fail with females, ceteris paribus. It is also probable that the poisoned effects of the circulation of black blood in drowning are more rapid in proportion to the delicacy of the habit of body—more so in females than in males—more so in children than in either.

The Master of the Rolls, however, disregarding the medical evidence of such eminent physiologists, and adopting simultaneity of death in the loosest and widest possible sense, decided that there was here no survivorship! The similarity of the circumstances attending the deaths of these unfortunate sufferers was evidently taken by Sir John Romilly as constituting their deaths simultaneous! As well might he have affirmed that the deaths of all on board were simultaneous, because they happened on the same day; as much was the death of the daughter herself, upon whom survivorship and inheritance was decreed by the "Master," simultaneous. There is indeed no proof, either that she survived her father, as we know not how long he may have swum about; neither have we proof that the daughter is even now dead. The spar to which she was lashed has not since been found or heard of, yet it was one of the largest on board the ship, and well worth being picked up by another ship; though improbable, it is not-impossible, that the poor girl may have been saved by some outward bound ship. Improbably as this may appear, it is far more credible than that Mr. Underwood did not survive his wife.

We may refer our readers to Dr. Beck, for an interesting collection of cases bearing upon this question. (Medical Jurisprudence, vol. i., chap. x. Albany, United States. Two Vols. 8vo. 1851.)

Death from Natural Causes or from Disease, where Poisoning has been suspected.—

M. Tardieu relates the principal facts of thirty cases observed by himself in the course of a few years, wherein unfounded suspicion of poisoning has been raised. These cases are arranged as those where the cause of death was at once manifested by the autopsy, and those wherein the cause remained matter of doubt, and the further aid of chemical analysis was required. In the first category were: cases of ileus, or intestinal strangulation, of typhoid fever, of rupture of a cyst in the liver, of simple chronic ulceration of the stomach, ulceration with perforation of the intestines, acute peritonitis, pelvic tumours, cerebral congestion and hemorrhage, pulmonary apoplexy, meningitis, pneumonia, asthma, morbus cordis.
In the second category were: cases of cholera, enteritis, gastro-enteritis, intestinal hemorrhage, indigestion.—Annales d’Hygiène, July.

An interesting case of this kind (sudden death from perforation of the duodenum) is recorded in the ‘Association Journal,’ August 18, by Mr. J. S. Shepherd, of Manchester.

Period at which a Body Drowned will Float.—A man, named Shoemaker, was alleged to have been drowned on the 4th of September; the body was found floating on the 7th September, three days afterwards; if it were universally true that bodies do not float until decomposition takes place (in the waters of the Hudson under from six to ten days), then this could not be the body of Shoemaker. Amongst the conflicting evidence given on the trial was the following: Dr. Benjamin Budd, assistant coroner in New York, “had had occasion to see many drowned bodies, say 150. Never knew a body to rise in less than six days, unless some mechanical means were used to raise it. Should judge the body to have been in the water from ten to twenty days. Has never known a body to be in the water less than seven days that was mutilated by the fishes. Bodies that have been hooked up in three, four, or five days, have not that peculiar bleached appearance as those present that come up in seven to ten days.”

On the other hand, Henry C. van Wie, four years coroner of the county of Albany, has held a good many inquests on drowned bodies. Has known two or three instances where the bodies have risen in three or four days. They will bleach out directly in warm weather. They will be mutilated by fishes directly after decomposition takes place. Remembers an instance of holding an inquest on a body that drifted ashore, and had been drowned four, five, or six days. Had held in one season inquests on fifteen infants under three months old, found floating in cigar-boxes, near the city of Albany, cases doubtless of infanticide.—Philadelphia Medical and Surgical Journal, quoted in the Lancet, August 12, 1854.

In the same journal is the following:—A youth, named Ritter, recently fell into Elk River, in New England, and remained in deep water fifteen or twenty minutes before he was brought up, when he recovered as from an epileptic fit, to which disease he was subject, and by which he was attacked on crossing a log.

Death from Fright.—A man who had been two years bedridden having been seized with temporary delirium, walked down stairs into a room where his wife was sitting. She became so impressed with the delusion that she beheld his spirit that she died shortly afterwards from the shock to her nervous system.

Singular Mode of Strangulation.—A woman was found dead in a room with her neck resting on the edge of a fish-kettle. It was supposed she had fallen in a fainting fit, and, not having been able to rise, had thus become strangled.

Death from Starvation—Loathsome Condition of the Body during Life.—On the 25th May, a poor old woman, between 80 and 90 years of age, was found lying in a quarry, between Plympton and Tavistock, where she had lain since the 18th in a state of exhaustion and starvation. The persons who found her had at first taken her to be a mass of old rags. She was alive, but speechless and senseless. Every part of her was covered with maggots, called “hoppers,” developed from the eggs of the *musca carnivora*. Her eyes were not visible, their cavities, as well as the mouth and nostrils, the ears, and the wrinkles on her face, being filled with maggots. The right side of the body was paralyzed. The left arm moved with some strength. She was placed in a warm bath, and freed as much as possible from the maggots, but they rapidly re-appeared. Some improvement took place in her condition, the pulse became stronger, and there was a promise of returning consciousness, but she died on the following day. From the empty state of the stomach and intestines, and the emaciated condition of the body, it was evident that the deceased had been starved to death.
There were no means of identifying the deceased, further than that a stick was found near her which had been given to her by a poor woman a week previously, and who had also given her a meal.—Abridged from the *Morning Herald*, June 5th.

The above case possesses this medico-legal interest, that had life been extinct when the body was found, it would have been supposed that death had occurred several days previously; had the question of manslaughter or suicide been involved, much perplexity might have been occasioned.

Supposed Poisoning by Pine-thistle.—In March last, three children and one adult, at Douera, suffered from symptoms of poisoning, after having eaten the plant *chardonnelle* (*Atractylis gummifera, Carduus pinensis*). Of these individuals one, a child aged four years, died. This child, when first seen by Dr. Commaille, of Douera, Algeria, was lying on its back, with its arms extended along the body, the legs stretched, the eyes closed, the teeth so clenched that it was impossible to open the jaws; there were large violet stains upon the integuments, the face was marbled with violet, the lips were bluish, the pulse imperceptible, the respiration slow, and the ribs raised by shocks. There were no convulsions.

The symptoms were very similar in another fatal case. Nineteen hours elapsed between the deaths. The younger died first. The elder had passed some away by stool, the younger had not. Post-mortem examination. Integuments of head and membranes, and substance of brain, greatly gorged with dark blood. The lungs and liver in a similar condition. The right side of heart also full of blood. Stomach healthy, except a patch of inflammation in greater curve. Mucous membrane of bladder inflamed—contained much urine. The remains of the plants were found in the stomach and intestines.

Decoction of the root of the *Atractylis* acted as a poison on kittens, producing similar appearances.

Six cases of poisonous consequences, with death in four instances, from the same plant, are recorded in the Archives of the Institute, March, 1839, by M. Bouros, a physician at Athens.—*The Chemist*, August, and *Journal de Chimie Médicale*, June.

III. TOXICOLOGY.

Experiments upon the Woorara Poison.—M. Alvaro Reynoso has investigated various methods for retarding the absorption of this poison into the system, and of promoting its continual elimination, so that it shall not accumulate in sufficient quantity to cause death. The means employed by M. Reynoso are the caustic, cupping, and ligature. The ligature prevented the absorption of the poison during eight minutes that it was tried on the thigh of a guinea-pig. From M. Reynoso’s experiments upon antidotes, it appears that iodine retards the absorption by altering the character of the woorara, but does not entirely prevent its absorption. Chlorine and bromine entirely decompose it; the latter, M. Reynoso thinks, may be applied with more success than anything else for the cauterization of wounds in which this poison has been inserted.—*Archives Générales*, August.

Toxicological Properties of Dolphinin.—Dr. L. van Praag, of Leiden, gives the following summary of his investigations into the toxicological properties of this alkaloid, when taken into the circulation: restlessness, acceleration of respiration and heart’s action, sense of heat and tingling in the mouth, irritation of the tongue, lips, and nose. After these first symptoms have passed off or subsided, the respiration becomes laborious, the heart’s action slower, loss of muscular power, dilated pupils, anesthesia, nausea, vomiting and purging, diminished secretion of urine. Dr. van Praag concludes that delphinin causes death by paralyzing the spinal cord.—*Virchow’s Archiv für Pathologische Anatomie und Physiologie*, 1854.

Poisonous Effects of Nitrate of Potash.—The Correctional Tribunal of Alger, in
June last, was called upon to decide the amount of compensation to be awarded for injury occasioned by the administration of a dose of nitre by a pharmacists (from 10 to 12 grammes, = from 150 to 180 grs. Eng.), in mistake for cream of tartar. A debate arose upon the noxiousness or harmlessness of the nitrate of potash in such doses. The greater number of toxicological writers, it was alleged, adduced numerous instances of much larger doses having been taken without injury. One of the medical witnesses stated that the symptoms of gastroenteritis were attributable to circumstances in connexion with the condition of the patient at the time, and independent of the dose of nitre. The large doses in which other more powerful medicines are sometimes taken with impunity were also referred to; as also the extent to which nitrate of potash is now given in acute rheumatism. It was, however, decided by the Court that injury had been inflicted, and the apothecary was fined two hundred francs, besides having to suffer ten days' imprisonment.—Bulletin Général de Thérapeutique, July 30th.

The Detection of Phosphorus in Poisoning Cases.—M. Lipowitz has successfully employed a process for the detection of phosphorus, based upon the action exerted by sulphur upon phosphorus in a state of division. When these two metalloids are boiled together, they unite and form, according to their proportions, a pasty crystalline mass, which possesses the property of luminescence in the dark, a temperature below 100° C., or 212° Fahr., of being blackened by nitrate of silver, and of yielding phosphoric acid when treated with nitric acid. Chlorine and ammonia destroy its phosphorescence; but when ammonia is used, this property reappears on the addition of sulphuric acid.

In order to detect phosphorus when contained in organic matters, these are to be acidulated with dilute sulphuric acid, and distilled with fragments of sulphur free from sulphuric acid, and the product set aside for further examination. The residue, when cold, is to be washed, and subjected to the tests indicated. The phosphated sulphur will preserve its phosphorescence for a considerable length of time in water. After this has been lost, it still yields phosphoric acid to oxidizing agents. M. Lipowitz has detected the hundred and fortieth part of phosphorus.—Journal de Chimie Médicale, July.

Case of supposed Poisoning with Arsenic.—Early in April, 1853, C. B., the wife of D——, was seized with what appeared to be gastroenteritis; she possessed a feeble constitution, and had never enjoyed good health. The disease took its ordinary course, without presenting any alarming symptoms. On the 12th, the husband went to the physician, and informed him that his wife was dying, and therefore it was unnecessary that he should repeat his visits. Disregarding this intimation, M. M—— visited his patient, and found nothing to excite alarm. In the night, however, of the 13th and 14th, the patient was suddenly the subject of such serious symptoms as excited the suspicions of the medical attendant, and led him to fear the worst result. She was in excruciating pain, of a burning character, in the stomach. Vomiting was frequent. The abdomen tympanitic, and tender on pressure. The right arm and the lower extremities were paralyzed—symptoms inexplicable under the ordinary circumstances of such a case. The patient died on the 15th. The body was buried in a hurried manner, contrary to the injunctions of the authorities.

There was no doubt, from all these circumstances, that the deceased had been poisoned by her husband, who profited by the death, who had prophesied the event, and who, lastly, in order to conceal all traces of his crime, had hastened the interment, contrary to express injunctions. The unintentional admissions of the culprit confirmed the accusation. A friend who had partaken of the broth and of a fig, prepared for the deceased, had suffered from severe colic during two days. The accused was of an avaricious and sordid disposition, and attention once directed led to surmises that this was not the first crime of the same kind that he had committed for sake of gain.
After four days' internment the body was exhumed, and appeared in a state of good preservation. The face was thin, the integuments of the face, neck, and chest, were sound. The abdomen distended with gas, its integuments presented the green lines of incipient putrefaction. There were some traces of inflammatory redness in the stomach and intestines. A dark fluid was found in the stomach, apparently decomposed blood. The bladder appeared slightly inflamed, and contained a small quantity of dark-coloured fluid. Altogether, the post-mortem appearances which are recorded in the reports appended (with the proximity usually to be noticed in such matters by French and German writers), presented scarcely enough to account for death either by disease or poison, but sufficient to excite suspicion of the action of arsenic.

Chemical analysis, performed by two medical men, gave evidence of traces of arsenic in the intestines, but not in the stomach. Slight traces were also detected by the employment of Marsh's test to clothes, &c., from the person of deceased, upon which a number of minute crystalline bodies could be discovered by the use of the microscope. Marsh's test obtained from the liver a few brown glittering stains; these were volatilized by a flame of hydrogen gas; they were immediately dissolved by a weak solution of chloruret of soda; they were readily dissolved by nitric acid; chlorine gas obliterated them, but they reappeared, of a bright yellow colour, by the application of sulphurous acid gas: from all these characters, it was concluded that these stains were arsenical.

Against this conclusion it was urged, on the part of the accused, that the analysis had been performed upon insufficient quantities of matter; that the alleged arsenical stains had not been obtained from the viscera of deceased, and that deceased had died from disease. The judge having regard to these representations, ordered re-exhumation of the body, and a further, more extended, and minute examination by distinguished experimenters in medico-legal analyses. The duty was intrusted to MM. Bussy, Chevallier, and Reveil, who were also required to state their opinion of the correctness and value of the previous medico-legal report. We can only find space for the conclusions of the elaborate report of these eminent chemists.

Experiments performed upon the linen, &c., of the deceased did not yield any traces of arsenic; neither did the fluid found in the thorax (the lungs, heart, and other viscera, had been removed for the preceding examination and analyses). No arsenic could be detected by them in the deeper muscles, nor in the other fluids of the body. Washings of the winding-sheet and other material taken out of the coffin yielded traces of arsenic, as did also portions of integument of the body, and some of the superficial muscles. The earth of the grave and of other parts of the cemetery in which the body had lain yielded arsenic; to the admixture of which with the remains of deceased, the reporters attributed the traces of arsenic they had discovered.

The spots obtained by Marsh's apparatus, and regarded as arsenical in the previous analysis, appeared to the reporters to present the characters of those caused by antimony rather than arsenic; their opinion was confirmed by chemical examination. The result was that the prisoner was acquitted.—Annales d'Hygiène, July.

Examination of the Remains of a Human Body Twenty-eight Months after Internment. Death from Poisoning with Arsenic.—M. Dreu relates the particulars of a case in which, by exhumation and analysis of the remains of a body which had been buried twenty-eight months, the fact of poisoning with arsenic was brought home to the culprit. We here confine our notice to the condition of the grave and its contents.

The soil was argilo-calcareous, the grave about six feet deep, and during the winter contained water. On opening the coffin, a skeleton was found denuded of its soft parts, and free from fetid odour. Some hair was adherent to the skull. The sternum and ribs had fallen in upon the vertebral column. From the position...
of the bones of the superior extremities, it was evident that these had been crossed upon the epigastrium immediately after death. In the pelvis was some organic débris, and in the hollow of the sacrum a yellow mass, apparently resembling human feces. The lower extremities, retained in their position by their ligaments, were, as well as the rest of the skeleton, reposing in a blackish semi-fluid mass, composed of the débris of organic matters, and having an earthy rather than a fetid odour. The bones of the hands and feet had become detached. Except the osseous system and the brain, none of the organs could be recognised. The brain was entire, but diminished in volume, by a kind of condensation of its tissue, which was more firm than in its normal state.

The peculiar condition of this body was due, doubtless, to its alternate exposure to inundation and dryness. These circumstances, however, do not explain the exemption of the brain from the process of putrefaction. The irregularities of its surface and its membranes had disappeared; the grey substance could not be distinguished from the white matter; the entire mass was of a greyish colour. When the cranium was opened, the most fetid odour was emitted, and the brain shortly after lost its consistence. It appeared as if the elements of fermentation, so long suspended, had rapidly resumed their activity on the occurrence of new conditions. Arsenic was detected in the brain as well as other parts of these remains.—Annales d’Hygiène, April.

Alleged Poisoning by the Introduction of Visiting Cards into the Mouth.—"In the month of August, 1853, Dr. Caffe was summoned to see a child who was suffering from the usual symptoms attending poisoning by a salt of copper. Dr. Caffe found the child holding in its hands and at the mouth some green-coloured cards, which the nurse would not take away for fear of making it cross. Vomiting was easily induced, and in the matter thrown up was found the cause of the symptoms. The infant rapidly recovered."—Medical Times and Gazette, July 15th.

The above history wants a definite account of the date of the occurrence and duration of the symptoms. Taking it, however, as it is, it appears more probable that the symptoms were attributable to Scheele’s green, the symptoms of poisoning by copper not being so acute, and requiring longer for their development, than those of salts of arsenic.

Two cases are quoted from the Gazette des Hôpitaux in which lead poisoning undoubtedly was produced in children by swallowing pieces of white visiting card.

On the Detection of Copper in Organic Matters.—M. Georges has related a series of experiments, whence he concludes that the carbonization of animal matters serves for the detection of the presence of copper; the carbon washed in distilled water, without yielding any cupreous solution, will give evidence of its presence when acted upon by nitric or hydrochloric acid. Simple incineration M. Georges has found to be attended with volatilization of a salt of the metal, probably from its combination with chlorides; incineration, preceded by carbonization with sulphuric acid, is not open to the same source of error, but permits of the quantity of copper present being ascertained with exactness.—Journal de Chimie Médicale, April.

Detection of Arsenic in a Body after Ten Years’ Interment.—On the 15th February, 1842, E—— was seized with pain in the stomach, cramps, thirst, and vomiting, and died in the evening of the 17th. On the 24th July, 1852, the body was exhumed; little more than its skeleton remained. The brown, crisp hair of the head was adherent to the cranium; the bones were covered with a slaty, gelatinous substance, in which, on the ribs and rings of the trachea, were sprinkled numerous yellowish-white chalk-like spots. The soft parts were not distinguishable. No odour was emitted on opening the coffin. The parts of the skeleton were in their relative anatomical positions, with the exception of the clavicles, the sternum, a few of the ribs, and the small bones of the hands and feet, which had fallen off.
On close examination, it was observed that the other bones were not retained in their position by ligaments, but were simply in contact, which the slightest touch disturbed. The thorax was open where the ribs had fallen in. No trace existed of the oesophagus, heart, or lungs; in the place of the lungs, there was seen only a brown, greasy mass, having the appearance of spleen. The liver had been transformed into a half-indurated substance; the other abdominal viscera were also half dried. The remains of these organs were placed in a jar, to be submitted to chemical analyses, which detected as much as ten grains of arsenic in the parts thus removed. A considerable quantity, it was evident, must have been taken during life, to have left so much after the vomiting, purging, &c., which had occurred. By this medico-legal investigation the crime was traced.—*Caspar’s Vierteljahresschrift*, April.

Poisoning by the External Application of Arsenic.—A French peasant who had had chronic ulcer on his face for fifteen years, was persuaded by a carpenter to allow him to undertake the cure thereof. A plaster was applied, and on the same day the patient experienced general indisposition; on the following day severe headache, and vomiting and purging manifested themselves; after four days of acute suffering, the patient died. Chemical analysis proved the presence of arsenic. The carpenter was sentenced to three months’ imprisonment.—*Journal de Chimie Médicale*, July.

In the same Journal for August, the case is related of a man who narrowly escaped death, at the hands of his wife, by the administration of a similar poison.

Chloroform in Poisoning by Strychnine.—A case is related in which the violent cramps caused by one or two grains of strychnine were prevented. The chloroform was inhaled from a handkerchief during four hours. The patient was a man forty years of age.—*Pharmaceutical Journal*, 1854.

Poisoning with Tobacco.—The Times of the 22nd of June, reported an instance in which a father gave to his male child, aged ten weeks, a small piece of tobacco, with the intent of making it sleep. The child slept during one whole day, was ill and peevish on the following day, and died on the fourth day.

Another case of poisoning by *bichromate of potash*, is recorded in *The Lancet*, May 20th.

Poisoning by Chemical Matches.—M. *Boudard* detected the phosphorus from some matches in the case of a girl, who died in less than twenty-four hours from the accidental contamination of broth thereby.—*Journal de Chimie Médicale*, July.

REPORT ON THE OPHTHALMOSCOPE.

BY T. WHARTON JONES, F.R.S.

Professor of Ophthalmic Surgery in University College, London.

Of the works, the titles of which we have given,* that of Dr. *Van Trigt*, translated by Dr. Schauenburg, is the one from which the following notice of the ophthalmoscope has been principally compiled.

* Helmholtz. *Beschreibung eines Augenspiegel zur Untersuchung der Netzhaut im lebenden Auge.* Berlin, 1851.—(Description of a Speculum Oculi or Ophthalmoscope, for the Exploration of the Retina in the Living Eye.)

Kraeue. *Der Augenspiegel und das Optometer.* Göttingen, 1852.—(The Ophthalmoscope and Optometer. Göttingen, 1852.)

Dr. Van Trigt's work was composed under the guidance of Professor Donders, of Utrecht, and originally appeared as an academical thesis under the title of ‘Dissertatio Ophthalmologica de Speculo Oculi,’ and afterwards, with additions, in Dutch, in the ‘Onderzoekingen gedaan in het Physiologisch Laboratorium der Utrechtsche Hoogeschool. Zoon V. 1852—53.’

In the beginning of the eighteenth century, Mery having accidently held a cat under water, distinctly observed the colour of the bottom of the eye, and the blood-vessels ramifying thereon. Five years afterwards, Lättie examined the phenomenon, and showed that the eye held under water becomes so adjusted—the refractive action of the cornea being so neutralized—that the rays passing out from it are divergent; whence it is that they admit of being brought to a focus on the retina of the observer's eye. The retina of the eye under water thus comes to be seen.

When the human eye with the pupil dilated is viewed in a certain direction, a dark red reflection from the bottom may be seen. Attention was drawn to this phenomenon, and the conditions under which it is observable, by Mr. Cumming, in the ‘Medico-Chirurgical Transactions’ for 1846, and shortly after by Dr. Brücke, in ‘Müller's Archiv.’ The appearance is remarkably evident in cases of congenital absence of the iris, and had been some years before studied in a case of the kind by Behr, in ‘Hecker's Annalen,’ 1839.

Dr. Kussmaul, in an essay on colored appearances at the bottom of the human eye, published at Heidelberg in 1845, endeavoured to explain how it is that the interior of the eye ordinarily appears dark and that the bottom is not seen. In illustration of the influence of the refractive media on the visibility of the bottom of the eye, he adduced the following experiment: Take an eye—a sheep's eye will do—and remove the cornea. On looking towards the bottom it will still be seen dark, because the retina lies nearly in the focus of the lens; but as soon as this body is removed, the retina and its bloodvessels become visible. That the position of the retina within or without the focus is the cause of its not being visible, he proved by removing a part of the vitreous humour. By this the lens approached the retina, which thus came to lie within the focus, and was seen as if through a convex glass magnified. Herein is afforded an explanation of the cases of far-sightedness in old persons in which the entrance of the optic nerve is visible at the bottom of the eye. By atrophy of the eyeball in like manner the retina comes to be distinctly seen. The same takes place when the retina is morbidly thickened, pressed forward by exudation, and, as is well known, in encephaloid tumour.

Dr. Brücke's observations on the reflection of light from the bottom of the eye we have above referred to. In illustration of the subject, Dr. Von Erlach communicated to him the following curious fact. Dr. V. E., who wears spectacles, noticed that the eyes of other persons appeared to him to shine when the person observed saw the image of the lamp flame reflected in Dr. V. E.'s spectacles.

Van Trigt. Der Augenspiegel, seine Anwendung und Modifikationen nebst Beiträgen zur Diagnostik inneren Augenkrankheiten. Nach dem Holländischen mit Zusätzen bearbeitet von Dr. C. H. Schauenburg, Docenten an der Universität zu Bonn. Lahr, 1854.—(The Ophthalmoscope; its Employment and Modifications, with Contributions to the Diagnosis of the Internal Diseases of the Eye. Translated from the Dutch of Dr. Van Trigt, with additions, by Dr. C. H. Schauenburg, Tutor in the University of Bonn. Lahr, 1854.)

Ed. Jäger. Uber Staar und Staaroperationen, nebst anderen Beobachtungen und Erfahrungen aus seines Vaters, Dr. Friedrich Jäger, k. k. Prof. &c., &c., und aus der eigenen Ophthalmologischen Praxis. Wien, 1854.—(On Cataract and Operations for Cataract, with other results of Observations and Experience, from the Practice of his father, Dr. F. Jäger, and from his own. Vienna, 1854. pp. 89—109 in the Ophthalmoscope.)

* Researches carried on in the Physiological Laboratory of the University of Utrecht, in the Session of 1852, 53.
In this accidental observation of Von Erlach, it will be seen below, lies the principle of the ophthalmoscope.

Before passing in review the results of the exploration of the interior of the eyeball by means of the ophthalmoscope in order to establish a diagnosis of the morbid states of the vitreous body, retina and choroid especially, let us examine the construction and mode of employing the instrument.

Dr. Helmholtz, of Konigsberg, has the merit of specially inventing the ophthalmoscope. It is but justice that I should here state, however, that seven years ago Mr. Babbage showed me the model of an instrument which he had contrived for the purpose of looking into the interior of the eye. It consisted of a bit of plain mirror, with the silvering scraped off at two or three small spots in the middle, fixed within a tube at such an angle that the rays of light, falling on it through an opening in the side of the tube, were reflected into the eye to be observed, and to which the one end of the tube was directed. The observer looked through the clear spots of the mirror from the other end. This ophthalmoscope of Mr. Babbage, we shall see, is in principle essentially the same as those of Epksens and Donders, of Cocceius and of Meyerstein, which themselves are modifications of Helmholtz’s.

Helmholtz began by inquiring how it is that the pupil and bottom of the eye appear dark, notwithstanding that the retina, the place of entrance of the optic nerve, the vessels of the retina, &c., reflect light. He showed, as Kussmaul has previously endeavoured to do, that rays which, proceeding from a given point, come, by the refraction they undergo in passing through the dioptric parts of the eye, to a focus on the retina, return in the same direction, in so far as they are reflected from the retina, and that they, therefore, by the refraction they undergo on re-entering the air from the eye, converge again to the same point outside the eye as that whence they originally diverged. When we look into an eye, we intercept most of the incident light, and an image of our face, especially of our eye and pupil, is projected on the retina of the observed eye. But seeing that the reflected rays have the same direction as the incident, no rays from the observed retina can return to the eye, because they proceed from the place occupied by our pupillary image. Now, as from the pupil of the eye no rays proceed, it is natural and necessary that the pupil appear black.

The condition necessary, in order that light reflected from the retina of another person’s eye may fall on our own, is this: that we look into the eye to be observed in the same direction as that in which the light is incident on its retina. Helmholtz effected this in a very simple manner.

The eye C looks into the eye D through B, which consists of four superposed glass plates disposed at an angle of 50°, and by which the light from it is reflected into the observed eye D in the same direction as that in which the observing eye C looks.

The rays reflected from the bottom of the patient’s eye being, however, convergent on entering the eye of the observer, cannot come to focus on his retina. To meet this, Helmholtz interposed the concave lens E, whereby the rays of light from the bottom of the eye under examination are rendered somewhat divergent. They thus admit of being brought to focus on the retina of the eye of the observer, who accordingly perceives a distinct image of the appearances looked for. Follin and Natchet’s ophthalmoscope* is merely Helmholtz’s, with the addition of a convex lens to condense the light as it falls on the reflector.

Coccius' ophthalmoscope consists of a small plain mirror with a hole in the centre, so placed that the light which falls on it from a lamp, concentrated by a double convex lens, is reflected into the eye to be examined. The observer looks through the hole in the centre. When the observed or observer's eye is shortsighted, a concave glass is placed before the observed eye.

Meyerstein's improved and simplified ophthalmoscope* is the same in principle as Coccius', only more conveniently and compactly constructed. The light is thrown into the observed eye in a similar manner by Donders' and Epkens' ophthalmoscope, but the adjuncts of the instrument are much more complicated. (See Van Trigt's essay for a detailed description.)

In the ophthalmoscopes just referred to, the reflection is effected by plane surfaces, on which, however, except in Helmholtz's, the light is condensed by a convex lens. In the ophthalmoscopes now to be noticed, the reflection of the light is effected by a concave mirror, whereby its concentration is at the same time secured. The annexed is a diagram of Ruete's ophthalmoscope. The rays from the flame, as reflected by the concave mirror A B (10 inches focus), fall in a state of convergence on a convex lens C, in front of the observed eye. By this the rays are so much more converged that by the additional refraction they undergo on entering the eye they quickly come to a focus, cross, and fall in a state of great dissipation on the retina, so that this is extensively illuminated. The observer D looks through a hole in the middle of the concave mirror.

Ulrich's ophthalmoscope† is constructed on the same plan, but is more compactly arranged.

Anagnostes's ophthalmoscope is simply a concave mirror, 4½ inches focus, with a hole in the centre, supported on a handle.

Jager's ophthalmoscope, which appears to be very compact and convenient, may be adjusted with either a plane or a concave reflector, on Helmholtz's or on Ruete's principle.

It would be out of place here to attempt any account of the details of construction of the different ophthalmoscopes.

The anterior segment of the eyeball comprising the cornea, aqueous humour, iris, pupil, and crystalline body, admits of being explored sufficiently well for all practical purposes by the ordinary daylight, concentrated, if necessary, by means of a convex lens of four inches focus.

For determining that the crystalline body still exists, the catoptrical test is of real practical value. Its use, moreover, in assisting the differential diagnosis of amaurosis and incipient—perhaps also black—cataract is considerable, but is likely to be superseded by the ophthalmoscope. Formed cataract, long before the time when operative interference is called for, can always be sufficiently well observed, the pupil being dilated, by ordinary direct examination.

By means of the catoptrical test, it is not to be forgotten that in 1838, Dr. Mackenzie illustrated and confirmed the fact which he had discovered some ten years before, that the lens is the seat of the peculiar opaque sea-green appearance in glaucoma.

Whilst the morbid states of the anterior segment of the eyeball are thus suffi-

† Beschreibung eines neuen Augenspiegels, von Dr. R. Ulrich, praktischen Arzte zu Göttingen, (Heuie und Pfeuger's Zeitschrift, N. F., Band iv. Heft 2, 1853.)
ciently accessible to objective exploration, those of the posterior segment, comprising the vitreous body, retina, and choroid, could formerly, with some exceptions, be determined only from the attendant subjective phenomena.

Of the exceptions alluded to, some, such as encephaloid tumour of the retina, &c., have been above instanced. The following passage, extracted from Mackenzie's 'Practical Treatise,' p. 508, third edition, 1840, gives an interesting example of a different kind:

"I had under my care, at the Glasgow Eye Infirmary, a young man with incomplete amaurosis in each eye. His vision had failed suddenly about two years before. At that time it was subject to frequent alternations, becoming suddenly diminished, and as suddenly regaining its usual acuteness. He complained of headache, with painful sensations over the body. He was troubled with red spectra before the left eye, but not before the right. The left eye was presbyopic, but with the right eye he perceived near objects more distinctly than distant ones. Deep in the right vitreous humour, a spotted opaque appearance was observed. On dilating the pupil by belladonna, it was evident that there were two sets of opacities behind the lens. One, consisting of a central spot with numerous opaque threads radiating from it, especially downwards and outwards, was situated exactly in the axis of the eye, and a little way behind the lens. The other opaque spot was much deeper in the eye, but without any radii, and evidently moved up and down when the patient moved his eye. Each pupil possessed considerable power of motion, and there was no tremulousness of either iris. I considered the appearances in the right eye as indicative of inflammation of the hyaloid. In two subsequent cases, I have seen similar appearances. In one of these I discovered what I considered the effects of hyaloiditis on diverting the light of a gas jet through the pupil with a lens."

Furthermore, Dr. MacKenzie tells me that by concentrating the daylight by means of a convex lens he has seen red angular patches on the retina. The retina, when bulged forward and flapping in the dissolved vitreous humour, can be well seen.

Though the physical exploration of the state of the posterior segment of the eyeball has been hitherto incomplete, it must be confessed that this defect in our means of diagnosis was practically little felt. Having determined that the disease was not seated in the anterior segment, and thus per exclusionem, and from the nature of the subjective symptoms, together with the objective symptoms presented by the anterior segment, and by the eye considered as a whole, referred it to some part of the posterior segment, we were in a position to conduct our treatment of the case not with less efficacy at least than can be done now when it is possible, in many instances, to discover by means of the ophthalmoscope opaque spots, shreds, &c., swimming in the vitreous humour, and congestion with extravasations, exudations, and pigment-deposits in or behind the retina.

The use of the ophthalmoscope is necessarily circumscribed by the capacity of the eye to bear the concentrated light.

"If," says Van Trigt, p. 118, "the answer to the question, 'Has the treatment of eye diseases gained anything by the ophthalmoscope?' must be for the present in the negative, the high value of the results obtained would not on that account be, by any means, lessened. Diagnosis has the right to develop itself independently. Little advantage would have accrued to practice, properly so called, if diagnosis had taken for the standard of value of its discoveries their immediate use in practice, and thrown overboard without appreciation whatever did not come up to that standard.

"Therapeutics, which must rest on experience, begins where diagnosis ends. When diagnosis fails, there is not only no rational therapeutics, but empirical therapeutics even loses all consideration and all future, if not based on adequate differential diagnosis. Spee therapeutica is to be looked for only in the differential diagnosis of morbid processes and states.

"When a cure supervenes on any particular treatment, it must first be asked, what has been cured, if this experience is to bear fruit for future cases."
It is true, that in the exploration of disease every assistance must be welcome, especially such as enables us to observe the morbid changes of structure, and to connect them with the functional disturbance; but, unfortunately, what the opthalmoscope discloses are morbid conditions, which are not, for the most part, more curable by being seen.

One important use of the ophthalmoscope, however, is illustrated in the following case: A boy about ten years old presented himself at University College Hospital, complaining of defective sight. He could see to read only by holding the print close to his eyes, but his sight was somewhat improved by the use of convex glasses of low power. The boy appeared in good health, and the eyes were quite natural looking; so much so that, as was learned from an independent source, the boy had been sent away from two different hospitals in London on the suspicion that he was feigning. As the boy's account of his defective sight was quite clear and consistent, I had no doubt of him, but to test the matter as far as possible, I examined the eyes with an ophthalmoscope, and found the vessels of the retina of both much enlarged and gorged with blood. The eyes bore the light without shrinking in the smallest degree.

The little help which the therapeutics of the eye has as yet derived from the ophthalmoscope appears evident from the results of the observations contained in the works before us.

We have above said that, for all practical purposes, opacity of the lens can be sufficiently well determined by ordinary exploration with the pupil dilated. By means of the ophthalmoscope, however, the smallest opaque points can be seen. For example, Professor Donders, under whose direction Van Trigt's essay was composed, suspected, from entoptical phenomena, the existence of opaque points in the lenses of his own eye, and such were in reality observed on their being examined by means of the ophthalmoscope. The same co-existence of lenticular opacity with entoptical phenomena was ascertained in Dr. Van Trigt's own case.

All this is highly curious and interesting, but what advantage is it of to detect slight opacities of the lens such as cannot interfere with sight in any material degree? We often meet with cataractous opacity quite evident to ordinary examination, notwithstanding which there is still pretty good sight; on the other hand, cases occur in which the diminution of sight is not at all to be accounted for by the appreciable opacity of the lens.

Opacities in the vitreous body in the form of fixed spots, or of undulating membranous shreds and filamentous, have been seen by means of the ophthalmoscope. Commonly seen volitantes, such as any person may observe in himself entoptically by looking through a small aperture in a card, have been proved to be owing to the existence of minute corpuscles in the vitreous body close in front of the retina; but when the undulating shreds and filaments, demonstrable by the ophthalmoscope, occur in the vitreous body, the appearance of muscles has been found very exaggerated, and to interfere materially with the sight.

From Van Trigt's cases it results that affection of the vitreous body appears sometimes to be independent, at other times to proceed pari passu with affection of the retina and choroid. On the other hand, the retina and choroid may have undergone change of structure from chronic inflammation, without any opacity of the vitreous body having taken place.

There is nothing more easy than to repeat Mery's observation of the bottom of the eye of the cat and the vessels ramifying thereon, without plunging the animal under water. All that is required is, after having dilated the pupil by atropia, to put a drop of water into the eye, while the eyelids are held apart, and then to cover the cornea with a small thin plate of glass. By throwing concentrated light through the pupil while the eye is in this state, the ramifications of the vessels of the retina are distinctly seen. It has been proposed to explore the bottom of the human eye in a similar manner, and instruments have been contrived for the purpose by Brücke, Coccius, and Czermak, but the ophthalmoscope is of much more ready and convenient application.
Appearances presented by the Healthy Human Eye under the Ophthalmoscope.—
The red colour which the bottom of the eye presents in man varies in tint. In fair individuals it is brighter; in dark people, on the contrary, it is more of a yellowish brown. The redness is owing both to retinal and choroidal vessels—the former being distinctly seen branching on the uniform red field formed by the more vascular choroid shining through the transparent retina. At the entrance of the optic nerve, which appears whitish-yellow and well-defined, the retinal vessels are seen emerging.

The arteries, of which two ramify upwards and two downwards, are distinguished at first sight from the veins, of which there are two principal trunks, an upper and a lower, by their less breadth and brighter colour. The mode of ramifications of these vessels varies somewhat in different individuals. The veins lie sometimes under, sometimes over the arteries, and accompany them, so far as regards the principal branches, more or less in their further course.

A streak of pigment deposit may be seen at some part or all round the border of the papilla optica.

The retina in the situation of the yellow spot is seen to be little or not at all vascular, and sometimes of a greenish-grey appearance.

Morbid Appearances seen under the Ophthalmoscope.—It is undeniable, says Van Trigt, that in by far the majority of cases of blindness explored, morbid changes in the retina could be distinctly recognised. In some of the cases, no such changes being perceptible, we were obliged to refer the cause of the blindness to degeneration in the brain, or in the trunk of the optic nerve.

In one case (35), as the blindness commenced without photopsy, we expected to meet with an opacity of the vitreous body similar to that observed in a previous case (32). But on examination the vitreous body and retina were perfectly normal; and the remarkable course of the disease, especially the continuance of perfectly unimpaired vision of somewhat more than half the field, distinguished this case from all in which morbid change of the retina had existed. So far the cerebral seat of the disease was to have been à priori suspected.

In another case (34), the concomitant paraplegia indicated a cerebral cause. It might be supposed that when the eye had become quite blind from disease in the brain, some change in the retina itself must also have gradually supervened; as when the optic nerve becomes degenerated after section; and the spots observed in the last case would appear to warrant the supposition. On the other hand, case 35 shows that after a blindness of several years' continuance from a cerebral cause, the retina is not perceptibly changed. The same was also observed recently in a hemiplegic patient who had been long blind.

In two cases (37 and 38), though morbid degeneration of the retina existed, it was not very striking; the only changes were, in one case, the somewhat dilated and unusually distinct appearance of the choroidal vessels, and the irregular dark reflection between them, as also the undefined condition of papilla of the optic nerve; there was no doubt that healthy eyes have never presented such an appearance.

In all the other cases related (continues Dr. Van Trigt), the morbid change was so evident, that even inexperienced observers could not have mistaken them. There were black irregular-shaped spots in front of the clear background, the nature of which Dr. Van Trigt could not determine, though he suspects them to be owing to pigment metamorphosis of extravasated blood, especially as he had seen the same appearance in several cases of injury of the eye. After extravasation in rabbits, intentionally caused, the appearances did not occur. Strongly reflecting white spots, and strong reflection generally, were not unfrequent. Other appearances observed were:—a grey-green discoloured bloodless-looking spot; increased surrounding redness, and great general vascular injection; moreover, change of colour, and an opaque state of the papilla of the optic nerve, strongly reflecting yellow streaks communicating together, which appeared to be choroidal vessels; and, lastly, the retina bulged forward and tremulous in the dissolved vitreous body.
"We have," continues Van Trigt, "hitherto had no opportunity of examining after death eyes which had been explored by the ophthalmoscope during life. We have examined the retina of a woman, in which there were numerous small extravasations of blood. Though no exploration had been made during life, the case is calculated to confirm us in the opinion that the black spots, of such frequent occurrence, have their origin in extravasations of blood. When there has been more opportunity to test exploration with the ophthalmoscope during life by anatomical examination after death, the diagnosis of diseases of the retina, Dr. Van Trigt thinks, will exceed in accuracy that of affections of other parts.

According to Professor Budge, Van Graefe, of Berlin, showed him a cysticerus in the eye with an ophthalmoscope (it is not said in what part of the eye). Coccius speaks of corpuscles which he was inclined to consider as entozoa or convaræ!

Jäger's observations with the ophthalmoscope, though less numerous than those of Van Trigt, give substantially similar results. One of his cases is so interesting as to merit being quoted at length. It appears to have been a case of mild arthritic posterior internal ophtalmia, ending in glancomatous cataract.

"A. B., aged 72, of a robust frame, but troubled with piles, has been for the last year becoming emaciated, without any particular cause. Six weeks ago had repeated attacks of vomiting of blood, which have weakened him considerably. One day, after an attack, he found on awakening that his right eye had become quite blind, so that he could not perceive the hand moving before it, nor even the presence of light.

"Being called a few hours after, Dr. Jäger found, on making an ordinary examination, no perceptible change in the affected eye; but, by means of the ophthalmoscope, he discovered the interesting phenomenon of a disturbed circulation. The media of the eye were perfectly transparent, although increased reflection from the several strata was remarked. The retina appeared of a moderate yellow-red, without perceptible morbid alteration. The optic nerve, at its entrance, which had some pigment deposit at its circumference, and was more of a yellow colour than usual, presented only slight indications of blue spots. The vessels of the retina were, on the whole, not much enlarged, especially the larger trunks. The corresponding arteries and veins were of equal size, and both of a dark red colour; so that the arteries and veins could be distinguished from each other only by the direction of the stream of blood in them, which could be seen with great distinctness. There was no appearance of pulsation (not even in the arteries), as the walls, especially of the larger vessels, remained unchanged; but the circulation appeared, according to the diameter of the vessels, as a slower or quicker, an equable or interrupted (not rhythmical) progression of an unequally red-coloured stream of blood. In the principal vessels, the stream of blood, in the extent of one-fourth to a whole diameter of the vessel, showed lighter and darker red-coloured patches, which, however, by the progress of the blood, were always changing, so that the lighter patches became smaller, and quite ceased at one place to appear again at another. Then the progress of the blood appeared equable, but extremely slow. In the middle-sized vessels, the movement of the blood was quicker, but frequently interrupted for a short time; the lighter patches in the blood were of a paler red; these, as well as the darker, were of greater extent, as much as two or four times the diameter of the vessel. In the finest vessels visible in the optic nerve, the circulation appeared most rapid; but, at the same time also, the most frequently disturbed. The very fine stream of blood suddenly appeared interrupted, the dark red part of the blood drained away, and the little vessel, become scarcely visible on the clear ground, seemed to have assumed the colour of the optic nerve; by and by shorter or longer columns of red blood glided in an interrupted course through the vessel; and, after this, smaller aggregations of red corpuscles, when suddenly the vessel became filled in its whole extent with dark red blood, the individual parts of which seemed rather to roll in a rapid course than to flow smoothly. This circulation (which was of equal velocity in
the corresponding arteries and veins) gradually became visibly diminished, stagnation occurred here and there, so that at the end of twenty-four hours the circulation was completely stopped. The retina had now acquired a somewhat darker red colour than general. The diameter of all the vessels was evidently increased. The smallest vessels were proportionally more gorged with blood. There were no longer any light patches in the vessels, or an interruption of the uniform dark red colour of blood. The middle-sized vessels showed here and there a short interruption in their colour for the extent of half to two diameters. The chief trunks were, to a greater extent, equally filled with red blood. In the smallest and middle-sized vessels there was not the slightest movement, but in the larger there could still be observed, by attentive examination, a diminution of the lighter patches in the course of a minute or two, and at last a disappearance of them in one situation, and their reappearance in another. In such a condition of the circulation, we did not delay the application of a considerable number of leeches behind the right ear, notwithstanding the age and weakness of the patient. A favourable effect manifested itself before the leeches had all fallen off; the patient regained some sensibility to light, and could perceive the waving of a hand before the eye; the circulation of the blood became partly re-established—in the smaller vessels it was pretty rapid, in the upper branches slow, in the lower still arrested. By and by a stronger movement could be recognised, so that at the end of forty-eight hours the stagnation in the lower vessels had also ceased, and the circulation was re-established in the same degree in which it was observed on the first day. There was, however, no diminution in the size of the vessels. The patient had now a more distinct perception of light, and could, though with difficulty, count the fingers of a hand held before the eye, and a little towards the temple. Considering the general condition of the patient, no further abstraction of blood was had recourse to. After twenty-four hours more, the velocity of the flow of blood was observed to be again diminished, but there was nowhere permanent stagnation; the sight had diminished, and some uniform dimness, with increased reflection, was seen in the lens. On the following day various changes supervened, but only slowly and gradually; and at the eighth day an evident difference in the character of the vessels could be for the first time distinguished. The veins retained their original size and colour, but the arteries presented a less diameter, and were no longer so much gorged with blood. The circulation was considerably accelerated, more so in the larger than in the smaller vessels. The motion of the blood, still perceptible by reason of the difference of colouration, appeared more uniform and less interrupted; very distinct in the larger and smaller veins, as well as in the larger arteries, but less perceptible in the smaller arteries. The lighter and darker patches in the blood had increased in number, but diminished in extent, so that the former might amount to from a fourth to a half, the latter to from a half to the whole diameter of the vessel. The opacity and reflection of the lens were not increased, but the sight not improved. On the twelfth day, the colour of the retina appeared lighter red, the size of the veins diminished. The difference between the arteries and veins in diameter, and the lighter colour of the former, were more evident. The greatest diminution in width was exhibited by the smallest veins and arteries, especially by the latter. The different colouration in the blood no longer appeared so uniformly and sharply defined, the circulation more equal and rapid, distinctly visible in the veins, less so in the larger arteries, and scarcely at all in the smaller arteries. The opacity and reflection of the lens were somewhat more increased, the sight nevertheless improved, so that the patient could count with accuracy the fingers of a hand held before him, and recognise the large objects in the room. Three days after this, the circulation could be seen distinctly only in the larger veins. The lenticular opacity had increased, the sight remained unchanged. On the twentieth day, on account of the increased opacity of the crystalline body, the circulation of the blood could no longer be perceived with sufficient distinctness, even in the venous trunks, and therefore further observation was prevented." (pp. 104—109.)
THERAPEUTICAL RECORD.

Albugo. Electro-puncture.—Dr. D. Tavignor (Bull. de Thér., Juillet, p. 49) relates the following:—A young girl, of 19, was attacked with catarrhal conjunctivitis, with enormous chemosis, and infiltration of the cornea with lymph, and a central ulceration occurred, then resolution took place, and finally central albugo was left. After simple acu-puncture, in order to acustom the eye in some measure, the electro-puncture was used. After four sittings, of some minutes each, at least two-thirds of the exuded matter were removed, but the pain was so severe at each application that the patient would not continue the remedy.

Anæsthesia, Local.—During the last two or three years, many attempts have been made to produce local anæsthesia, in order to obviate the necessity and peril of chloroform-inhalation. It is by no means improbable that these attempts will finally lead to some discovery which may be useful in surgery. We have alluded more than once to Dr. Arnott's application of cold, and we now propose to pass in review the other local measures which have been employed. Richet (Gaz. des Hôpitaux, 63—70; Schmidt's Jahrb., ix. 291) describes the older and recent attempts to produce local loss of sensibility by means of ether. The ether is simply dropped on the skin, and allowed rapidly to evaporate. Richet relates 13 cases, in 3 of which tolerably deep operations were performed—viz., the excision of two small tumours, and the amputation of a toe. In the other 10 cases, abscess or carbuncles were opened. Richet uses an apparatus, by means of which the ether is dropped on the part, and at the same time a current of air is directed on it, and causes rapid evaporation. Two or three minutes usually suffice. If a longer time be allowed to pass, some reaction may occur.

Ricord has applied the actual cautery to cancræ in two cases after ether had been thus applied. In one case, no pain, in the other, very little, was felt. In the last case, the use of the ether had been continued too long (five minutes), and some feeling of warmth from reaction had occurred. Brochon also has opened a very tender abscess in the axilla, without giving pain, by means of the rapid evaporation of ether.

Chloroform, or its vapour, has been used frequently since Hardy's paper in the Dublin Journal, in Nov. 1853. The results have been variable, but in many cases insensibility has not been caused. Figuier has used warm chloroform vapour, a little apparatus being used, with a small spirit-lamp, over which chloroform vapour is driven.

Anasarca (Renal). Spartium Scoparium.—Dr. Alvéry (Bull. de Thér., Avril) has employed the infusion of this plant, as recommended by Rayer, in one case. In fourteen days the dropsy and the albuminuria had both disappeared.

Bongies, Spongy.—M. Alquié (Bull. Gén. de Thér., 15 Juin) has constructed bougies of the following kind: Round a whalebone bougie is rolled a sponge; this is reduced by compression to a third of its volume; it is then covered with gold-beaters' skin, and is covered with the salve used in ordinary bougies. The instrument when about to be used is dipped in water, and then, when its point has been touched with cerate, is introduced into the urethra. The sponge slowly imbibles the water, and swells so as to distend the urethra, supposing this to be the canal operated upon. Whether there is then any difficulty in withdrawing the instrument, or any danger of injuring the urethra in so doing, does not appear.

Ricord has used this instrument in two cases of stricture: it was introduced easily, but could not be borne more than an hour; it was withdrawn without difficulty, as the swelling of the sponge was not great.

M. Alquié points out various other possible applications of the sponge-bougies. He alludes to a case in which the fractured nasal bones were held in place easily by its means.
Cholera.—[We cannot attempt to enumerate in this short abstract the various plans proposed. We must content ourselves with a reference to those which appear to be, to a greater or less extent, novel.]

Strychnine.—Much discussion has arisen in Paris with respect to this remedy. M. Abeille (Bull. Gén. de Thér., Août), its advocate, published a most sanguine statement of its powers, and termed it as certain a specific in cholera as quinine in ague. He gave the sulphate of strychnine in doses of one-third of a grain in two ounces of water four times in each twenty-four hours; at the same periods he applied thirty to forty leeches on the base of the thorax, according to the strength of the patient. The statements made by G. M. Abeille have led to the employment of strychnine by many physicians,—viz., See, Grisolle, Renouard, Fremy, Herard, and Verneis, and the result has been that not one of those gentlemen, after a very great experience of strychnine, has been able to perceive the least benefit in bad cases. In slight cases See thinks it useful. Moreover, it is stated by the editor of the ‘Bull. Gén. de Thér.’ (No. 4, 30 Août, p. 199), that he himself went to the Hôpital du Roule, where M. Abeille practises, and found that no other of the physicians there, including M. Boudin, in whose charge the cholera patients were, had the least faith in the practice. The report has also been read to the Académie (L’Union, Sept. 6) by M. Gerardin, on the documents submitted by M. Abeille, in which the statements of this gentleman are shown to be without support, even from his own evidence. We may observe that strychnine has been tried before, and found wanting.

Castor Oil. Dr. George Johnson (Medical Times and Gazette, Sept.) speaks in high terms of castor oil. He administers half an ounce every half hour in water; gives cold water ad libitum; employs external warmth, but gives no stimulants or opium. Out of fifteen cases of collapsed cholera he saved twelve.

In the ‘Times’ of September 21st is a Report, presented to the Board of Health by the Medical Council, in which Dr. Johnson’s plan of treatment is reported on. It appears that it has been unsuccessful in the hands of others. Out of 89 cases treated by fourteen different practitioners, no less than 68, or 76.4 per cent., were fatal.

Croton Oil.—Dr. Stake (Lancet, Sept.) recommends croton oil: one drop with colocynth every hour, “till a full evacuation of bilious matter is procured.” Diluted sulphuric acid, with a little sulphurous acid, is sometimes simultaneously employed to check the vomiting.

The Employment of External Heat and Cold.—In an interesting letter to the Editor of the Bull. Gén. de Ther. (Sept. 15th), M. Legroux states the opinions he has arrived at from the two measures above-named. He believes that the use of great degrees of heat is positively and considerably hurtful. Even moderate heat appears to do harm. “Moderate as it may be,” says M. Legroux, “heat, whether applied externally, or in the form of hot drinks, augments the malaise and the anxiety. Few of the patients find relief. But when the heat is extreme, and produced by the agency of hot metal, bricks, bottles, hot bags, and when thick covertures, cushions, and eider-down pillows are added, the anxiety becomes inexpressible, the dyspnœa is extreme, the patient tosses about vainly, imprisoned as he is by his coverings, for the purpose of perceiving and breathing the cool air; the epigastric fire increases, and the cramps augment in the direct ratio of the heat. It is a veritable torture, a frightful torment. . . . Great heat is fatal to patients with cholera. This fact is incontestable, and the public should be warned of it.”

On the other hand, Legroux has found evident benefit from cold, iced drinks, from allowing the patient to roll freely in bed, so that the cool air may blow upon him.

The author speaks very highly of the effect of sinapisms. “To conclude,” he says, “the fatal effect of an excessive calorification, the benefit of sinapisms, and the good effects of cold drinks, are the only therapeutical facts which it is possible to generalize in the confirmed algide cholera.”
Production of Artificial Dropsy in Cholera.—Mr. Richardson (Assoc. Med. Journ., Sept.) proposes to inject fluid into the peritoneal cavity or the cellular tissue, under the idea that it will be absorbed readily. Some experiments are related to show how easily and how safely the plan may be carried out. We are not aware that it has been tried on any cholera case. [Unfortunately, we are afraid that this ingenious suggestion will, like other plans, not succeed. Strychnine, iodide of potassium, and other remedies, have been injected into the cellular tissue, but have not been absorbed.]

Sulphuret of Potassium.—Dr. Fromentel (L’Union, Août) dissolves this substance in water, with or without sugar, and gives a tablespoonful every half hour or hour.

Sulphuric Acid.—Dr. Fuller (Med. Times and Gazette, August) repeats the favourable opinion he formerly expressed of the utility of this remedy. One ounce of the dilute acid of the ‘Pharmacopoeia’ is added to eleven ounces of water, and one ounce and a half are given every twenty or thirty minutes, according to the severity of the case. Six or eight doses altogether are given.

Cold as an Anæsthetic Agent.—Dr. Wood (Amer. Journ. of Med. Science, July, p. 287) has used cold as recommended by Dr. Arnott. In most cases it met his expectations, but in others entirely or partially failed. Its use is said to be restricted to the minor and superficial operations.

Coryza. Opium Fumes.—In those cases of coryza which are attended with severe pains in the nose and frontal sinuses, Dr. Lombard (Bull. Gén. de Thér., Août) has used with great success the fumes of partially burnt opium. The patient mediates himself by throwing on a slip of metal heated in a lamp a few pinches of opium powder, and then inhaling strongly so as to draw the fumes up the nose. A grain and a half or two grains of opium may be used each time.

Croup. Tracheotomy.—M. Guersant (L’Union, 3 Juillet) gives the statistics of tracheotomy in croup at the Hôpital des Enfants Malades. Up to 1850 the mean numbers of operations were ten (annually); in 1851, there were twenty-five; in 1852, there were thirty; and in 1853 there were sixty. Of 161 children operated on, thirty-six were saved, or one in five, and Guersant believes that this fortunate result would have been still more marked, had the operations been performed earlier in the disease than was generally the case.

Dr. Archambault (L’Union, 8 Juillet) relates two cases of croup, arrived at the last stage, in both of which the operation was completely successful.

Delirium Tremens. Tartar Emetic.—Dr. Peddie (Monthly Journal, June) discounts the treatment by opium, and recommends, from an experience of 80 cases, the use of tartar emetic, in doses of from one-quarter to one-half of a grain every two hours. If the bowels are not opened by this remedy, compound jalap powder is given. The patient is not to be restrained by mechanical means, and light is freely admitted into the room, as by its means optical delusions are prevented.

Diarrhea. Subnitate of Bismuth.—M. Trousseau (L’Union, Août) recommends injection of subnitate of bismuth suspended in water. It is used with excellent effect in the case of children as well as of adults. For children, about half a dram is diffused through a little water, according to the age. Syrup of Poppy’s and Lemon Juice.—M. Yvarren (Rev. Méd. Chir., Juin) recommends in diarrhoea, especially in children, and in autumnal cholera, the following preparation: In a pint and a half of water he boils a poppy-head, with one and a half or two ounces of gum arabic, for fifteen minutes; he then strains the liquid, squeezes in the juice of two lemons, and sweetens sufficiently with sugar. A pleasant beverage is formed, which, according to the age of the patient, is administered in greater or less quantity.
Therapeutical Record.

Digitalin.—Dr. Lange (Deutsche Klin. and Schmidt’s Jahrb., No. 7, p. 26) has employed digitalis in intermittent fever and in dropsy. In six cases of the former disease cure was not effected in a single case, even after eight to ten days’ use. In dropsy, diuresis was scarcely ever observed; in one case of general renal anasarca, after eight days’ use of the remedy, there was for forty-eight hours some increase in the flow of urine, but this then disappeared. In three cases of cardiac dropsy the heart’s action was lessened in one (after $\frac{1}{32}$ grain doses every three hours), but there was no diuresis, although the specific effects of the digitalin were thus evident. In the two other cases there was no diuresis whatever.

Dropsy (Ovarian). Iodine.—Dr. Simpson (Monthly Journal, May) refers to seven or eight cases of ovarian dropsy in which, after tapping, tincture of iodine (two or three ounces) has been injected into the sac. In two or three cases the disease seemed arrested, but in the others this was not the case. No great pain followed the injection, and no febrile symptoms, except in one case.

Eczema. Traumaticine.—Under the name traumaticine, Eulenberg (Allg. Mèd. Centralszeitung, and L’Union Mèd., Juan) has employed in a case of chronic eczema, and in one of psoriasis, a solution of gutta percha in chloroform. The solution is painted on daily, and a thin pellicle forms, which is of course gradually detached.

Epilepsy. Oxide of Zinc.—The oxide of zinc, so strongly recommended by Herpin in epilepsy (see No. 22, p. 409), has been tried both by Moreau and Delaslaive (Traité de l’Épilepsie, p. 373). Moreau experimented on 11 patients, and rigorously observed Herpin’s instructions, but the results were completely negative. Delaslaive’s experience, on a still larger scale, is to the same effect. In reference to the employment of the oxide of zinc, we may mention the interesting observations of Michaelis (Archiv für Phys. Heilk., 1853), who, in experiments on animals, found the zinc in the liver, bile, blood, spleen, lungs, heart, brain, and urine. The oxide appears to be dissolved by the lactic acid in the stomach; it should, therefore, not be combined with magnesia, which would neutralize the acid.

Epilepsy. Atropine.—Dr. Lange (Schmidt’s Jahrb., No. 9, p. 299) has used atropine in 10 cases of epilepsy (three men and seven women). The three men, who had suffered from the disease for many years, were cured in three, five, and six weeks. Two of the women were not improved, one died, and three appeared to be cured, as, after from five to eleven months, they had had no fresh attacks. In the last case, one of epilepsy and commencing idiotcy, the atropine failed. The dose appears to have been about the 1-100th of a grain. M. Delaslaive, in his late treatise on ‘Épilepsie’ (p. 369), states that he has experimented with belladonna for many years at the Bicêtre, and that, while he has seen some cases in which the fits were for the time suspended, he has only seen one instance of cure.

Erysipelas. Tincture of Iodine.—Dr. Durkee (Amer. Journ. of Med. Science, July, p. 108) recommends the local application of the aetherial solution of iodine, poured in quantities of twenty to thirty drops upon the part, and immediately spread over the surface with a brush. The skin is to be made nearly black with the iodine.

Fever (Intermittent). Phosphorus in Oil of Turpentine.—This remedy has been employed by Dr. Schreiber (Schmidt’s Jahrb., 1854, No. 3, p. 298) with good effect. He dissolves two grains of phosphorus in three drachms of oil, and gives fifteen drops every hour.

Gonorrhœa. Subnitrate of Bismuth.—Both in acute and chronic gonorrhœa Dr. Cary employs, three times daily, an injection, composed of water mixed with as much trisnitrate of bismuth as can be suspended. It is to be retained five minutes; it causes no pain.

and a half every two or three hours. He has also employed the citrate of caffein. On account of the dearness of caffein he has used with good effect the extract of coffee, four grains of which are equal to one grain of caffein.

Hydrocele. Collodion.—_Velpau (L'Union, Juillet)_ applies collodion over the scrotum on the third or fourth day, after the usual operation and iodine injection. The secondary inflammation and engorgement are much lessened in severity and duration. Velpau intends to apply the collodion immediately after the operation in the next case he has to treat.

Iodine Inhalations.—For patients for whom such inhalations are ordered, _Dr. Bareere (L’Union, Août)_ recommends the following plan: Powdered camphor is placed in a small box, and over it a muslin bag is placed containing a little iodine. The vapour of iodine is absorbed by the camphor, which assumes a dark colour. The compound thus formed (campho-iodine) is inhaled.

Iodo-tannic Solution.—_M. Desghanges (L’Union Méd., Juin)_ has employed this solution as a substitute for the perchloride of iron, as an agent for coagulating the blood in aneurism. He finds, however, that it is much less powerful, and that it is soluble in the alkaline fluid of the blood. Moreover, first the iodine and then the tannic acid are absorbed, which is not the case with the perchloride of iron.

Labours (Slow). Belladonna.—_Dr. Soma (Bull. Gén. de Thér., 1854, p. 547)_ relates three cases, to show that the extract of belladonna excites, like the ergot of rye, the uterine contractions, and may be substituted for it, especially in cases of spasmodic vomiting. Of course it is to be employed only in cases in which the os is dilated and the position of the child favourable. The dose is not clearly stated, but appears to have been large (about half a grain), and the medicine was given every ten minutes for two or three hours.

Laryngitis. Nitrate of Silver.—_Dr. Eberth (Annalen des Berlin Char. Krankh. 1854, s. 1, p. 89) employs inhalations of nitrate of silver in substance with great benefit, in all inflammations of the laryngeal mucous membrane. He has employed the nitrate of silver also in solution, after the manner of Green, but has never been able to satisfy himself that the larynx was really entered. The mode in which the solid caustic is introduced is as follows: Three grains of the nitrate are mixed with one drachm of sugar; the powder is placed in a steel pen, which is itself firmly inserted in a quill open at both ends. The little apparatus is then put into the mouth, so that the end of the steel pen shall be on the root of the tongue; then the lips are closed round the quill, and the patient inspires forcibly. The first attempt is almost always a failure, and the nitrate is only tasted on the root of the tongue, but the patient soon learns to manage it very well; a little cough and irritation follow, but no great uneasiness. For young children this method does not answer, and a special apparatus must be used.

Lead, Poisoning by. Iodide of Potassium.—In 23 cases of saturnine disease—including colic, neuralgia, arthralgia, wrist drop (4 cases), and general paralysis (6 cases)—the iodide of potassium has been used by Dr. Swift, as recommended by Melsens. (New York Med. Times, Feb., and Amer. Journ. of Med. Science, July, p. 286.) 16 cases were cured; 3 so far relieved as to be able to resume their occupations; and 4 were gradually improving at the time the report was made. “In 13 cases the urine was submitted to chemical analysis, and the investigation has established the fact, that the lead may be eliminated from the system by the iodide of potassium, and found in the urine. In no case was the lead detected before the administration of the remedy. The analyses were made by Prof. Outram, and the results of his experiments are perfectly reliable.” In one case the lead was detected also in the saliva.

Lucreorrhœa.—_Dr. Mayer (Rev. Méd. Chir. de Paris, Mai, p. 299) recommends that in the treatment of leucorrhœa, cylinders formed of fine muslin and “charpie” should be soaked in a solution of alum, sulphate of zinc, of iron, or of nitrate of
silver, and introduced into the vagina by means of the speculum, which is withdrawn when the cylinder has been introduced into it. The cylinder must be of good size, so that the folds of the vagina may be obliterated. The cylinder is retained in for ten or twelve hours. The alum solution is preferred by the author, and its strength is one part to fifty, to twenty-five, and to twelve of water successively. Three cases only are referred to, and all were in prostitutes. In the first case the cylinder was introduced six times; in the second, fifteen; in the third, five times.

Subnitrate of Bismuth.—M. Caby (Bull. Gén. de Thér., Août) recommends strongly the local application of bismuth, by means of the speculum and lint, on the neck and mouth of the uterus, and on the vagina, as the speculum is being withdrawn. There is no pain. The application should be made daily. Before using the bismuth a water injection may be used, to clear away the discharge from the membrane.

Lime, Phosphate of.—Dr. Kuchenmeister (Schmidt's Jahrb., 1854, vi, p. 298) recommends the following formula in cases in which phosphate of lime is indicated:—Calciis phosphat., 5ij.; calciis carbon., 3ij.; sacch. lactis, 3ij.; 5ss. bis terve in die. Instead of the milk sugar, lactate of iron may be substituted, if iron be required. The especial use of the carbonate of lime appears to be that carbonic acid is liberated by the acid of the stomach, and dissolves the phosphate. Lactic acid also is formed from the sugar, or is set free from the lactate of iron, and dissolves the phosphate. The most ready way of absorption is, however, when the phosphate is given with food, especially with milk, with which it forms a soluble combination.

Lupus. Biniolid of Mercury. Dippel's Animal Oil.—Cazenave (Bull. Gén. de Thér., 1854, p. 530) employs as a local application a strong ointment, composed of equal parts of the biniolid of mercury and of a mixture of lard and almond oil. In winter the proportion of oil is increased, in order that the ointment may be liquid, and may spread easily over the skin. The ointment produces intense congestion and redness of the skin, and severe pain. If the parts are covered with cuticle, vesications and pustules are produced, which crust over. If the parts are ulcerated, a thick albuminous secretion is poured out, which forms a crust. When the crusts are detached in five or six days, the lupose tubercles are found to be much reduced in size. Two or three applications of the ointment, at intervals of a week, are sufficient to reduce them to the level of the skin. No unfavourable symptom has been known to be produced by the absorption of the biniolid.

Cazenave also sometimes employs as a local application, Dippel's animal oil, in the place of the biniolid; and these two remedies constitute the only local measures. The cod liver oil is employed internally.

Nipples, Sores of, during suckling. Tincture of Benzoin.—M. Bourdel (L'Union Méd., Juin) recommends the application of a piece of lint dipped in the tincture placed over the part, then removed, wetted with the tincture, and replaced, so as to cover the ulcer with a layer of liquid. The first application is painful, but the pain seldom lasts more than fifteen minutes; the tincture forms a coating, which the action of suckling does not displace.

Orchitis. Collodion.—Dr. Bonnafont (Bull. Gén. de Thér., Juin, p. 459) has repeated the observations of Dechange and Costes, and has spread collodion over the serotum in 66 cases of orchitis. The application gives little, or at most only transient pain, and the effect on the disease is described as marvellous.

Velpeau and Ricord, on the other hand, have found this mode of treatment hurtful. They have known great pain produced by the application, and have found that the disease was not benefited. Instead of collodion, Dr. Puche has employed gelatine.

Phthisis. Oils.—Dr. T. Thompson (Lancet, Aug.) has employed various oils in phthisis, in addition to cod liver oil—viz., olive, neatsfoot, cocoa-nut, and sum-
flower. Olive oil is stated to be "almost inert," but the others are more or less useful. Dr. Thompson has used oily inunction with benefit. He also mentions that he has seen cutaneous ulcers much improved by the local application of cod liver oil.

Phthisical Cough. —Dr. T. Thompson (Lancet, Aug.) has found greater benefit from the use of petroleum, or Barbadoes tar, than from any other remedy.

Phthisical Sweating. Oxide of Zinc. —Dr. T. Thompson (Lancet, Aug.) refers in terms of great praise to the effects of oxide of zinc in night sweats, as recommended by Dr. Dickson. Dose, four grains at bedtime.

Pneumonia. Chloroform. —Dr. Stohandl (Schmidt, No. 9, p. 295) relates three pneumatic cases in which, many times, from 30 to 60 drops of chloroform were inhaled, with great benefit, after the manner of Varrentrapp. The pain, the dyspnea, and oppression, were always relieved for some time (4 to 6 hours), when the inhalation was again resorted to. The author believes that the chloroform acts as a deoxidizing agent on the blood, and lessens its plasticity.

Prurigo. —Dr. Richart (Bull. Gén. de Thér., Juin, p. 524) recommends in prurigo ani et vagine, which are often most obstinate complaints, the following "specific" treatment: Take equal parts of sulphate of zinc and of alum, roughly powder them, put them into a glazed earthenware vessel; put it on a slow fire, and leave it there till bubbles of air are no longer disengaged, and till the mixture acquires a stony hardness; then powder it, and throw it by small portions at a time into boiling water, then filter, and apply to the parts with a sponge and on linen.

Rheumatism. Lemon Juice. —In a discussion at the Boston Society for Medical Improvement (Amer. Journ. of Med. Science, July, 1854, p. 83) the effect of lemon juice in rheumatism is alluded to. Three speakers stated that they had used it without effect. One speaker had seen no effect produced on the disease in many cases, while in some benefit was observed. One speaker had found decided benefit in three or four cases.

Chlorate of Potash. —Dr. Sacquet (Rev. Méd. Chir. de Paris, Août) has used this medicine in five cases of acute rheumatism; he gives about 150 to 170 grains in twenty-four hours, and sometimes he has given more than this. The mean duration of the disease after the commencement of treatment was twelve days.

Rheumatism. Chronic. Turpentine Vapour Baths. —Dr. Rey (L’Union, No. 45) has used turpentine vapour baths with great effect in chronic rheumatism, neuralgia, and chronic pulmonary catarrhal affections. The vapour is brought by means of pipes into a room, into which fresh air can be rapidly introduced if necessary. The heat and the amount of turpentine are regulated by circumstances. The flow of sweat is very copious, and the turpentine is also absorbed, and gives the violet odour to the urine. On account of the intense sweating, the baths are very weakening, so that few persons can take more than twelve (on successive days) without leaving them off for some time.

Salivation, Mercurial. —Dr. Norman Chevers (Indian Annals, No. 2, p. 604) recommends in strong terms the use of an iodine gargle, containing two drachms of compound tincture of iodine to eight ounces of water. He states that it is useful both as a prophylactic and as a cure.

Sciatica. Oil of Turpentine. —Vide the latter heading.

Spermatorrhoea. Digitalin. —Drs. Charrier and Homolle (L’Union, Juillet) refer to the good effects of digitalin in several cases of spermatorrhoea treated by them. Dr. Mercier has administered the medicine in "12 or 15 cases" without any marked results, and believes that it is necessary to know more fully all the attendant circumstances, and the cause of the spermatorrhoea, before the exact amount of benefit derived from the digitalin can be determined.

Stricture. —See Bougie.

Tetanus. Chloroform. —Encouraged by the effects of chloroform in two cases of tetanus recorded by Drs. V. Dusch and Langenbecks, Dr. Pantiel (Henle’s
Zeitschrift, Band iv. h. 3) employed it in a severe traumatic case in a strong man, aged 20, who was first treated by bleeding and opium, then by chloroform. The relief given by the inhalation of chloroform (not carried to unconsciousness) was extraordinary, so that the patient could take food, yet in spite of it the spasms returned as severely as if no chloroform had been used, although they were invariably removed when the inhalation was again resorted to; the patient died two days after it was commenced. During the first day of this treatment no less than 6 ounces of chloroform were used, with invariable benefit, and its use was continued till the fatal termination. Although the chloroform was thus unable to save life, the relief it gave to the pain was an immense benefit.

Tinea. Sulphurous Acid.—M. Verhaeghe (Annales de la Société Méd. Chir. de Bruges, 1854) relates three cases of tinea treated by the local application of sulphurous acid, after the manner of Jenner. In two cases a rapid cure was effected; in the third case there was temporary amelioration, but the disease subsequently returned.

M. Bagin (Revue Méd. Chir. de Paris, Aout,) has published a memoir on tinea, to show the success of his treatment. This consists in the most careful epilation, and the destruction of the parasitic plant by a solution of the bichloride of mercury, or of the acetate of copper. The details of the treatment are as follows. The hair is first cut close; sulphur lotions and cataplasms to attack the crusts are applied; the solution of corrosive sublimate is then applied so as to kill all the plant on the surface. Then either the hairs are pulled out with pincers, or if the disease be recent and the epilation difficult, the oil of cade, or an alkaline pomade of lime and soda, is rubbed on. When a certain space has been cleared of hair, it is washed with soap and warm water to get rid of fat, and then the parasiticide solution (1 part of corrosive sublimate or of acetate of copper to 100 of water) is immediately applied.

Tumeur, Fibrosa.—A patient presented a large fibrous tumour of the neck, arising from the transverse processes of the vertebrae. It was of such a size, and had such relations, that ablation was thought impossible. M. Maisonneuve (Bull. Gen. de Théâtr., Aout,) removed it by reflecting the skin, and thereby dividing the tumour into two parts, and dissecting each separately. By this plan (méthode de morcellement) this surgeon has removed large fibrous tumours of the uterus, which could not have been taken out in entire masses.

Turpentine, the Simple and the Ozonized Oil of.—Some very interesting experiments have been made by Dr. Seitz (Archiv für wissenschaftl. Heilk., Band i. Heft 4; and Schmidt’s Jahrb., No. 9), on the comparative action of the simple and the ozonized oil of turpentine. The latter substance is thus prepared:—the common oil of turpentine is placed in white bottles, of which it only fills the half or quarter, and is then freely exposed to sunlight. From time to time the bottle is opened, so that the atmospheric air may have free ingress. The oil thus prepared has the smell and taste of peppermint oil, smelling disagreeably, tasting hot and bitter, and giving to the tongue a peculiar pain and sensation of cold. From experiments on animals, it is found that, on the mucous membrane of the mouth and the digestive organs, the ozonized oil acts like the simple oil; it irritates, and causes an increased flow of saliva and mucus. It is then rapidly absorbed; the pulse increases in fulness and frequency, the respirations are quicker, and when large doses are given, they become even painfully so. If the doses are frequently repeated, inflammations of the endocardium and pericardium, and congestion and hemoptoeic infarctus of the lungs, are caused. Small doses act as excitants to the nervous system, but large doses cause stupor, convulsions, and paralysis. Like the simple, the ozonized oil passes off through the lungs and the kidneys, giving to the breath the smell of the oil, and to the urine the usual violet odour. The quantity of urine is increased. In one case, in a horse, albumen, sugar, and benzoic acid appeared in it. In men, the ozonized oil, in doses of 5 to 15 drops, caused a sensation of coldness on the tongue, and a slight pricking sensation; the saliva was increased; there was a
feeling of warmth in the stomach; the skin became hotter, and the pulse more frequent; the urine had the violet odour, but presented no other change. Applied to the skin, it produced the same effect as the non-oxygenized oil, such as redness and feeling of warmth. The ozonized oil has been given in various diseases with some good effect—viz., in chronic cystitis and in incontinence of urine. In menorrhagia, and in a case of hematemesis, it was also useful. But its most decided action was evinced in cases of gouty and rheumatic pains, and especially in sciatica. The dose is 10 to 20 drops on sugar, or in sugar and water, or mixed with honey, or the yolk of egg.

Ulcers. Opium.—In obstinate ulcers, Dr. Roberts (Amer. Journ. of Med. Sc., April, p. 417,) speaks highly of the old plan of giving small doses of opium (one-third of a grain three times daily).

Urine, Incontinence of. Digitalin.—M. Homolle (L'Union, Juillet), influenced by the utility of digitalin in spermatorrhoea, has given it in two cases of incontinence of urine, with success.

Variola. Zinc Ointment.—Dr. Bennett (Monthly Journal,) has used an application of carbonate of zinc, 3 parts oxide of zinc, and 1 part in olive oil, in order to form a crust over the face. When the crust falls off it is renewed. Its effect in preventing pitting is very satisfactory.

MEDICAL INTELLIGENCE.

The Cholera in Barbadoes.

We have been favoured by Dr. John Davy with the following extract of the letter of a medical friend in Barbadoes. It gives us a very graphic account of the ravages of the disease:

"The cholera, as you are doubtlessly aware, has visited our little island. Spontaneously, and without our being able to trace its introduction to any importation, it broke out in a very filthy locality of the town (Bridgetown), in the neighbourhood of the bay. At first, that is, for the first week or fortnight, the cases were few, and the matters ejected from the body were not so unequivocally characteristic as to enable the medical men to decide whether the disease was really of the true Asiatic type. As there had been some days previously a large quantity of fish (chiefly flying fish) taken and consumed in a stale and unwholesome condition, it was thought that the malady may have originated from that cause. Moreover, we had a drought protracted to nearly six months, causing great scarcity, and consequently impurity, of water, and an entire extinction of the food usually produced in the island: so that the meal and rice imported from America, at an enhanced price, were the only food of the poorer classes. All these circumstances combined, made those who had to deal with the disease hope that the island might have yet been spared the horrors of a visit from the Asiatic cholera. All these hopes were soon to be disappointed. In a very short time it broke out simultaneously in various parts of the town, and spread with great rapidity, exhibiting a malignity which, I believe, has never been surpassed in any part of the world. In four weeks from the time when the disease left no doubt of its real nature, it attacked about ten thousand persons, half of whom died. From the town it proceeded to the vicinity, where the mortality was awful; over two hundred of the soldiers of the garrison died. Whilst this work of slaughter was going on in the town, it commenced its ravages all round the sea coast, beginning at Bathsheba and the opposite coast of Christchurch, two of the healthiest spots in the island. It thus embraced the whole of the outskirts of the island, and gradually spread into the interior, where it still lingers, leaving one little spot, comprising about five or six estates in my neighbourhood, as yet unscathed. It is now (July 11th) exactly eight weeks since the first person died, and, as far as can be ascertained, ten thousand persons throughout the island have died of the pestilence. At first, it seemed to be con-
fined to the haunts of filth and destitution, attacking some of the more wretched negroes about the town, the very refuse of society; but it has since carried off many respectable families, sweeping many houses clean of their inhabitants, and causing in others a vast amount of widowhood and orphanage. We hope it is taking its departure from among us, as there is a great abatement of deaths, but they still amount to a great many. The greatest exertions have been made to mitigate the evil. With an energy quite characteristic of the inhabitants of this island on occasions of urgency, every man has done his best to alleviate the general distress. The legislature have placed the treasury at the disposal of the executive, for the relief of the sick and needy. In an incredible short time, an organized system for the distribution of wholesome, nutritious food, and medicine and medical aid, and furnishing the means of interment, has been established in the town and the country parishes; and every one who could render assistance, has rendered personal service and pecuniary aid. I am thankful to say, that we have been able to bury our dead, so that they have not been left to be exposed on the earth to add to the contamination of the atmosphere, and to shock the feelings of the survivors. The weather has been remarkably fine during the prevalence of the epidemic, nice refreshing showers and sweet balmy breezes; indeed, the whole appearance of nature, the verdant fields, and the rich and beauteous foliage of the trees, occasioned by the late rapid spring, have contrasted widely with the poisoned atmosphere and its deadly influence. The awful mortality which has prevailed; the rapidity with which many persons whom we knew have been hurried to an untimely grave; the work of interment amounting for many days in succession to the inhumation of nearly three hundred corpses in one burial-ground alone, and on one day exceeding that number; the intractable nature of the disease sweeping off many of its victims without any premonitory warning, and affording no hopeful reliance on any especial mode of treatment; its mysterious origin and capricious movements, now apparently creeping in one direction, in another moment bursting out with terrific violence in another, its proximity to our own dwelling; all these circumstances have impressed our minds with awe, and made us feel the solemnity of our position. I see by one of the local newspapers, that the loss of life up to the present time is estimated, as far as data for calculation can be relied on, at twelve thousand persons.”

According to the latest accounts from the West Indies, it has amounted to seventeen thousand, in a population of about one hundred and thirty-six thousand, or nearly twelve per cent.

The late General Board of Health.

The cholera epidemic of 1849 called into being the General Board of Health, which, after five years of a harassed existence, has ceased to exist. We have had occasion in this journal to review the purely medical action of this Board, and now we do not like to let it disappear without a few words at parting. It has disappeared almost in ignominy, while from its ashes a young phoenix has sprung up. But we are convinced that, great as were some of the errors of the old Board, and unmeasured as has been the obloquy heaped upon it, its career of usefulness will not easily be surpassed. At present its services are undervalued, and the extent of its working is misunderstood. We can say this with the better grace, because we have most freely expressed our opinions when, in the matters of quarantine and the like, the old Board had adopted opinions which we believed to be dangerous and untrue.

But such errors as these should not blind us to the facts, that the late Board of Health has succeeded in wonderfully popularizing and making familiar to the nation the grand principles of National Health. How long these principles have been proclaimed by medical philosophers, our readers know as well as we do. How long, without the Board of Health, they would have remained mere medical doctrines, applied only occasionally and incidentally, we can form a pretty good opinion, since, for a century, they have been cried in the street, and no man has
regarded them. The Board of Health diffused them through the length and breadth of the country, and the very enthusiasm with which the action of the present Board is greeted is a testimony to the tuition which their predecessors have given to the public mind.

In the matter of cholera especially, the late Board acted with a vigour and judgement which cannot well be surpassed. While they put into force the very weak powers which they had obtained from the Legislature, in the form of the Public Health and the Nuisance and Diseases Prevention Acts, they organized, at short notice, a wide system of medical relief, and they seized, with a kind of instinct, on the only point in the treatment of cholera, a knowledge of which could be useful to the public at large. We refer of course to the stress which the Board laid on the importance of checking the so-called premonitory diarrhoea, a cardinal point of the most vital importance. We are sorry to see that in this respect the present Board has somewhat abandoned the path chosen by their predecessors. The reason of this we do not know; but we are certain that, in spite of the late encomiums on purgatives in cholera, no other rule of treatment in cholera is of equal importance.

In other branches of state medicine, the action of the Board was less effectual. But even in the abortive schemes for extramural interment, and for water supply, we are not certain that the opposition the Board encountered is not rather to blame for the failure, than any defect in the plans proposed. Possibly, both plans were on too extensive and colossal a scale, and more modest and less radical measures might have been successful. Before, however, we condemn the principles on which the late Board of Health acted, we must see what their successors will do. We shall be surprised if, to a certain extent, they have not to tread over the same ground.

While justice demands from us this expression of opinion respecting the services of the late Board towards sanitary reform, we are far from wishing to disparage the actions of the present Board. On the contrary, with the exception above referred to, there is not one of their measures, as far as they are known, which does not seem well planned. The establishment of a Medical Council, and the appointment of scientific gentlemen to investigate the recondite phenomena of cholera, are both most commendable arrangements. We must express our hope, however, that if, as appears likely, the medical organization thus called into play is not in time to efficiently examine the problems connected with the spread and treatment of cholera, it may not be at once disbanded. We are by no means secure from another epidemic; but were such an occurrence unlikely, there are numerous inquiries connected with the public health which can be investigated only by such appliances as the Board of Health has now set in action. That which has originated in a temporary emergency, ought to, and must, become a permanent and active institution.

The Composition and Effect of Copper Smoke.

Under the somewhat quaint, but expressive title, "Industrial Pathology," several important works have been commenced, which will doubtless throw great light on the diseases which their various occupations produce in artisans. Dr. T. K. Chambers has read before the Society of Arts a very interesting paper on the subject, and is now engaged in collecting materials for further elucidating this inquiry. We have little doubt, that with the assistance of the Society, and of those members of the profession who are cognizant of the habits and processes of various trades, Dr. Chambers will be able to contribute some valuable facts to this department of public health.

Another addition to "Industrial Pathology" has just been made by Dr. Thomas Williams, of Swansea, a gentleman whose name is familiar to our readers as one of the most philosophical and hard-working physicians of the day. At the request of the late Board of Health, Dr. Williams has instituted a most careful inquiry into the composition of the "copper smoke" which floats thickly over the valley
of Swansea, and into the effects which the inhalation of this atmosphere has upon animals and men. For the last one hundred and fifty years this district has been noted for its copper mines, but now the operations carried on have assumed a gigantic scale. Half the copper smoke produced in the world ascends from this locality, and the dense clouds spread themselves around over a space which has a circumference of fifteen miles. As the smoke issues from the furnaces, it is found by Dr. Williams to contain both arsenic and metallic copper, but in the smoke at some little distance from its place of production, neither of these metals, nor any compounds derived from them, can be discovered. Nor can any arsenic be found in the water at some little distance, nor in the herbage. Arsine sulphidet hydrogen, which is formed at some stages of the smelting, appears to be decomposed before the smoke issues from the chimney. Two great and constant ingredients of the "copper smoke" are sulphurous and sulphurous acids; the latter acid can be detected at a greater distance from the works; it is washed down with the rain, and destroys the herbage. Pure sulphur, and minute quantities of hydrofluoric and fluo-silicic acids are also found in the smoke, mixed, of course, with large quantities of coal smoke. Such are the ingredients of the "copper smoke," as determined by Dr. Williams. The important inquiry now presents itself, as to what are the effects produced on the inhabitants around the works. It is certain that vegetation is greatly injured, and that the productive power of the land has diminished within the memory of many still living. The larger kinds of trees and fruit trees have been completely destroyed; while, singularly enough, some flowers, such as dahlias and chrysanthemums, are uninjured. So pernicious is the effect on agriculture, that a celebrated action was brought, thirty-one years ago, by the neighbouring farmers against the owners of the largest copperworks. Agriculture, however, did not carry the day.

The effect of the copper smoke on cattle has been greatly discussed. It seems certain that cattle do suffer from a peculiar affection, which is popularly called the "smoke disease." In this complaint the animals do not eat, but blow on the smoky grass, the joints crackle, the coat staves; cows lose their milk. In an advanced degree the bones are affected, and become brittle, exostoses form, and teeth drop out. There are not wanting persons who deny that this disease is peculiar to the smoke district; but Dr. Williams, after an elaborate survey of all the arguments, expresses his opinion that "it is a specific copper smoke disease." He also is inclined to attribute it to the sulphurous acid, and thinks, moreover, that it is the acid which has passed into the food, and not that inhaled in the air, which causes it.

With respect to man, the influence of the copper smoke is less decided, because the artisan is exposed to many other influences, the effect of which cannot be well eliminated. Dr. Williams examines successively all these agencies, and arrives at the conclusion, that owing to compensating causes, the life of the copper smelter, laborious as it is, is not so deleterious as might be imagined. On the contrary, with the exception of bronchitis, those men are very healthy. Typhus and skin diseases are especially rare.

BOOKS RECEIVED FOR REVIEW.

The Diseases of the Fetus in Utero (not including Malformations), with an outline of Fetal Development. By Henry Madge, M.D., M.R.C.S.E.

Introductory Lecture delivered to the Class of Military Surgery in the University of Edinburgh, May 31st, 1854. By Sir George Ballingall, M.D., F.R.S.E. (From the Monthly Journal of Medical Science.)

A New and Simple Method of Determining the Amount of Urea in the Urinary Excretion. By E. W. Davy, M.B., T.C.D. (Reprinted from the Philosophical Magazine.)

Traité de l'Epilepsie. Par le Dr. Delasanne. (Ouvrage Couronné par l'Institut.) Paris, 1854.

Œuvres Anatomiques, Physiologiques, et Médicales de Gallen. Traduites par le Dr. C. Duremburg.

State of the New York Hospital and Bloomingdale Asylum, for the year 1853. New York, 1854.

The Climate of the Island of Madeira, and the Errors and Misrepresentations of some recent Authors on this subject. By James Mackenzie Bloomam, Esq. London, 1854.

On the Pathology of Delirium Tremens, and its Treatment without Stimulants or Opiates. By Alexander Peddie, M.D. Edinburgh, 1854.

Notification of the Central Board of Health of Jamaica. Reprinted by direction of the Secretary of State for the Colonial Department.

A Letter to the President and Fellows of the Royal College of Physicians on the Treatment of Epidemic Cholera. By Joseph Ayre, M.D.
INDEX TO VOL. XIV.

OF THE

BRITISH AND FOREIGN MEDICO-CHIRURGICAL REVIEW.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abscess, pelvic</td>
<td>164</td>
</tr>
<tr>
<td>Abdomen, diseases of</td>
<td>249</td>
</tr>
<tr>
<td>Age, old, diseases of</td>
<td>455</td>
</tr>
<tr>
<td>Algiers, Climate of</td>
<td>309</td>
</tr>
<tr>
<td>Allotropism</td>
<td>357</td>
</tr>
<tr>
<td>Anatomy, Microscopic</td>
<td>456</td>
</tr>
<tr>
<td>Anaesthesia, local production of from Cold, Dr. Wood</td>
<td>558</td>
</tr>
<tr>
<td>Anus, Imperforate, Dr. Chevers on</td>
<td>262</td>
</tr>
<tr>
<td>Arlidge, Dr., on Brain-sand</td>
<td>470</td>
</tr>
<tr>
<td>Arm, Abnormal Anatomy of</td>
<td>224</td>
</tr>
<tr>
<td>Arsenic, poisoning by</td>
<td>546</td>
</tr>
<tr>
<td>Association, American, Transactions of</td>
<td>192</td>
</tr>
<tr>
<td>Assurance of lives</td>
<td>111</td>
</tr>
<tr>
<td>Astringents, vegetable</td>
<td>247</td>
</tr>
<tr>
<td>Australia, Climate of</td>
<td>293</td>
</tr>
<tr>
<td>Barbados, cholera in</td>
<td>565</td>
</tr>
<tr>
<td>Barclay, Dr., his Report of Cases</td>
<td>285</td>
</tr>
<tr>
<td>Ballard, Dr., on Materia Medica</td>
<td>237</td>
</tr>
<tr>
<td>Baly, Dr., on Cholera</td>
<td>130</td>
</tr>
<tr>
<td>Beale, Dr., on the Microscope</td>
<td>191</td>
</tr>
<tr>
<td>Beer, Dr. Böcker on</td>
<td>401</td>
</tr>
<tr>
<td>Bell, Mr., on the Crustacea</td>
<td>188</td>
</tr>
<tr>
<td>Bellingham, Dr., on the Heart</td>
<td>119</td>
</tr>
<tr>
<td>Beneke, Dr., on Zymotic Diseases</td>
<td>281</td>
</tr>
<tr>
<td>Blood, diseases of</td>
<td>523</td>
</tr>
<tr>
<td>pathological formation of gas in</td>
<td>368</td>
</tr>
<tr>
<td>Böcker, Dr., his Contributions to Medicine</td>
<td>390</td>
</tr>
<tr>
<td>Bodies, amyloid</td>
<td>470</td>
</tr>
<tr>
<td>Bone, structure of</td>
<td>119</td>
</tr>
<tr>
<td>Bougies, spongy</td>
<td>558</td>
</tr>
<tr>
<td>Bowditch, Dr., on a new stethoscope</td>
<td>527</td>
</tr>
<tr>
<td>Brain-sand, Dr. Arlidge on</td>
<td>470</td>
</tr>
<tr>
<td>Bronchitis crouposa</td>
<td>526</td>
</tr>
<tr>
<td>Burgess, Dr., on the Skin</td>
<td>192</td>
</tr>
<tr>
<td>Busk, Mr., on Starch in the Brain</td>
<td>443</td>
</tr>
<tr>
<td>Cancer, Hepatic, Dr. Henoch on</td>
<td>174</td>
</tr>
<tr>
<td>Cataract, Mr. Bowman on</td>
<td>67</td>
</tr>
<tr>
<td>Cellulose in animals</td>
<td>439</td>
</tr>
<tr>
<td>Chemistry, Dr. Faraday on</td>
<td>356</td>
</tr>
<tr>
<td>Children, diseases of</td>
<td>378</td>
</tr>
<tr>
<td>Cholera, Drs. Baly and Gull on</td>
<td>130</td>
</tr>
<tr>
<td>Dr. Fabre on</td>
<td>193</td>
</tr>
<tr>
<td>Cholesterine disease</td>
<td>414</td>
</tr>
<tr>
<td>Churchill, Dr., on Paralysis</td>
<td>272</td>
</tr>
<tr>
<td>Chronicle of Medical Science</td>
<td>237, 511</td>
</tr>
<tr>
<td>Climate, Dr. Francis on</td>
<td>293</td>
</tr>
<tr>
<td>Cless, Dr., on Gas in Blood</td>
<td>368</td>
</tr>
<tr>
<td>Cirrhosis of the liver</td>
<td>36, 172</td>
</tr>
<tr>
<td>Coccius on the Ophthalmoscope</td>
<td>552</td>
</tr>
<tr>
<td>Coffee, Dr. Lehmann on</td>
<td>390</td>
</tr>
<tr>
<td>Copper Smoke, Dr. Williams on</td>
<td>568</td>
</tr>
<tr>
<td>Corpora amylacea</td>
<td>439, 470</td>
</tr>
<tr>
<td>Crichton, Mr., on Lithotomy</td>
<td>197</td>
</tr>
<tr>
<td>Croup, tracheotomy in</td>
<td>559</td>
</tr>
<tr>
<td>Crustacea, Mr. Bell on</td>
<td>188</td>
</tr>
<tr>
<td>Cyst, ovarian dissection of</td>
<td>71</td>
</tr>
<tr>
<td>Name/Title</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Davy, Dr., on the West Indies</td>
<td>189</td>
</tr>
<tr>
<td>Degeneration, fibroid</td>
<td>36, 330</td>
</tr>
<tr>
<td>Delirium Tremens, Dr. Peddis on</td>
<td>559</td>
</tr>
<tr>
<td>Delphinin, Dr. Pragg on</td>
<td>246</td>
</tr>
<tr>
<td>De Morgan, Mr. Campbell, on Bone</td>
<td>119</td>
</tr>
<tr>
<td>Diabetes, intermittent</td>
<td>70</td>
</tr>
<tr>
<td>Diarrhea, choleraic treatment of</td>
<td>509</td>
</tr>
<tr>
<td>Digestion, organs of, diseases of the</td>
<td>528</td>
</tr>
<tr>
<td>Digitalin influence on the urea</td>
<td>245</td>
</tr>
<tr>
<td>in dropsy</td>
<td>560</td>
</tr>
<tr>
<td>spermatorrhea</td>
<td>563</td>
</tr>
<tr>
<td>Donders, Dr., on Nutriments</td>
<td>390</td>
</tr>
<tr>
<td>Dropsy, Scarletina, production of artificial, in cholaera</td>
<td>559</td>
</tr>
<tr>
<td>Drummond, Dr., on Liver Disease</td>
<td>417</td>
</tr>
<tr>
<td>Drunkards, morbid appearances in</td>
<td>507</td>
</tr>
<tr>
<td>Durand Fardel, Dr., on Diseases of Old Age</td>
<td>455</td>
</tr>
<tr>
<td>Enchondroma</td>
<td>515</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>418</td>
</tr>
<tr>
<td>Erysipelas, treatment of</td>
<td>560</td>
</tr>
<tr>
<td>Exudations, composition of</td>
<td>527</td>
</tr>
<tr>
<td>Faraday, Dr., on Chemistry</td>
<td>356</td>
</tr>
<tr>
<td>Fever, Yellow, Dr. Pennell on</td>
<td>66</td>
</tr>
<tr>
<td>Bache</td>
<td>525</td>
</tr>
<tr>
<td>intermittent, treatment of</td>
<td>560</td>
</tr>
<tr>
<td>Faces, composition of</td>
<td>528</td>
</tr>
<tr>
<td>Forbes, Sir John, his Bill</td>
<td>282</td>
</tr>
<tr>
<td>Francis, Dr., on Climate</td>
<td>293</td>
</tr>
<tr>
<td>Gairdner, Dr., on Liver Disease</td>
<td>417</td>
</tr>
<tr>
<td>Genital organs, disease of</td>
<td>261</td>
</tr>
<tr>
<td>Gout, Mr. Wells on rheumatic</td>
<td>381</td>
</tr>
<tr>
<td>Gray, Mr., on the Spleen</td>
<td>195</td>
</tr>
<tr>
<td>Gull, Dr., on Cholera</td>
<td>130</td>
</tr>
<tr>
<td>Hassall, Dr., on Torulæ</td>
<td>63</td>
</tr>
<tr>
<td>Head, injuries of</td>
<td>67</td>
</tr>
<tr>
<td>Heart, diseases of</td>
<td>419</td>
</tr>
<tr>
<td>valvular diseases</td>
<td>434</td>
</tr>
<tr>
<td>Helmholtz on the Ophthalmoscope</td>
<td>551</td>
</tr>
<tr>
<td>Henoch, Dr., on Abdominal Diseases</td>
<td>163</td>
</tr>
<tr>
<td>Histology, Dr. Weel on</td>
<td>311</td>
</tr>
<tr>
<td>Holthouse, Mr., on Strabismus</td>
<td>455</td>
</tr>
<tr>
<td>Hyperaesthesia, Romberg on</td>
<td>93</td>
</tr>
<tr>
<td>Jochmann on Temperature in Chronic Diseases</td>
<td>179</td>
</tr>
<tr>
<td>Jones, Mr., on the Ophthalmoscope</td>
<td>549</td>
</tr>
<tr>
<td>Kidneys, fibroid degeneration in lardaceous, disease of</td>
<td>51</td>
</tr>
<tr>
<td>Kölliker, Dr., on Microscopic Anatomy</td>
<td>456</td>
</tr>
<tr>
<td>Labour</td>
<td>270</td>
</tr>
<tr>
<td>Lardaceous disease</td>
<td>414</td>
</tr>
<tr>
<td>Laryngitis, edematous</td>
<td>349</td>
</tr>
<tr>
<td>Lead, poisoning by, iodide of potassium in</td>
<td>561</td>
</tr>
<tr>
<td>Lehmann, Dr., on coffee</td>
<td>390</td>
</tr>
<tr>
<td>Leucorrhoea, treatment of</td>
<td>561</td>
</tr>
<tr>
<td>Library of College of Surgeons, Index to</td>
<td>455</td>
</tr>
<tr>
<td>Lithotomy, Mr. Crichton on</td>
<td>197</td>
</tr>
<tr>
<td>Liver, abscess of cancer of</td>
<td>172</td>
</tr>
<tr>
<td>cirrhosis of</td>
<td>36, 172</td>
</tr>
<tr>
<td>fatty</td>
<td>169</td>
</tr>
<tr>
<td>hydatid disease in</td>
<td>176</td>
</tr>
<tr>
<td>hypertrophy of</td>
<td>169</td>
</tr>
<tr>
<td>inflammation of</td>
<td>166</td>
</tr>
<tr>
<td>lardaceous disease of</td>
<td>416</td>
</tr>
<tr>
<td>Locomotion, diseases of organs of</td>
<td>525</td>
</tr>
<tr>
<td>Lumbrici in the pleura</td>
<td>527</td>
</tr>
<tr>
<td>Lung, cirrhosis of exudation of</td>
<td>336</td>
</tr>
<tr>
<td>Lupus, treatment of</td>
<td>337</td>
</tr>
<tr>
<td>Lymphatics, structure of</td>
<td>562</td>
</tr>
<tr>
<td>Lyons, Dr., on Micrology</td>
<td>511</td>
</tr>
<tr>
<td>Macloughlin, Dr., on Cholera</td>
<td>456</td>
</tr>
<tr>
<td>Madrid, climate of</td>
<td>299</td>
</tr>
<tr>
<td>Malaga, climate of</td>
<td>303</td>
</tr>
<tr>
<td>Manill, Dr., on tubercle</td>
<td>526</td>
</tr>
<tr>
<td>Materia Medica, Report on</td>
<td>237</td>
</tr>
<tr>
<td>Matter, metamorphosis of</td>
<td>253</td>
</tr>
<tr>
<td>Meckel, Dr., on lardaceous disease</td>
<td>414</td>
</tr>
<tr>
<td>Medicine, report on</td>
<td>523</td>
</tr>
<tr>
<td>forensic report on</td>
<td>272, 538</td>
</tr>
<tr>
<td>Medicines, Dr. Neligan on</td>
<td>185</td>
</tr>
<tr>
<td>Meningitis, Historic Data on</td>
<td>482</td>
</tr>
<tr>
<td>Micrographic Dictionary</td>
<td>191</td>
</tr>
<tr>
<td>Micrology, Annals of</td>
<td>511</td>
</tr>
<tr>
<td>Microscope, Works on</td>
<td>191</td>
</tr>
<tr>
<td>Midwifery, report on</td>
<td>262, 532</td>
</tr>
<tr>
<td>Morehead, Dr., on Pericarditis</td>
<td>438</td>
</tr>
<tr>
<td>Morley, Mr., his Life of Cardan</td>
<td>183</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Muscle, fibroid changes in</td>
<td>331</td>
</tr>
<tr>
<td>hypertrophy of</td>
<td>525</td>
</tr>
<tr>
<td>Neligan, Dr., on Medicines</td>
<td>185</td>
</tr>
<tr>
<td>Nephritis, desquamative, in scarlatina</td>
<td>223</td>
</tr>
<tr>
<td>New Zealanders, Diseases of</td>
<td>461</td>
</tr>
<tr>
<td>Nurses for the poor</td>
<td>282</td>
</tr>
<tr>
<td>Nutriments, Dr. Donders and Moleschott on</td>
<td>390</td>
</tr>
<tr>
<td>Ogston, Dr., on pathological appearances in drunkards</td>
<td>507</td>
</tr>
<tr>
<td>Operations, surgical</td>
<td>258</td>
</tr>
<tr>
<td>Ophthalmoscope, report on</td>
<td>549</td>
</tr>
<tr>
<td>Opium, adulteration of</td>
<td>243</td>
</tr>
<tr>
<td>Organs, Thoracic, diseases of</td>
<td>526</td>
</tr>
<tr>
<td>ÒEsophagus, ulcer of</td>
<td>69</td>
</tr>
<tr>
<td>Paralysis, excitability of limbs in</td>
<td>71</td>
</tr>
<tr>
<td>Dr. Todd on</td>
<td>93</td>
</tr>
<tr>
<td>Dr. Churchill on</td>
<td>272</td>
</tr>
<tr>
<td>Parkes, Dr. on Liquor Potassae.</td>
<td>498</td>
</tr>
<tr>
<td>Parturition</td>
<td>266, 536</td>
</tr>
<tr>
<td>Pericarditis, Dr. Stokes on</td>
<td>2</td>
</tr>
<tr>
<td>Rheumatic</td>
<td>63</td>
</tr>
<tr>
<td>in India</td>
<td>458</td>
</tr>
<tr>
<td>Peritonoeum, tumours of</td>
<td>165</td>
</tr>
<tr>
<td>Phlebitis, obstructive</td>
<td>71</td>
</tr>
<tr>
<td>Phlegmasia Dolens</td>
<td>71</td>
</tr>
<tr>
<td>Physiology, report on</td>
<td>249</td>
</tr>
<tr>
<td>Pigment in the blood</td>
<td>523</td>
</tr>
<tr>
<td>Placenta, diseases of</td>
<td>21, 340</td>
</tr>
<tr>
<td>of structure of</td>
<td>532</td>
</tr>
<tr>
<td>Planer, Dr., on Pigment in Blood</td>
<td>523</td>
</tr>
<tr>
<td>Pneumonia, anatomy of infantile</td>
<td>337</td>
</tr>
<tr>
<td>Potassae Liquor, action of</td>
<td>498</td>
</tr>
<tr>
<td>Pregnancy, diseases of</td>
<td>536</td>
</tr>
<tr>
<td>Publications, new</td>
<td>194, 458</td>
</tr>
<tr>
<td>Ranula, structure of</td>
<td>516</td>
</tr>
<tr>
<td>Record, Therapeutical</td>
<td>558</td>
</tr>
<tr>
<td>Rectum, diseases of</td>
<td>262</td>
</tr>
<tr>
<td>Respiration, chemistry of</td>
<td>141</td>
</tr>
<tr>
<td>of Report on</td>
<td>250</td>
</tr>
<tr>
<td>Rheumatism, pericarditis in chronic treatment of</td>
<td>63</td>
</tr>
<tr>
<td>Remberg, Dr., on Nervous Diseases</td>
<td>93</td>
</tr>
<tr>
<td>Salivation, treatment of</td>
<td>563</td>
</tr>
<tr>
<td>Salt, Glauber's, the operation of</td>
<td>238</td>
</tr>
<tr>
<td>influence on the excretion of urea</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INDEX TO VOL. XIV.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea, mode of determining</td>
<td>531</td>
</tr>
<tr>
<td>Urethra, stricture of</td>
<td>67, 372</td>
</tr>
<tr>
<td>Urine, action of Liquor Potasse on chylous</td>
<td>497, 64</td>
</tr>
<tr>
<td>Uterus, diseases of ulceration of Gravid, anatomy of Dr. West on</td>
<td>262, 533, 321, 532, 321</td>
</tr>
<tr>
<td>Valentin, Professor, on some Eudo-metric researches</td>
<td>236</td>
</tr>
<tr>
<td>Vein, portal, obliteration of Vena porte, obliteration of Vienna, the Anatomical School of</td>
<td>171, 171, 312</td>
</tr>
<tr>
<td>Virchow, Dr., on Cellulose on the Placenta Vogel, Dr., on the Urine</td>
<td>439, 532, 550</td>
</tr>
<tr>
<td>Wedd, Dr., on Histology Wells, Mr., on Gout West, Dr., on Ulceration of the Uterus Willshire, Dr., on Meningitis</td>
<td>311, 381, 321</td>
</tr>
<tr>
<td>Willshire, Dr., on Meningitis Wine, acidity of Wislocki, Dr., on Pathological Anatomy</td>
<td>482, 237, 311</td>
</tr>
<tr>
<td>Zealanders, New, diseases of</td>
<td>461</td>
</tr>
</tbody>
</table>

END OF VOL. XIV.