THE
LONDON
MEDICAL JOURNAL.
VOLUME THE FIFTH,
FOR THE YEAR 1784.

LONDON:
PRINTED for the EDITOR,
And sold by JOSEPH JOHNSTON, LONDON;
CHARLES ELLIOT, EDINBURGH;
And P. BYRNE, DUBLIN
M, DCC, LXXXV.
SECTION I.
BOOKS.

I. Traité sur le Venin de la Vipère, sur les Poissons Américains, sur le Laurier-Cerise, et sur quelques autres Poissons végétaux. Où y a joint des observations sur la structure primitive du corps animal, différentes expériences sur la reproduction des nerfs, et la description d'un nouveau canal de l'œil. i.e. Treatise on the Poison of the Viper, on the American Poissons, on the Lauro-Cerasus, and on some other vegetable Poissons. To which are added, Observations on the primitive structure of the animal body; different experiments on the reproduction of nerves; and the description of a new canal of the eye. By Felix Fontana, Natural Philosopher to his R. H. the

These two volumes are inscribed to the academy of Upsal. The whole of the first and a considerable part of the second volume are allotted to the poison of the viper. The observations on this subject are divided into four parts. Of these the first was published in Italian so long ago as the year 1765, and translated into French soon after by M. Darcey. Something happened which delayed the publication of this translation, and in 1776, the author coming to Paris, furnished M. Darcey with several additions and corrections, which were likewise translated. The year following appeared a work on the use of the volatile alkali fluors as an antidote to the poison of the viper, in which are many assertions repugnant to what had been published ten years before by our author. The perusal of this book induced him to make new experiments, and to this circumstance we owe the second, third, and fourth parts of his treatise. While the work was in the press, the ingenious and indefatigable author was
was employed in varying and multiplying his experiments. Of the results, which are related in a supplement, we shall give an account under their respective heads.

The first part of the treatise begins with a concise view of the opinions of former writers concerning the poison of the viper. Before the time of Redi, we are told, it was not known in what this poison consists. It was he who first discovered the yellow fluid that renders the bite of the viper poisonous; but he was mistaken with regard to the seat of this fluid, which he supposed to be in the membrane that covers the canine teeth. This mistake was adopted more than half a century afterwards by James in his Dictionary, who has likewise copied all the erroneous opinions of Mead concerning the saline nature of the poison.

This concise historical view of the subject is followed by an accurate description of the number, structure and use of the teeth of the viper. —The mechanism by which the viper raises its canine teeth when it bites, is allowed to be well described by Nichols in the appendix to Mead's treatise on poisons. The virus issues, it seems, from the point of each canine tooth, and not, as Redi supposed, from the membrane which

envelops
envelops these teeth and the other smaller ones at their basis. Our author confirms the opinion suggested by Redi and adopted by Nichols, that the latter are intended to replace the canine teeth. —The virus issues from all the canine teeth at once. Nichols was wrong, therefore, in asserting, that it flows only from one tooth on each side at a time.—The receptacle of the virus is a little vesicle, which seldom contains more than three or four drops, and is situated under the muscles at the side of the upper jaw. It is covered by a constrictor muscle, which is so contrived that, however irritated the viper may be, the receptacle cannot be emptied by a single bite. This vesicle terminates in a transparent excretory duct, which passes through the membrane that surrounds the basis of each canine tooth, and discharges its contents thro’ an almost imperceptible foramen at the fore part of the maxillary bone, which corresponds with another minute tube at the basis of each canine tooth, so that the poifon is conveyed into the body of the tooth, and is pressed out through another hole at the point of the tooth.

Our author’s experiments contradict Mead’s assertion, that the bite of the viper is fatal to its own species. They likewise prove, that it is equally
equally harmless to leeches and snails, but eels, lizards, &c. die of it, and it likewise kills the tortoise, tho' not without difficulty.

This poison is neither acid nor alkaline. It has no particular taste, excites no inflammation on the tongue, nor does it leave any acrid or burning sensation on the tongue like the poison of the bee or the scorpion. It is also without taste or smell when dried or powdered. Our author has met with no philosopher bold enough to swallow any of this poison; but his servant, James Benvenuti, a Tirolesi, who was prevailed on to submit to this hazardous experiment, observed nothing particular in its taste only that it was slightly astringent. It excites no pain when applied to the eyes, nor did it seem to occasion any pain when introduced into a wound in a dog. (Since this part of his work, however, was printed, the author, as he informs us in a supplement, has found that the poison of the viper kills animals very speedily when taken into the stomach. This is contradictory to the opinion of the ancients, who thought that the poison of serpents was destructive only when applied to a wound. Non gustu sed in vulnere nocent, says Celsus; and Lucan, before him, makes Cato say, Morsu virus babent, & fatum dente minantur;
minantur; pocula morte carent). Two viper catchers at Pilæ, who were bit, did not perceive the bite till the blood flowed from the puncture, and yet both these persons were afterwards affected by the poison. These are proofs, our author thinks, that no acrid salts exist in the virus.

He thinks it probable that this fluid, which is so poisonous to certain animals, may in the viper itself be essential to digestion. It preserves its energy, we are told, for a long time, even for years, in a viper's tooth, without losing its colour or transparency, and becomes as active as ever if the tooth is placed in warm water long enough to dissolve the poison, which seems to be a gummy substance. Stopping up the orifice of the canine tooth with wax, which is said to be a trick sometimes practiced by viper catchers, cannot always be done with impunity, as some of the virus, instead of passing into the body of the tooth, may be pressed into the membranous sheath at its basis.

The author next endeavours to ascertain the cause of death in animals bit by the viper. It is not true, he observes, that the globules of the blood (as they are improperly called) are decomposed by this virus. Convulsions, which
animals of cold blood hardly ever experience, when bit by the viper, and those of hot blood not always, are no proof that the virus contains caustic salts which irritate. Opium, tho' never suspected of containing any such salts, excites convulsions, and these symptoms, it is added, are not always the effects of irritation, but rather of the equilibrium between the antagonistic muscles being destroyed, and every one must have observed that animals, who die of haemorrhage, die with horrid convulsions. He is of opinion that opium occasions convulsions by destroying, in an irregular manner, the irritability of the muscular fibre. He supposes the poison of the viper to be analogous in its effects to opium, and that, like mephitic air, it kills by destroying the irritability of the muscular fibre and disposing it to putrefaction. He thinks it probable that all the animal and vegetable poisons act in a similar manner. He observes that of all the venomous animals, hitherto known, none seems to possess so active a poison as the fresh-water polypus. In an instant it deprives worms of their living principle, of which they are otherwise so tenacious, being extremely irritable. Its mouth or its lips can hardly be said to touch the worm, before the latter is dead, and
and yet in this case no wound is inflicted, as the polypus has no teeth or other instrument with which it can penetrate the skin.

The ingenious Abbé here takes occasion to mention a singular motion of the heart in a little microscopic animal, which Lewenhoek, supposing it to have wheels, has called Rotifer, or the wheel polypus. These suppos’d wheels our author has found to be moveable arms, placed round the two trunks of the polypus, and which it moves with so much quickness as to resemble a wheel. This species of polypus is a gelatinous worm, which is commonly found in the earth or sand washed into the leaden gutters on the tops of houses. But the most curious circumstance in the history of this little animal is the motion of its heart, which is very visible with the microscope, and appears to be absolutely immovable except when the animal moves its wheels or arms, and which it does only when it swims. In this animal, therefore, the heart appears to be a voluntary muscle, and during the greater part of its life is inactive; and yet this interruption of the circulation does not prevent its moving like other worms when its heart does not beat. He thinks that some of his readers may doubt whether he has not mistaken the stomach
fomach for the heart of the animal. This he allows to be possible, but he contends that, allowing it to be the stomach, the structure of the animal will not be deemed less singular, as an organ like the stomach, subject to the will, is not known to exist in any other animal. He has dried a polypus of this species and kept it in this state two years and a half, during which time it looked like a drop of dry glue, and yet when put into water it recovered its life and motion in two hours. He has likewise dried in the open air the Seta equina, or Gordius of Linnaeus, till it had lost almost the whole of its bulk and weight, and looked like a straw that has been trampled on; and yet in less than half an hour, upon being put into water, this worm recovered its life and former size. He has since met with other little animals that have similar properties. He means to speak of all these in a work on the life and apparent death of animals. Very different, however, from all this it is, he adds, with the irritability which the muscular fibres of animals lose when poisoned by the viper, for in these the principle of motion is lost for ever.

In the second part of his work the author treats of the effects of the poison of the viper
on the different parts of animals. The experiments for these purposes were made on pigeons, guinea pigs, rabbits, cats, dogs, and frogs. A pigeon, bit by a viper in one of its legs, died in 12 minutes; a second pigeon, bit by the same viper, died in 18; a third in 16; a fourth in 52 minutes, and a fifth in 20 hours; a sixth was but little affected, and a seventh not at all, so that before the last was bit, the poison of the viper seems to have been totally exhausted. He finds that an animal dies sooner if bit in two places than if only in one; that the virus soon proves fatal to puppies, but that full-grown dogs generally recover tho' bit repeatedly by four vipers; that cats resist the effects of this poison more than dogs, as in none of his trials did these animals, tho' bit by four and even six vipers, die, tho' they were much affected by the experiment: to produce death, he thinks, would require ten or twelve vipers.

Next follow experiments on the effects of the bite of the viper on different parts of animals. A tendon deprived of its sheath, in a rabbit, did not seem to be affected by the poison. It is true, indeed, that the rabbit died soon after, but the exposure of the tendon, we are told, is alone sufficient to produce death in this animal.
In the course of this part of his work the author endeavours to ascertain the quantity of virus requisite to kill different animals. His experiments shew that \(\frac{1}{80} \) of a grain, introduced into a muscle through a wound, proves fatal to a sparrow; and that five or six times this quantity will infallibly kill a pigeon. The sparrows, on which he made his experiments, weighed somewhat less than an ounce each, and the pigeons rather more than six ounces. On this ground, therefore, he supposes that to produce a similar effect in an ox, allowing its weight to be 750 pounds, 12 grains of the virus will be required, and 3 grains in a man, whose weight is about 150 pounds. He is of opinion that the effect of the virus is proportioned to its quantity. He observes that a viper, of a moderate size, contains only two grains of virus in its vehicle, but as the animal gives out only a small part of its poison at each bite, he conjectures that twenty vipers would be required to kill an ox, and five or six to produce the same effect in a man.

In the third part of the work our author attempts to ascertain the length of time the virus requires to produce its effects. For this purpose he cut off the legs of several pigeons and frogs, and...
and these parts were bit the moment they were amputated, but without any effect. In others the limb was cut off immediately after the bite, but the result was the same in these as in the preceding experiments; a proof that the virus requires a certain time to produce its effects, and this period, we are told, is found to vary according to the size of the animal.

We are next presented with some inquiries concerning the action of the poison on the blood of animals. The poison of two vipers injected into the jugular vein of rabbits instantly produced convulsions, and in less than two minutes, death. On dissection the blood in the heart and great vessels was found coagulated. In one instance, indeed, it failed to produce these effects, and in another the animal lived several hours; but in both these the author acknowledges he was not sufficiently accurate with his injection.

It appears from a great number of experiments that the virus produces no effect when applied to the nerves; and he is led to imagine, that the common symptoms of what are called nervous disorders are doubtful and fallacious; that they may exist without any apparent disorder of the nerve, and that a simple alteration in the state of the blood is sufficient to excite all these phenomena.
phænomena and that in an instant. He concludes that if Mead had been aware that a very small quantity of the poison of the viper kills instantaneously when injected into the blood, and yet is perfectly innocent when applied to the nerves, he would certainly not have had recourse to animal spirits and to the nerves, to explain the action of the poison on animals.

When our author asserted in the first part of his work, that the poison kills by destroying irritability, he was not aware of these circumstances; viz. its effects on the blood, and its inefficacy when applied to the nerves. He now thinks this hypothesis must in part be modified, as this loss of irritability is rather an effect than a cause, and is a consequence of the change produced in the blood by the virus rather than an effect of the virus on the muscular fibre.

In the fourth part of his treatise he examines the effects of the different remedies that have been hitherto recommended against the bite of the viper.

His inquiries, relative to the quantity of virus requisite to produce death in different animals, render it, as we have already seen, extremely doubtful whether it ever proves fatal to the human species. Of the persons who are bit by the
the viper it is very rare, our author observes, to hear of two who have used the same remedy, and yet they all recover; and from this circumstance he argues, that a disease which gives way to every remedy, even to opposite ones, can never be dangerous. He himself has seen ten or twelve instances, and has heard of fifty others, of persons bit by the viper, only one of whom died, and in this case deep scarifications, which produced gangrene, were made in the patient's arm. He quotes a few cases from authors, which render it probable that even the bite of a rattle-snake is not always fatal to man.

Concerning the remedies hitherto employed he observes, that De Jussieu, who, on Mead's authority, supposed the nature of the poison to be acid, employed the volatile alkali, or Eau de Luce, as an antidote to it. Our author finds this to be a remedy of no efficacy in these cases, and the reputation which this and some other means of cure have acquired, he ascribes to the circumstance of the bite of the viper being not always fatal to the human species. In some of his experiments he immersed the wounded part in hot oil of turpentine, and in hot water. Both these applications seemed to lessen the inflammation. Having observed that dogs and cats recovered
recovered soonest when they vomited most, he was induced to give emetic tartar to dogs that had been bit. Of the vomiting excited by this method he observes, that altho' it is certainly not a means of cure on which we can depend, yet he will not say that it is altogether useless. Cantharides applied to the wound constantly did harm by accelerating the local inflammation, and when given internally was, like the emetic, of doubtful efficacy. The Peruvian bark was tried but without any real advantage.—Scarification produced the same bad effect as Cantharides.—Theriac applied to the wound was of no use; and common oil, tho' formerly extolled by Mead as a remedy employed by viper-catchers, proved equally inefficacious.—Leeches, and suction by the mouth, did not in the least retard the operation of the poison.—He next tried the effect of amputation, and he found that guinea pigs, who were bit in the leg, generally recovered when the amputation was performed in less than six minutes after the bite. A rabbit, bit in its ear, was no more affected than another, whose ear had been cut off without being bit. In other rabbits the same thing was observed at the end of six, and in a puppy at the end of twenty minutes. He now attempted to determine
determine the effect of biting the skin and then cutting out the part; and he found in several experiments with rabbits and dogs, that the animals escaped the usual effects of the poison if the excision was performed within twenty minutes after the bite.

Having proved that the poison is communicated, not by the nerves, but by the blood, he began to think that a method of preventing its effects, easier and less painful than amputation, might be adopted; viz. a ligature applied tight enough to stop the circulation in the limb. As pigeons are easily affected by the poison he preferred these for the experiment. Immediately after one of these had been bit in the leg, a ribbon was tied close round the limb. The local affection soon began to appear. The limb swelled, became livid and approaching to sphaecelus. At the end of about ten hours the ligature was removed, and the limb gradually recovered its natural appearance. The result was the same in five other similar experiments, and this our author considers as a proof that the virus, after a certain time, loses its efficacy. He has since found, that this method, tho' it succeeds with pigeons and guinea pigs, is generally ineffectual in rabbits. He does not think it right,
right, however, to reject it as absolutely use-
less. Of its effects in man he has had no expe-
rience. He observes that it will be unnecessary
to make the ligature very tight, or to continue
it long on the limb, as he has repeatedly seen
the experiment succeed equally well in pigeons,
when the bandage was so loose as not to inter-
cept the circulation, and was removed at the
end of an hour.

In an appendix to these inquiries the author
gives us the result of his experiments on three
other remedies; viz. the pierres de Cobras (which
have been extolled by Abbé Teemeyer, in the
Raccolta di Opuscoli Scelti of Milan as an anti-
dote to the poison of the viper), Theriaca, and
Quicklime. The first of these was found to be
no other than calcined hawthorn, and of no ef-
ficacy. Indeed it is observed of the Abbé Tee-
meeyer, that he is a credulous writer, as he has
recommended the same remedy in cases of hy-
drophobia, and advises a sea horse’s tooth to be
worn in the pocket as a specific against the poison
of the viper. Kaempfer’s method of cure, with
theriaca and scarifications, has also been tried
by our author without any good effect. Quick-
limre applied to the wound, in pigeons, seemed
to be of use. A similar effect was produced by
Vol. V. No. I. C abfor-
absorbent earths. He lays no great stress, however, on either of these remedies, as the animals did equally well when nothing was applied to the wound.

In the course of his experiments on this subject, he has repeatedly seen good effects produced by lunar caustic applied to the wound, and given internally, at the same time, in solution. Rabbits, we are told, were in general cured by this method; but a greater variety of experiments must be made with it in different animals before we can determine what degree of confidence can be placed in it as a remedy.

The treatise on the poison of the viper is followed by two essays, the first of which relates to the Ticunas, an American poison, and the second to laurel-water. Both these papers have already been printed in the Philos. Trans. Vol. LXVIII. He now adds a second essay on the latter of these poisons. When his former observations were communicated to the Royal Society, he was unable to determine whether the essential oil of the Lauro-cerasus was of a poisonous nature; but his experiments have since proved it to be no less fatal than the spirit, and also that the latter preserves its destructive qualities after being, almost wholly deprived of its odorous and
and fapid parts. The effential oil, when dried, becomes a refrinous substance, and even in this state preserves its energy.

As a proof of the extreme activity of this oil, experiments are related, which shew that it kills when applied only to the inside of the mouth, and of course without being swallowed. At first, from some trials which he has since found were not sufficiently accurate, he was led to think, that it might be injected into the veins of animals with impunity; but he has since been convinced that it proves instantly fatal in this way.

It is poisonous to vipers, serpents, and pigeons, not only when swallowed, but also when applied to a wound. It proves destructive to pigeons, when applied only to the eye, and when applied to the heart instantly deprives it of its irritability. Notwithstanding these properties which render the oil of the Lauro-cerasus one of the most terrible and fatal poisons hitherto discovered, we are told that in Italy it has been publicly sold by perfumers under the name of essence of bitter almonds, and that many persons are in the habit of mixing it with their ragouts. The present Grand Duke of Tuscany, it seems, has wisely suppressed this dangerous abuse in his dominions.
After these observations and experiments on the poison of the Lauro-cerasus, the author presents us with the results of his trials with the Toxicodendron, which has generally been deemed a fatal poison, tho' some writers have denied that it possesses any such property. In examining this vegetable he himself was thrice poison- ed by its leaves. The juice and extract of the plant were given to different animals without any effect; but a woman, who in gathering the leaves had seen two little drops of the juice fall on the back of her hand, and who, three days after, observed three minute spots on this part, was seized on the sixth day with a swelling of her face, neck, throat, and hands, the skin of which became so inflamed and painful as to confine her to her bed fifteen days, at the end of which time the Epidermis peeled off. Our author was induced to consider this as an accidental disease, especially as he had applied the juice to the bare skin of rabbits and pigeons, had given it them with their food, and had even introduced it into wounds in those animals without the least effect. He was still more confirmed in this opinion, when he had poured several large drops of the juice on the hands of two gardeners, who indeed observed the black spots three
three days after as in the other case, but experienced no other effect from the experiment. Our author now ventured to try it on himself. He accordingly touched the back of his hand with a small drop of the juice, and it produced nearly the same effect as in the woman. The Epidermis was in many places distended with a watery fluid, and thirty days elapsed before the effects of the poison were entirely removed. At the end of that period, when he thought himself cured, he was induced to make some experiments on the air of the leaves, and in so doing he could not avoid touching them, but as they were entire he thought there could be no danger in this. Six days after this he began to swell again in the same manner as before; but this second attack was neither so violent nor of so long duration as the first. At the expiration of three weeks he again ventured to touch the leaves, and in four days he experienced another slight repetition of the same symptoms as before. The gardeners, he thinks, owed their safety to their callous hands.

Next follows an account of some experiments with the oil of tobacco. In pigeons, this oil usually excited vomiting when applied to a wound, and the limb to which it was applied was
was sometimes deprived of motion. This last effect, our author thinks, might be accidental. In no instance did it produce death.

We come now to some observations on the state of the nerves in diseases. Hoffman in his *Medicina Rationalis*, our author remarks, and, more lately, Musgrave, have been inclined to consider all diseases as nervous. Some physicians, it is added, have supposed them to be hardened and dry, others flaccid and relaxed in a morbid state; but his experiments having led him to observe, that there are poisons which produce no effect when applied to a nerve, and yet excite all the symptoms usually called nervous, when injected into the blood or applied to a muscle; he doubts whether our opinions on this subject are well grounded, especially as he has remarked that in frogs the motion of the heart is not affected by irritating the nerves. He doubts also whether nervous medicines, as they are called, act upon the nerves. He is aware that opium, when swallowed, has been thought to operate in this way; but who will venture to assert, says he, that it is not acted upon by the gastric juice and absorbed? It has been argued indeed by Dr. Monro, of Edinburgh (*Essays Phyf. and Lit.* Vol. 3.) that a solution of opium in spirits of
of wine, applied to the nerves of frogs, produced palsy; but our author, after repeating and varying the experiment, affirms that this effect is due solely to the spirit of wine, as no such consequence ensued when a watery solution of opium was made use of. His experiments have convinced him that the blood is the vehicle of this as well as of the other poisons.

The author next presents us with experiments on the reproduction of the nerves. That a nerve, when divided, is capable of being reunited is a curious fact, for which anatomists are indebted to Mr. Cruikshank, who after having divided a nerve of the eighth pair in a dog, took out about an inch of the nerve, and found at the end of a certain time that the space was filled up with an irregular substance. The late Dr. Hunter doubted whether this was a real regeneration of the nerve, as did our author when he saw it in 1778, particularly as he had often divided the sciatic nerve in animals without observing any such appearance. To satisfy his doubts on this subject, he divided the sciatic nerves of twelve rabbits, and in six of them he cut out six or eight tenths of an inch of the nerve. Some of these animals lived thirty days after the operation, but in none of them did there appear any mark
mark of nervous reproduction. His experiments, however, did not stop here. He now either divided or took out a portion of the par vagum, and of the intercostal nerve, in twenty-four other rabbits, and in thirteen of these he afterwards observed such a reunion as had been shewn him by Mr. Cruikshank. He examined the uniting substance with his microscope, and he was convinced that it was real nerve, as he could trace the continuation of the spiral lines and white bands he has observed in other nerves. He does not venture to assert, however, that the reproduction is perfect, that is, that the cylinders, of which he supposes the nerves to be composed, are continued through it without interruption. He observes that a division of the phrenic nerve is perhaps the only experiment that can decide this matter. If, in this case, the reunion were to take place, the nerve, if irritated above the junction, would excite the action of the diaphragm. This experiment, for want of sufficient leisure, our author has not yet made, nor has he as yet ascertained what other nerves, besides the eighth pair and the intercostal, possess this power of reproduction. The failure of the experiment when the sciatic nerves were divided, he thinks, might be owing to the great motion of the
of the part. After all, however, we are inclined to believe that the reunion in question is brought about merely by the intervention of cellular substance.

These experiments are followed by observations on the primitive structure of the animal body. Our ingenious and respectable author, during his residence in London, having read some account of Dr. Monro's supposed discoveries in the Edinburgh Medical Commentaries, wrote two very polite letters to the learned professor, to request some farther information on the subject. One of these letters was sent by the post, the second was delivered by the hands of a friend; but no answer was returned to either.

Our author began his inquiries with examining the nerves as they appear to the naked eye, when divested of their sheath. Viewed in this manner they exhibited an appearance of spiral bands, like a ribband twisted round a cylinder. These bands appeared very distinct, and uniformly the same in every nerve, when viewed through a lens that magnified only six times; but when observed with a microscope of much greater magnifying powers than this, the spiral bands disappeared, and in their stead were seen parallel and twisted fibres extending through
the whole course of the nerve. At length, after repeated observations, he found that with a stronger or a weaker light he could, with the same lens, have the appearance either of spiral bands or twisted fibres. He now considered the former of these as an optical deception, and was persuaded that the nerves are composed of twisted fibres.

He was now desirous to determine whether these fibres are solid or hollow. For this purpose he divided a nerve, and viewing it through a lens that magnified 500 times, he could distinguish several minute transparent cylinders, and having confirmed, as he thinks, this fact by repeated and numerous observations, he ventured to assert that a nerve is composed of a great number of transparent, homogeneous, uniform, very simple cylinders, which seem to be formed of a very subtile tunic, filled with a transparent gelatinous fluid that is insoluble in water. The cylinders, he is convinced, are the primitive organic elements of the nerves.

He next treats of the structure of the brain, and describes the appearance of the cortical and medullary substances, and retina, when viewed through a lens of great magnifying powers. The appearances exhibited by the tendons,
tendons, when viewed in the same manner, are also described. In examining the diaphragm of a rabbit through a microscope, he found that not the least filament of a nerve passes into its tendinous part, which is a proof, he thinks, that the tendons are destitute of nerves, and of course are composed of a substance different from the muscles. The tendinous and fleshy fibres, he observes, are intimately connected; but the fleshy fibre, he contends, never becomes tendinous or the tendinous fibre fleshy. He describes the difference between the nervous, muscular, and tendinous substances when viewed through a microscope, and speaks highly of Prochaska's work *De Carne Musculari*, printed at Vienna in 1778; a performance, he says, which has left us but little to wish for on this subject.

Our author offers some reflections on muscular motion; but at the same time acknowledges the uncertainty of our knowledge on this head. He is inclined to consider it as an electrical phænomenon, at least, he thinks our discoveries concerning the Gymnotus and Torpedo render this, if not probable, at least possible.

He next describes the twisted fibres of the cellular substance and membranes, and likewise
of the hair, epidermis, nails, bones, and fat of the animal body. He likewise describes these fibres as they appeared in ivory, fossils, &c. when examined with a microscope. All these different appearances are delineated in several very elegant engravings.

The author in this part of his work takes occasion to enter pretty fully into the subject of microscopic errors, and mentions the means he has used to avoid them; and yet notwithstanding his care and ingenuity it seems certain, that the objects he has delineated are like the appearances of the same kind which we have lately had occasion to mention (Vol. IV. p. 130) founded wholly on optical illusion.

These microscopical inquiries are followed by a letter written in 1778 to Dr. Adolphus Murray, professor of anatomy at Upsal, and containing a short description of a new canal which our author has discovered in the eye. This canal is formed by the ligamentum ciliare, or rather is surrounded by that ligament. Its internal surface is smooth and equal, and it may be easily detached from the sclerotica. He has seen both water and mercury pass from one side to the other of it, but as yet he is not able to say any
any thing of its use, or of the transparent fluid with which it is moistened.

We have now gone through the whole of this valuable and laborious performance, which contains the result of upwards of six thousand experiments, and we have bestowed on it that degree of attention which we think its importance entitles it to. The author modestly concludes it with acknowledging his readiness to listen to criticism and correction, but at the same time protests against those pretended philosophers, who oppose possibilities and scholastic prejudices to facts; and he thinks it right to add, that as his experiments have been numerous, a small number of different results will, in his opinion, not be sufficient to invalidate his assertions.

I. CONCLUSION of the experiments and observations concerning the attractive powers of the mineral acids. By Richard Kirwan, Esq. F. R. S.
F. R. S.—Having found, as exactly as he was able, the quantity of each of the mineral acids taken up at the point of saturation by alkalies and earths, and also that taken up by phlogiston, when these acids are converted by it into an aerial form, this ingenious chemist endeavoured to find out how much of these acids was taken up at the point of saturation by each of the metallic substances, and for this purpose procured the most saturated solution possible of each metallic substance soluble in any of the acids. The results of his experiments on this subject are related in the present paper. The advantages resulting from these inquiries are, as the author observes, very considerable, not only in promoting chemical science (which being a physical analysis of bodies, essentially requires an exact determination, as well of the quantity and proportion, as of the quality of the constituent parts of bodies) but also in the practical way. Thus, in the first place, it is well known, that several important processes are very inaccurately described by ancient chymical writers, and even by some of a modern date. They frequently, for instance, describe the acid they employed by reference to the quantity of fixed alkali, earth, or metal, a given quantity of
of such acid was capable of neutralizing or dissolving; now Mr. Kirwan's observations immediately inform us of the quantity of real acid capable of performing that effect; the remainder, therefore, must have been water; and the quantity of real acid and water being known, the specific gravity is easily found by the help of his tables, and then an acid of the same strength may be formed. 2dly, The importance of this knowledge in the art of pharmacy is very obvious, especially with regard to medicines formed of metallic substances, whose powers depend on the proportion of their ingredients, and their action on each other. 3dly, This degree of precision must tend considerably to the improvement of the arts of dying and enamelling, the processes by which many of their ingredients are procured being at present much too vague. Thus the processes at present used for preparing the precipitate of Cassius frequently fails, the strength of the acids not being sufficiently ascertained. 4thly, The uses of this knowledge in the examination of mineral waters, and in assaying of ores, have been fully proved in Bergman's elaborate treatises on that subject. But the end which our author
The author had principally in view was to ascertain and measure the degrees of affinity or attraction that subsist betwixt the mineral acids, and the various bases with which they may be combined, a subject of the greatest importance, as it is upon this foundation that chymistry, considered as a science, must finally rest. This is what Mr. Kirwan has done with his usual precision, and after a variety of important remarks on chemical attraction he gives us a table of the quantity of basis taken up by 100 grains of each of the mineral acids, and another table of the affinity of the three mineral acids to metallic substances. He then treats of the precipitation of metals by each other from the mineral acids; of the absolute quantity of phlogiston in metals; of the affinity of metallic calces to phlogiston; of the affinity of the vitriolic acid and phlogiston in sulphur; of solutions in the vitriolic, nitrous, and marine acids; of precipitations of and by iron, copper, tin, lead, mercury, bismuth, nickel, cobalt, antimony, and arsenic.

II. A description of a species of Sarcocele of a most astonishing size in a black man, in the Island of Senegal; with some account of its being an endemic
miyal diseafe in the country of Galam. By J. P. Schotte, M. D. Communicated by Sir Joseph Banks, Bart. P. R. S.—Of this extraordinary disease we formerly gave a short account (Vol. III. p. 426) from memory, after hearing the paper read at the Royal Society; but as the whole of the history is curious and interesting we shall here give it in the words of the author:

“Mr. Bisshopp, surgeon in chief of the province of Senegambia (who now resides in London) telling me one day, that he was going to see a poor black man of the Bambara nation, afflicted with a most extraordinary and dreadful disease in his testicles, I accompanied him, being glad of the opportunity of seeing it. We entered the hut, and saw the man lying on a negro bed, elevated about a foot from the ground. He said to Mr. Bisshopp, that there was again an ulcer on his scrotum, which had made him take the liberty to request his attendance. I looked at the scrotum, and found it of an astonishing size; but the place where he lay being dark, the hut having no windows, and those people having no candles, he was asked, if he could not walk towards the door, that we might see better.
He answered, that he would try; but this was attended with much difficulty. A long cotton sheet was first spread on the ground before the bed, which being done, he took, with both his hands, the enormous scrotum, moved it gradually on the border of the bed, let it slide down gently, and put it into the middle of the sheet: after this he took the two ends of the sheet, passed them up the fore-part of his body, over his shoulders, and had them tied behind his neck. This being done he got up, placing the right-hand upon his right-thigh, and holding the sheet with the left-hand, and proceeded in this manner, with his knees a little bent, slowly towards the door, partly sliding the scrotum on the ground, and partly supporting it with his neck by means of the sheet. I was astonished at its enormous size, when I saw it in the light, and yet I neglected to measure it, thinking at the time; as is often the case, that I should have opportunities enough to do it; but the sudden invasion of the island by the French prevented me afterwards from performing it. However, according to my guess, and without any exaggeration, the whole mass might be about two feet and a half long from the os pubis to its lower extremity, and
and about eighteen inches in diameter across from thigh to thigh.

Its weight I will only state at fifty pounds, as it was estimated by Mr. Bishopp, though I believe it to have been more, and indeed from its dimensions and from its being a solid mass, it must certainly have exceeded that weight. It was of an oblong form, and resembled in some measure the shape of the scrotum of a bull. It felt very hard to the touch, and the skin of it was so tight, that it could not be pinched by the fingers. The penis was quite hid in the bulk, as generally happens when the scrotum is much extended, and may be easily comprehended by those who have seen large ruptures. The skin of the perineum and of the abdomen was drawn downwards, the navel being nearer to the os pubis than in the natural state. There was a large aperture formed by the skin about a foot downwards from the os pubis, rather inclining towards the right side, out of which the urine came, which, however, did not run in a stream, but came irregularly from all the interior sides of the aperture. When he made water, he inclined the mass, which rested on the ground, a little forward, and he held a wooden bowl close underneath the aperture, into which the urine was immediately received,
ceived, that it might not run along the mafs, and occasion excoriation.

There was an ulcer on the anterior part of the scrotum, rather towards the left-side, of about two inches long, and one inch broad and deep. He said, that it had begun with a pustule or boil, which being broke had gradually increased to this extent. The pus which came from it was white, thick, and of a good kind. The bottom of it was red, and, when touched with the probe, gave him very acute pain. The edges of it were very callous, and in appearance it did not much differ from an ulcer of a good kind in any other fleshly part of the body. No other remedies were applied to it but those generally used in common ulcers. It was filled up from the bottom with lint; a pledget of basilicum was put over it, and the edges were now and then touched with blue vitriol. By those means granulations began to shoot from all sides, the fore filled up gradually, and a cicatrix was formed. He had had smaller ulcers of this kind in other parts of the scrotum before this time, which, Mr. Bifhopp told me, he had treated with the same success.

The man was rather thin than fat, and might be about fifty years old. He himself, like most blacks,
blacks; did not know his age; and if he had pretended to know it, I might, perhaps, not have believed him: for as old age is much respected among those people, they are very apt, when they are once passed fifty, and have grey hair, to call themselves older than they really are, in order to command respect. His abdomen seemed rather empty, and appeared drawn in towards the spine; yet I do not think, that any of the intestines had descended into the scrotum, or if any had passed down, the annuli of the abdomen must have been so dilated as not to occasion the least obstruction in them; for he never had, to my knowledge, any of those complaints or symptoms which attend ruptures. Besides this, it is to be observed, that ruptures are not very common among the blacks about Senegal; indeed I can say, that I never saw one of them.

Having thus far given an account of what I saw myself of this remarkable disease, I shall now relate what I have been credibly informed of by other people concerning its beginning and progress. The man had been purchased up the river as a slave, when he was about the age of puberty, and brought down to Senegal, where he was kept as a house-servant by an opulent inha-
inhabitant. He was for some years healthy and well; but afterwards his testicles began to swell insensibly, without inflammation, pain, or any other inconvenience. They increased gradually, though slowly, and became some years after of such a bulk, that he was neither able to walk nor perform his usual work. That he might, however, not be quite idle, as he was otherwise a stout and able fellow, he used to cut bars of iron into pieces of a foot long, which bear a certain price at Senegal, and go among the blacks like current money. This he could do fitting with a chisel and hammer, and a small anvil placed before him on the ground, his legs bent under him, and the big scrotum resting on the ground. Mr. Bishop had seen him perform this work for many years; at last, however, the scrotum increased to such a degree, that the great bulk prevented him from doing it any longer. From the time that the disorder had first begun to shew itself to the time I saw him, five-and-twenty years had elapsed; he was alive when I left the island in February, 1779, and may be so now.

This man was the only one I ever saw afflicted with this disease at Senegal; but I am credibly informed, that it is endemic in a country which goes,
goes, among the blacks at Senegal, by the general name of Galam, and of which this man was a native. This country lies east of Senegal, at the distance of about nine hundred English miles, and its inhabitants are called Bambaras. I have been told by those inhabitants of Senegal, who go annually in the rainy season in a fleet of small craft to Galam for trade, that this disease is particularly common among the chiefs or noblemen of that country, who are styled in their own country language Batcherees; and that they have large wooden bowls, fixed on the fore-part of the faddle, into which they place the big scrotum when they take a ride on horse-back. Though this latter circumstance seems a little romantic, yet as it has been related to me, not by one but by many, separately and at different times, I give it credit, and I have not the least hesitation to believe, that the disease is common there. Many of the inhabitants of Senegal have applied to me previously to their setting off for that country, and asked me, if I could not give them medicines which would cure that disorder, with a promise, that if they proved successful, I might be sure of a very ample reward of gold; but the improbability of succeeding in the reduction of such enormous masses to
to their pristine state prevented me from giving them any.

When I was at Fort James in the river Gambi,
a short time in the year 1776, I was told by some Mahometans, or Mahometan priests,
of the Mandinga nation, that this disease was now and then to be met with among the chiefs of their nation, and that they knew no cure for it. I have no reason to discredit their assertion, and what makes it more probable is, that the Mandinga and Bambara nations seem to be nearly related to one another in outward appearance, customs, and language, though not entirely in religious matters; for many of the Mandingas are Mahometans, which the Bambaras are not. Their languages resemble one another so nearly that a Bambara from Galam, and a Mandinga from the kingdom of Barrah, which extends from the sea-coast along the north-side of part of the river Gambia, can partly understand one another. Both nations have also a custom of marking their children in various manners by incisions in the skin, and that of filing their fore teeth (incisores) till they become quite pointed, which I imagine they consider as being handsome.
As the disease, according to the information I received, begins with a gradual swelling of the testicles without any pain or inflammation, I am inclined to consider it as a farcocele. Heister, in his Surgical Institutions, says, that the disease begins and increases mostly in the same manner, when it affects the testicles themselves; but that he never saw any of them much bigger than a man's fist. This difference in the size does, in my opinion, not alter the disease; for we know, that the Bronchocele is hardly known in some countries, that it is of a moderate size in some others, and that in others again it has been seen to increase to such an enormous bulk as to hang down over the breast and belly; yet this difference of size does not alter the nature of the disease, and it still retains the same name.

It is difficult to point out the causes of such a farcocele, as consists in the spontaneous tumefaction of the testicles themselves; neither do I find any satisfactory ones assigned by the author I have just now quoted; and as I have not been in Galam, I can hardly say any thing probable concerning those of the disease I have described, I shall, however, suggest the following:

As polygamy is lawful and customary among the Bambaras as well as among all the other na-
tions about the river Senegal and Gambia, and as the riches and consequence of a man are estimated by the number of wives that he keeps, the chiefs of the people have always a great number of them. I have been told, that the Batcherees of Galam have their victuals most immoderately seasoned with Cayenne pepper; and I know myself, that the opulent people of the Mandinga nation make the same abuse of it. This may, perhaps, be done with a view to its operating as a provocative; for it has a peculiar effect on the seminal vesicles, and will produce erections, attended with a dull pain and turgescency in the testicles: I was therefore inclined to think, that the immoderate use of this pepper might partly be the cause of this disease; but then again this could not be the cause in the man I saw at Senegal, where none, or at least very little of it, is used.

The most probable cause of it seems to be an hereditary disposition; for, as it only begins to shew itself about the age of twenty-five or thirty, a man may be father of a great many children before it takes place, and as it seems to be confined to families of the principal people of the Bambara nation, it may be, that the man I saw afflicted with it at Senegal was descended from
from such a family, and made a slave in his younger years by some fatal accident or other, as is often the case in those countries.”

The other papers in this volume are a letter from William Herschel, Esq. to the President, in which he gives the name of Georgium Sidus to the planet he has lately discovered.—On the diameter and magnitude of the Georgium Sidus, by the same.—A description of a new construction of eye-glasses for such telescopes as may be applied to mathematical instruments, by Mr. Ramsden.—An account of several lunar irises, by Marmaduke Tunstall, Esq. F. R. S.—An account of an earthquake, by John Lloyd, Esq.—An account of a new Eudiometer, by Mr. Cavendish, F. R. S.—Experiments upon the resistance of the air, by R. L. Edgeworth, Esq.—An answer to the objections of M. de la Lande (concerning the solar spots) by Alex. Wilton, M. D.—An account of the earthquakes which happened in Italy, from Feb. to May 1783, by Sir W. Hamilton, K. B. F. R. S.—Account of the earthquake which happened in Calabria, March 28, 1783, by Count F. Ippolito.—Account of the black canker caterpillar, which destroys the turnips in Norfolk, by William Marshall, Esq.—Account of wire being shortened by lightning,
ning, by Mr. E. Nairne, F. R. S.—An account
of ambergrise, by Dr. Schwediawer (see our 4th
vol. p. 97).—Extract of a register of the barom-
eter, thermometer, and rain, kept at Lyndon,
in Rutland, 1782, by Tho. Barker, Esq.

III. Pharmacopeia Collegii Regii Medicorum Edin-
burgensis. 8vo. Edin. 1783. p. 269.

In this new edition of the Edinburgh Dis-
pensatory, which is the seventh, several of
the articles inserted in the edition of 1774 are
omitted or altered, and other new ones added.
The College have likewise changed the names
of some of the compound medicines formerly
adopted, for others which they think are more
expressive of their nature; and, in directing the
proportions of different ingredients, they every
where exclude liquid measure, as being less ac-
curate than measure by weight.

In the first part of the work, or Materia Me-
dica, the following new articles are inserted; viz.
acetum vini; aqua fliliatitia florum aurantiorum
Hispalensium; arnica; balsamum Gileadense;
cardamine; carica; caryophylla aromatica; ca-
flia
fria lignea; cinara bortensis; cursuta; digitalis purpurea; dolichos; elaterium; felix mas; geoffrea (cabbage bark); ginseng; gratiola; lieben islandicus; lobelia; oleum sillatitium florum aurantiorum Hispalensium; olea expressa feminum lini, nucis moschatae (oleum macis vulgo dicti), & olivarum; oliva; palma; pix liquida; quassa; radix indica lopeziana; rhododendron; sal alcalinus; fixus foetidis; salix; sanguis draconis; sapo albus Hispanus; spigelia; vipera; ulmus.

In the former edition many of the articles were either not defined at all or imperfectly described. This defect is now supplied with great accuracy with regard to the following; viz. Aloe hepatica; aloe Socotorina; amygdalae dulces; assafetida; aurantium Hispalense; balsamum Canadense; bals. Copaiba; bals. Peruvianum; bals. Tolutanum; benzoinum; camphora; canella alba; cantharides; cardamomum minus; cassia; cassa fistularis; castrorum; cictuta; cinnamomum; cochiniilla; colocynthis; contrayerva; cortex Peruvianus; curcuma; fænum Græcum; galbanum; galla; gambogia; gummi Arabianum; gummi Tragacantha; jalapa; ipecacuanha; iris Florentinus; manna; maftiche; millepedæ; moschus; oculi cancrorum; olibanum; opium;
opium; pimenta; piper longum; piper nigrum; pix Burgundica; pyrethrum; ricinus; rheum; santalum citrinum; santalum rubrum; fiantonicum; sarcaparilla; saffras; scammonium; seneca; sena;serpentina Virginiana; sinarouba; spermacte; styx calamita; tamarindus; terebintina Veneta; terra Japonica; zedoaria; zingiber.

The articles omitted are ambra grisea; aurantium; Curasavence; cornu cervi calcinatum; creta alba; crocus; eryngium; hypericum; lichen cincereus terrestris; nux moschata condita; oponax; ostreorum testa; papaver album; sambucus; symphytum.

In the second part of the work, which includes the Medicamenta Preparata & Composita, the additions and alterations are likewise considerable. The additional preparations are aqua calcis; vinum e tartaro antimonali (made by dissolving 24 grains of emetic tartar in a pound of white wine); aqua destillata;—aqua distillitiae corticis malorum limoniorum & aurantiorum Hispaniensium; oleum e cornibus rectificatum, sive oleum animale;—sal alcalinus fixus fossilis purificatus;—soda tartarifata, vulg. sal rupelensis;—vitri-olium album;—solutio mercurii sublimati corrosivi (six grains of mercur. corros. sublim. and twelve of...
sal ammoniac. dissolved in a pound of distilled water; — pulvis mercurii cinereus *; — pilulae scillitiae †; — pilulae fumaricae; — linimentum simplex (composed of four parts of oil of olives, and one of white wax); unguentum simplex (with five parts of oil and two of wax); ceratum simplex (with six parts of oil, and three of wax); — unguentum e calce zinici (composed of six parts of linum. simpl. and one of calx of zinc); — un-

* R. Hydrargyri,
Acidi nitri, tenuis, paria pondera.
Miice ut solvatur hydrargyrus, fo-
lutum aqua pura dilue, & adde spiritus fals ammoniaci quantum satis sit ad hydrargyrum
penitus ab acido liberandum; pulvis dein aqua
pura lavetur & eviscetur.

† R. Gummi ammoniaci,
Cardamomi minoris in pulverem
 tenuem triti,
Extraicti glycyrrhizae, singulorum drachmam unam,
Radicis scillae exsiccatæ, & in pul-
verem tenuem redactæ, scrupu-
 lum unum.
M. & syrupo simplice fiat 1

guentum
guentum citrinum ‡; — unguentum e sulphure five antipsoricum.

The preparation of several of the ointments is rendered more simple in this than in the former edition. The ceratum e lapide calaminare is now directed to be made by mixing one part of the prepared lapis calamin. with five of the ceratum simpl. In the same manner the unguentum e tutia is to be made by incorporating one part of prepared tutty with five of liniment. simpl. and the ung. ex aerugine by mixing one part of verdigris with fifteen of ung. basilic. The ung. e pice, instead of being composed of equal weights of liquid pitch and mutton suet, as in the former edition, is now directed to be prepared of five parts of the former and two of yellow wax.

The preparations omitted in this new edition are the following; viz. Succi spissatiflammulae

‡ R. Hydrargyri, unciam unam.

Spiritus nitri, uncias duas.

Digere super arenam calidam ut fiat solutio, quæ calidissima adhuc misceatur cum axungiae porcinæ liquefactæ, & denuo frigescensis, libra una; strenue dein mixturam subige in mortario vitreo, ut fiat unguentum uniforme.

Jovis
Jovis & hysocyami; — infusum foliorum flammulae
Jovis; — Vinum dictamni albi; — tinætura meconii;
— aquæ pillatioæ ca斐æ lignææ & pulsatille
migratæs; — aquæ raphani composita; — vitri-
olum album purificatum; — cinnabari facétia;
pulvis antilysus; — unguentum cereum livæ album;
— unguentum emollens; — emplaʃtrum antibyster-
ricum.

The articles of which the names are changed
are comprized in the following tables.

OLD NAMES. New Names.

Sal lixivius purificatus. Sal alcalinus fixus vege-
tabilis purificatus.

Tartarum vitriolatum. Alcali fixum vegetabile
vitriolatum.

Sal catharticus Glauberi. Soda vitriolata.

Tartarum solubile. Alcali fixum vegetabile
tartarifatum.

Tartarum regeneratum. Alcali fixum veg. aceta-
tum.

Causficum lunare. Sal argenti.

Saccharum Saturni. Sal plumbi.

Tartarus emeticus. Tartarus antimoniais.

Syrupus & sucço limonum. Syrupus & sucço malorum
limoniorum.

Pilulae caeruleæ. Pilulae e cupro.

Vol. V. No I. G Pilulae
OLD NAMES.

Pilulae mercuriales.
Unguentum mercuriale.
Unguentum epispasticum mitius.

NEW NAMES.

Pilule e hydrargyro.
Unguentum ex hydrargyro sive ceruleum.
Unguentum epispasticum ex infuso cantharidum.

IV. An Inquiry into the nature and cause of that swelling, in one or both of the lower extremities, which sometimes happens to lying-in women. Together with an examination into the propriety of drawing the breasts of those who do, and also of those who do not give suck. By Charles White, Esq. F. R. S. Member of the Corporation of Surgeons in London; Surgeon to the Infirmary and Lunatic Hospital, and Vice President of the Literary and Philosophical Society of Manchester, &c. 8vo. Dilly, London, 1784. 87 pages, with 3 copper-plates.

BEFORE the practice of midwifery fell into the hands of men of science, effects were too often mistaken for causes, and the disorders of lying-in women were in general ascribed to some defect, redundance, or obstruction
[51]

Eruption of the lochia, or of the milk. This has been the case with that which is the subject of the present inquiry. It has been attributed to suppressions of the lochia, to deposits or redundancies of milk, or to cold, and has been confounded with other disorders. But the ingenious author of the work now before us undertakes to prove that it is a disorder sui generis, and proceeds from a cause not hitherto suspected.

The French are the principal authors who have written upon this subject; but their description of the disorder, we are told, is incorrect, and their mode of treatment inadequate. Mauriceau, who is the first author who has described it, ascribes it to a reflux of lochia on the part; but Puzos, Levret, and in general all the later French writers, together with Baron Van Swieten, consider it as a deposit of milk.

Mr. White has found but little account of this complaint in any English author, and he observes that it is but slightly mentioned by the lecturers on midwifery either in London or Edinburgh. Dr. Hunter, it seems, used to speak of it in his lectures, but without determining its real nature; and Dr. Denman has been accustomed to consider it as an affection of
of the whole glandular and lymphatic system of the extremity.

The symptoms of this disorder are described with great accuracy by our author. In one case he has seen it occur so early as twenty-four hours after delivery; and in another so late as five weeks; but neither of these periods of attack, we are told, is usual, as in general it comes on about the second or third week after delivery. The first symptom is commonly a pain in the groin. This part soon becomes affected with swelling and tension, which extend to the labium pudendi of the same side, and down the inside of the thigh, to the ham, the leg, the foot, and the whole limb; and the progress of the swelling is so quick, that in a day or two the limb becomes twice the size of the other, and is moved with great difficulty, is hot and exquisitely tender; but not attended with external inflammation. In a few days the heat and pain abate, but the swelling and some degree of tenderness continue several weeks. The skin is tense, pale, and shining, but does not yield to pressure as in anasarca, neither does any water issue from it on its being punctured with a lancet.

The swelling comes on without rigor or shivering, but is usually attended with a small fever, which
which in some patients subsides in two or three weeks, but in others continues six or eight weeks, and is attended with hectic symptoms. Sometimes, tho’ rarely, we are told, the swelling attacks both the lower limbs. It is not uncommon, however, it seems, after the disorder has subsisted a week or two, for the sound leg to become oedematosus towards evening; but then the groin and thigh are not affected on that side; and the leg is much softer to the touch than the other, and pits when pressed by the finger.

This disorder, the author observes, attacks indifferently women of all ranks and of different ages and habits; those who give suck and those who do not; the strong and the weak; after their first or any other labour; and whether the labour be natural or preternatural; but he has not known it happen after a miscarriage, nor to a woman more than once tho’ she has afterwards had more children. It happens at all seasons of the year indiscriminately; and in the country, as well as in large towns. He has never seen it attack any other parts of the body, except those already mentioned; nor has he ever seen it suppurate, or prove fatal, or occa-
tion any other inconvenience, after a few months, than a little swelling of the leg after fatigue.

This general history of the disease is illustrated by a variety of cases. The author then proceeds to deliver his theory concerning its nature and cause; but before he attempts to ascertain what it is, he has thought it right to say what it is not, by pointing out its difference from other disorders to which it bears some resemblance. This leads him to mention the circumstances in which it differs from sciatica, rheumatism, anaesarca, and erysipelas. It cannot be owing, he observes, to any defect of the lochia, as it happens to those who have the most regular discharge; nor can it be in any measure owing to the milk, as it occurs under every circumstance attending that secretion, and under every different treatment of the breasts. It cannot be an affection of the whole lymphatic system; as it is confined to the lower extremities; and further, Mr. White contends that it cannot be properly called a disease of the arteries, veins, nerves, muscles, or bones, as it is not accompanied with any symptom attendant upon disorders of those parts. From these premises, and from the history he has given of the disease, he thinks we may conclude that its prox-
proximate cause is an obstruction, detention, and accumulation of the lymph in the limb. This obstruction, he thinks, may be ascribed to the pressure which the lymphatics, in their passage over the brim of the pelvis, experience from the head of the child during labour. The current of lymph, thus stopped, is prevented from regurgitating by the number of valves with which the absorbents are furnished, and of course a lymphatic so compressed will be distended till it bursts. The fluid thus extravasated will be absorbed by other lymphatics, and in the mean while the ruptured vessel will be gradually reunited. If the above hypothesis be true, he thinks the predilection cause may, in all probability, be a weakness of the coats of the lymphatics, in such subjects only as have these vessels formed into one principal trunk under Poupart’s ligament. — Such are the outlines of our author’s theory, and to elucidate it he has introduced a description of the lymphatics of the lower limbs from the latest and best writers on the subject; and, with permission of Mrs. Hewson, has decorated his work with the three first plates of Mr. Hewson’s work on the lymphatic system.
For the cure of this disease the author, in the first, or what he thinks may be called the inflammatory stage, recommends the antiphlogistic method. But as the inflammation here is not the original complaint, but only a symptom, he prudently cautions us against wasting our patient's strength by large evacuations. Glysters and mild purges, he observes, will be sufficient. To alleviate the pain he advises the use of opiates, anodyne fomentations, the warm and vapour baths, and blisters applied to the upper part of the thigh; these last, he tells us, have generally been found of much advantage, by taking off the irritation from the part originally affected. The fever is to be alleviated by antimonials, the neutral draughts, cool acidulated liquor, and cool air; and if the lochia are acrid and putrid, antiseptic injections are to be thrown up the vagina with a large ivory syringe or by an elastic vegetable bottle.

When the violence of the pain abates, and the swelling and tension begin to lessen, but a quick pulse and some degree of fever remain, the disease is said to have arrived at its second stage. At this period he recommends wine and a fuller diet, and has often experienced good effects from calomel in small doses, and likewise from
from myrrh. The limb may now be chafed with warm oil, and the patient is advised to use the tepid bath. When the pain and fever are entirely gone, and no complaint remains except a swelling of the limb, and perhaps a general relaxation, the bark, with or without steel, sea-bathing, or the cold bath, dipping the limb in cold water, embrocating it with camphorated spirit of wine or with distilled vinegar, a strait stocking or some other suitable bandage, exercise on horseback, and gentle rubbing of the limb, are the methods recommended to complete the cure.

In an appendix the author defends an opinion he had given in a former work relative to the drawing the breasts of women, against Mr. Cruttwell of Bath, who denies the necessity or even propriety of ever doing it. But when from the weakness of the child, or the bad conformation of the nipple, or other accidental circumstances, it is impossible or improper for the child to suck, there surely can be no objection to our continuing to solicit the milk by this method till the impediments in question are removed; and these are the only cases in which its use is insisted on by Mr. White.
V. Rapport de M. M. Cosnier, Maloet, Darcet, Philip, Le Preux, Deffartez, et Paulet, docteurs-regens de la faculté de médecine de Paris; sur les avantages reconnus de la nouvelle méthode d'administer l'électricité dans les maladies nerveuses, particulièrement dans l'épilepsie, et dans la catalepsie; par M. Ledru, connu sous le nom de Comus. Lui a l'assemblée de cette faculté, dite du Prima Mensis, tenue au mois d'Avril dernier. Ce rapport est précédé de l'aperçu du système de l'auteur sur l'agent qu'il emploie, et des avantages qu'il en a tirés. i.e. Report of Messieurs Cosnier, Maloet, Darcet, Philip, Le Preux, Deffartez, and Paulet, doctors-regent of the faculty of physic at Paris; concerning the acknowledged advantages of the new method of administering electricity in nervous disorders, particularly in the epilepsy and catalepsy, by M. Ledru, known by the name of Comus. Read at a meeting of that faculty, called Prima Mensis, held in the month of April last. This report is preceded by a sketch of the author's theory of the agent he employs, and of the advantages he has derived from it. 8vo. Paris, 1783. 115 pages. Printed at the expense of government.
THE opinion at present most commonly entertained in this country, concerning medical electricity is, that the administration of strong shocks is, in general, not only useless but even hurtful; and Mr. Cavallo, one of the latest and most esteemed writers on this subject (see our 1st vol. p. 248.) contends, that the greatest electric powers which can be applied with success are exceedingly small shocks. But the cases related in the work before us are repugnant to this doctrine; as it appears, that the method of administering electricity in epileptic cases, adopted by the Sieur Ledru, consists in giving very strong shocks. In proof of the efficacy of this practice we have the testimony of the seven physicians whose names are mentioned in the title. The experiments were made on thirteen patients under the immediate inspection of these gentlemen in a house provided for this purpose by government. These cases were selected as the most inveterate of about five hundred epileptic and hysterical patients in the Bicetre and Salpetriere hospitals at Paris. Seven of the patients were males and the rest females. They are all said to have been cured in about eight or nine months; but neither the strength of the shocks nor the mode of administering them are
ascertained with sufficient accuracy, as we are only told in general terms, that they were very strong.

The result of these experiments are, 1. That electricity at first renders the paroxysms of epilepsy more frequent; thus the first of the thirteen patients, a boy twelve years old, who had usually had only about three fits every day, that is, 90 in 30 days, had 279 the first month he was electrified.—2. That electricity after a certain time renders the fits less frequent: as a proof of this we may remark, that the patient just now mentioned had only 63 fits the second month, and 14 in the third. The violence of the attack is likewise said to be diminished when strong shocks are administered during the paroxysm, as the fits, which when left to nature commonly lasted a quarter and even half an hour, were by these means shortened to two, three, or at most five minutes, and sometimes the fits, though preceded by the usual symptoms, were totally prevented.—3. That the paroxysms are not only rendered less frequent, but also less violent.—4. That electricity, as administered by Mr. Ledru, strengthens the muscular fibre, and, notwithstanding the vio-
ience of the shocks, is productive of no inconvenience.

Within these few years the art of surgery has been enriched with two very useful methods of curing radically the hydrocele of the tunica vaginalis; namely, the seton and small cautic. The advantages they evidently possess over incision, excision, and some other means which have been recommended and practised, are great and obvious; and are now so generally allowed, that they have been adopted by the generality of surgeons, as the safest and most certain methods of treatment. But even these, superior as they undoubtedly are to those which preceded them, might perhaps admit of some emendation, if the principles on which they operate in effecting a radical cure were thoroughly ascertained and estabished. The merits of these two methods are very fully and ably discussed in the tract now before us.

Mr.
Mr. Howard candidly acknowledges he has seen but few cases treated by the small caustic, having collected almost all his ideas of it from the late Mr. Elle's pamphlet on that subject. He allows a great share of merit to this mode of treatment; but he cannot be brought to believe, that it will ever be so extensively useful as the feto. With regard to the latter he has been guided by long and repeated experience. Having for a considerable number of years been employed, as an assistant to Mr. Pott, in attending some of his public, and a great number of his private patients, who have submitted to his method; he has had many opportunities of observing the progress of the cures under different degrees of inflammation, and from thence has been induced to believe, that the inflammation raised by the feto should be of short duration, and very moderate. He has, indeed, long been convinced, that the feto may be so managed as to become itself, the regulator of that inflammation, which it is intended to produce; and that, merely by increasing or diminishing the number of threads, it may be adapted to every possible temperament, from the most indolent to the most irritable.
All the circumstances under which a considerable diminution may be adviseable he is not able to point out fully. But, he thinks, that whenever high inflammation is to be apprehended, eight or ten threads, or even a less number, may compose a seton of sufficient thickness to answer the purpose of a radical cure, and that, even in old and full sized hydroceles. The diameter of the conducting canula may be made, for these cases, of the size of a common trocar canula used in the palliative method. When the tunica vaginalis contains but a small quantity of fluid, more especially if the habit is very irritable, he supposes, that a seton of the smallest size will probably be attended with the most favourable consequences.

The usual way of extracting the seton is by the inferior orifice. But having once obtained a radical cure within a fortnight, when he removed it from the superior, he is inclined to think that the last is the best and most unexceptionable method. The lower orifice generally heals before the upper; and as the latter is not, from its situation, depending, a trifling lodgement of mucus will sometimes keep it open for some days, and unavoidably protract the cure. The alteration
alteration proposed will, our author believes, obviate this inconvenience.

SECTION II.

Essays and Observations.

I. Observations to prove that in cases where the upper extremities present, at the time of birth, the delivery may be effected by the spontaneous evolution of the child. Communicated in a letter to Dr. Simmons, F. R. S. by Thomas Denman, M. D. Licentiate in Midwifery of the Royal College of Physicians, Physician-man-midwife to the Middlesex Hospital, and Teacher of Midwifery in London.

In the presentation of the superior extremities of children, at the time of birth, it has been an opinion, I believe, universally adopted, that women would die undelivered, if they were not relieved by art. Being informed that the following cases, which are contradictory to this opinion, have been misrepresented, and sometimes misquoted, I beg the favour of you to publish...
publish this short account in the London Medical Journal.

CASE I.

In the year 1772, I was called to a poor woman in Oxford-street, who had been in labour all the preceding night, under the care of a midwife. Mr. Kingston, now living in Charlotte-street, and Mr. Goodwin, surgeon, at Wirksworth, in Derbyshire, who were at that time students in midwifery, had been sent for, some hours before I was called. The arm of the child presenting, they attempted to turn and extract it by the feet, but the pains were so strong as to prevent the introduction of the hand into the uterus. I found the arm much swelled, and pushed through the external parts in such a manner, that the shoulder nearly reached the perinaeum. The woman struggled vehemently with her pains, and during their continuance, I perceived the shoulder of the child to descend. Concluding that the child was small and would pass, doubled, through the pelvis, I desired one of the gentlemen to sit down to receive it, but the friends of the woman would not permit me to move. I remained by the bed-side till the child was expelled,
and I was very much surprised to find, that the breech and inferior extremities were expelled before the head, as if the case had originally been a presentation of the inferior extremities.

The child was dead, but the mother recovered as soon and as well as she could have done after the most natural labour.

CASE II.

In the year 1773, I was called to a woman in Castle-street, Oxford-market, who was attended by a midwife. Many hours after it was discovered that the arm of the child presented. Mr. Buroffé, surgeon, in Poland-street, was sent for, and I was called into consultation. When I examined, I found the shoulder of the child pressed into the superior aperture of the pelvis. The pains were strong and returned at short intervals. Having agreed upon the necessity of turning the child and extracting it by the feet, I sat down and made repeated attempts to raise the shoulder, with all the force which I thought could be safely used; but the action of the uterus was so powerful that I was obliged to desist. I then called to mind the circumstances of the case before related, mentioned them to Mr. Buroffé, and proposed that we should wait for the effect, which
which a continuance of the pains might produce, or till they were abated, when the child might be turned with less difficulty. No further attempts were made to turn the child. Then every pain propelled it lower into the pelvis, and in little more than one hour the child was born, the breech being expelled, as in the first case.

This child was also dead, but the mother recovered in the most favourable manner.

Having been prepared for observing the progress of this labour, I understood it more clearly, and attempted to explain both in my lecture on the subject, and in the aphorisms which were printed for the use of the students in the same year, that is, 1773, my opinion of the manner in which the body of the child turned as it were, upon its own axis. I also pointed out the circumstances, in which, I supposed, the knowledge of the fact might be rendered useful in practice; but with great circumspection.

Case III.

January the 2d, 1774, I was called to Mrs. D——, who keeps a toy shop in Crown-court, Windmill-street. She had been a long time in labour, and the arm of the child presented.

The late Mr. Eustace had been called on the
preceding evening, and had made attempts to turn the child, which he had continued for several hours without success. I was sent for about one o'clock in the morning, and on examination found the arm pushed through the external parts, the shoulder pressing firmly upon the perineum. The exertions of the mother were wonderfully strong. I sat down while she had two pains, by the latter of which the child was doubled, and the breech expelled. I extracted the shoulders and head, and left the child in the bed. Mr. Euftace expressed great astonishment at the sudden change, but I assured him that I could claim no other merit on account of this delivery, except that I had not impeded an effect which was wholly produced by the pains.

This child was also dead, but the mother recovered in the most favourable manner.

In all these cases, the women were at the full period of utero-gestation, and the children were of the usual size.

Other cases of the same kind have occurred to me, and with the histories of several, varying in the time or manner in which the evolution of the child was made, I have lately been favoured by gentlemen of eminence in the profession. But these
these are sufficient to prove the fact, that in cases in which children present with the arm, women will not necessarily die undelivered, though they are not assailed by art.

With respect to the benefit we can, in practice, derive from the knowledge of this fact, I may be permitted to observe, that the custom of turning and delivering by the feet in presentations of the arm, will remain necessary and proper, in all cases, in which the operation can be performed with safety to the mother, or give a chance of preserving the life of the child. But when the child is dead, and when we have no other view but merely to extract the child, to remove the danger thence arising to the mother, it is of great importance to know that the child may be turned spontaneously, by the action of the uterus. If we avail ourselves of that knowledge, the pain and danger which sometimes attend the operation of turning a child, may be avoided. Nor would any person versed in practice, fixing upon a case of preternatural presentation, in which he might expect the child to be turned spontaneously, be involved in difficulty, if from a defect of the pains or any other cause, he should be disappointed in his expectations. Nor would
would the suffering or chance of danger to the patient be increased by such proceeding.

To this account, I beg leave to add, that the cases of which I have been informed, now amount to near thirty, and that in one of them, which was under the care of our friend Dr. Garthshore, the child was born alive.

I am, dear Sir,

Your most humble servant,

THOMAS DENMAN.

Old Burlington-street
Dec. 7, 1783.

II. Some Remarks on the nature and treatment of Cancers. Communicated in a letter to Dr. Simmons, by Robert White, M. D. Physician at Eye in Suffolk.

No disease to which the human species is subject carries with it so formidable an appearance, or is productive of such dreadful consequences, as that which is called a Cancer. It has ever been the reproach of the medical art, and the most learned and experienced of the profession
fection have employed their time and attention to but little purpose towards perfecting its cure. Various remedies for this disease have indeed at different times been published, but it is a well-known and melancholy truth, that not one of them has yet been able to stand the test of experience. Of late years our attention has been much excited by the means of cure proposed by Baron Storck,—Mercury, bark, and cicuta have been often tried in this country, according to the rules prescribed by that learned physician, but have not produced the effect which the perusal of his ingenious publication on the subject gave us reason to expect. I have had an opportunity, however, of seeing many flattering instances of relief in the ulcerated state of cancer, from a continued use of the abovementioned medicines; and am firmly persuaded, that his method of treating the disease would often be productive of the desired effect, provided the ichorous, corrosive quality of the matter, which lodges from time to time upon the surface of the sore, could be corrected, and the absorption of that matter be prevented, in a certain degree. This additional plan I have endeavoured to put in practice, and have had the happiness to find it succeed in two desperate cases. In a third it has failed;
failed; but from the nature of the parts affected, which were the cheek, tongue, and fauces, I had very little reason to expect even the temporary relief which visibly followed its use.

The method I pursue to prevent absorption, and correct the acrimony of the discharge, is by fumigation and poultice; the latter of these alone, has been attended with all the success that could be desired, in a case to which I was called some time since, of an aged person, whose breast had been long diseased, but for a year or two before had discharged at times an ichorous matter, and healed again with little trouble: at length it inflamed, gangrened, and floughed entirely off. The sore healed in about ten weeks, and remained so not long since. A common poultice, with dry lint, and lint lightly spread with cerate, were the only applications made use of during the whole process of cure. No medicine was taken internally, except a gentle laxative.

As soon as I have had an opportunity of making another trial or two of this method, upon the ulcerated cancer, in which state it is particularly to be applied, I shall beg leave to lay before the public, through the medium of that useful work the Medical Journal, the whole of the process, and the event; although it may not be attended with
with that positive success which I am so sanguine as to hope for, still I flatter myself that it will serve as a hint to those of superior skill and understanding, to turn their thoughts more readily to a subject of so great importance.

It is the doctrine of the day that this disease is originally local. From the favourable change which has immediately followed the application of the above-mentioned remedies, I am induced to think that it is so even in the ulcerated state; and that when the habit is tainted in a high degree, it becomes so from the fetid, fanious discharge being absorbed, and contaminated with a pre-existent acid state of the juices. This may be settled matter of opinion only. Still, however, I am not as yet so confident in that opinion, as to reject the use of bark, mercury, and opium.

Pity it is that in this disease, the opportunity of procuring relief is so little minded, and so often lost. In the simple, detached, indurated state of cancer, excision is attended with little pain, no danger, and perfect success. Terror and false hope are in cases of this sort too often suffered to get the better of reason and resolution. Even men of great judgment in the profession have sometimes flattered themselves and
their patients with the hopes of avoiding an operation, which, in the early stage of the disease, produces so much comfort and security. To obviate such mischief, I beg leave to present the following practical hints, which, if duly attended to, may tend to shorten the progress of an evil, which, if neglected, must be productive of the worst consequences:

1. In its infant state, when the tumor is round, smooth, and not hard to the touch, the disease often yields to an alternative course.

2. When the tumor is become large, round, smooth, and in some degree indurated, it seldom gives way to such a mode of treatment.

3. When the tumor is hard and unequal, and attended with pricking pain, it scarcely ever admits of relief from such means; and I believe never when it has attained what may be considered as a fourth stage, that is, when the tumor is of a stony hardness and very unequal, attended with acute shooting pains. In this latter stage of the disorder, when the breast begins to lose its natural colour, and the nipple is drawn in, the knife should be submitted to without hesitation; and indeed from duly considering the progress of the disease as specified in the above hints, I am convinced that the easiest,
easiest, safest, and most proper periods for extirpation are in the second and third stages.

Eye, Suffolk, Dec. 8, 1783.

III. Several instances of the good effects of Opium in mortifications. Communicated to Dr. Simmons, F. R. S. by Robert Hamilton, M. D. Physician at Ipswich, Extra-Licentiate of the Royal College of Physicians, London; and Member of the Medical Society of Edinburgh.

Mr. Pott was the first, I believe, who recommended the use of opium in mortifications; but I do not know that it has yet come into general use among surgeons.

About a year ago I had occasion to experience its good effects in a patient labouring under a mortification in one of his legs, whom I visited with Mr. Law, an ingenious surgeon at St. Alban's. In this case the Gastrocnemius muscle was almost entirely consumed, and the disease was still increasing, depriving the patient of sleep by the excruciating pain that attended it. A hiccough also was become a troublesome and alarming symptom at the time I first saw him.
Under these circumstances we had recourse to opium, administering it in large quantities, and increasing the dose till rest was procured. Its good effects soon became apparent; it speedily put a stop to the farther progress of the disease, and in a short time the patient was restored to health.

I have since experienced the efficacy of the same medicine in another case of a similar nature. In this last case the patient began with taking one grain of opium every three hours, and by degrees increased the dose to five grains. The day after he began the use of this remedy the pain which, from the mortification of his toes, had been constant and violent, began to abate, as did all the other symptoms, and it was not long before the phæcelated parts began to separate. To these two cases I beg leave to add a third communicated to me lately by Mr. Law, the gentleman above-mentioned, and which I shall give in his own words, from his letter dated December 8th, 1783. "I have at present," says he, "the earl of Bute's principal gardener under my care, with a mortification in one of his toes, which was preceded by an almost intolerable burning pain that continued from the 30th of November till this morning, when I had the satisfaction."
tion to hear that he had slept nine hours, and
that the hiccough, which was very dreadful,
had ceased. He is now free from pain, and
a line of separation begins to appear. Dur-
ing the last ten days, I gave him twenty
drops of Tinctura Thebaica in a decoction of
dark every three hours, with three grains of
strained opium, and at last I increased the
dose of the latter to seven grains, when I
gained my point." Such success as this may
probably induce the medical practitioner to have
recourse more frequently to this remedy in morti-
fications, especially as we sometimes see the bark fail.

Ipswich, March 10,
1784.

IV. Case of a paralytic affection, occasioned by the
calx of lead, and cured by electricity. Commu-
nicated to Dr. Simmons, F. R. S. by Mr.
John Whitehurst, F. R. S.

The facts relative to the removal of a pa-
ralytic affection occasioned by the calx of lead, and of which you requested me to give
you an account, are as follows:

Thomas
Thomas Yopp, a labouring man, now living at Derby, was employed in a red lead work near that place; in which service he was accustomed to perform the operation of separating the calcined parts of the lead from those not completely so, by stirring the lead about in a tub of water with his hand; by which means the part became totally deprived of sensation and muscular motion, and remained in this state for the space of two years. At the end of that time electrical shocks were gently applied from the wrist to the ends of the fingers, but without the least degree of sensation being produced in the part. The shocks were therefore increased gradually till the contents of a large Leyden bottle, as highly charged as possible, were passed through the hand. The effects produced by this last operation were a warmth in the part, a profuse sweat, and a tingling in the fingers. The hand was then wrapped in flannel, and the man ordered to return the next day to have the operation repeated; but he returned no more, having acquired so much strength in his hand as enabled him the following day to take a burden from his head, of near seventy pounds weight.

The above operation was performed in the year 1769, and the part continues perfectly well.
well, the little finger excepted; and I have some reason to believe that the electrical fluid did not pass through it.

Though the man acquired so much strength the first night after the shocks were administered; yet two or three months elapsed before his hand recovered its usual strength.

London, March 17.
1784.

SECTION III.

MEDICAL AND PHILOSOPHICAL NEWS.

The Royal Academy of Sciences at Paris, not having received any satisfactory answer to their inquiries concerning the decomposition of sea salt (see our 3d vol. p. 86) have proposed it a second time. Dissertations on this subject will be received till Easter 1785.

The Academy have been equally unsuccessful on the subject of the lymphatic system (see vol. 3, p. 306). In its stead, therefore, they now require a description of the intercostal nerve in man. Many parts of this nerve are already well known; but a great number of its ramifications
cations still remain to be described with accuracy. The Academy give notice, that care will be taken to ascertain the truth of all the new observations they shall receive on the subject, so that no imaginary descriptions will be admitted. Drawings are not absolutely required; but, if accurate, will add to the value of the dissertations in the estimation of the Academy.

The Academy, thinking it may be useful to propose two subjects which may serve to illustrate each other, offer another premium for the best description of the intercostal nerve in animals, particularly in the monkey, dog, sheep, turkey, frog, and carp, as affording the greatest variety of structure. On descriptions taken from the monkey, however, they do not absolutely insist. Each of these premiums is to be of 1500 livres value; the dissertations must be written either in Latin or French, and sent to the secretary before the 11th of Nov. 1785.

At a public meeting of the Royal Medical Society at Paris, on the 2d of March, 1784, the premium of 400 livres offered by the Society for the best dissertation on the diseases of an army during the summer, and in very hot climates,
mates (see vol. 3, p. 85) was adjudged to Dr. Thion de la Chaume, late physician to the army in Minorca.—And the premium of 600 livres for the best treatise on the different species and cases of dropsy, in which the use of diluents or a dry regimen ought to be preferred (see vol. 3, 419) was divided between different candidates in proportion to the supposed merits of their respective dissertations; viz. to Dr. Mezler, physician to the reigning count of Lipinghen-Nippenbourg, 300 livres; and to Dr. Chartier, physician to his R. H. the count de Provence, Dr. Thomas Olliff, an English physician, now at Paris, and Dr. Peter Matthew Nielten, of Utrecht, 100 livres each.

The Society now announce the following subject for a prize-medal, viz. "Of the four annual constitutions admitted by the ancients, and which are the catarrhous, the inflammatory, the bilious, and the atrabilious, the three first being known and well ascertain'd, the question is, whether the fourth hath a distinct existence, and what share it has in the production of epidemical diseases?" Dissertations on this subject must be sent to M. Vicq d'Azyr, secretary to the society, before May 1, 1785.
At the above meeting were read the eulogies of Dr. Hunter and Dr. Sanchés, two foreign associates of the society, lately deceased; and likewise a paper by M. Thouret, on the structure of the posterior symphyses of the pelvis, and on the mechanism of their separation in parturition.

The following question is proposed by the Royal Academy of Sciences at Dijon, for a prize of 300 livres, viz. "What are the symptoms which at the beginning of a continued or an intermittent fever, will enable the physician to judge whether such fever will be malignant; and what are the signs which in the course of the fever will indicate the precise time when it is on the point of assuming a malignant character?"—The dissertations on this subject must be sent to M. Maret, secretary to the academy, before the 1st of April 1785.

The Dutch Society of Sciences at Harlem offer a premium of a gold medal to the person who, by very accurate and satisfactory experiments, shall determine "How far Dr. Crawford's
"ford's theory of fire and heat deserves to be
admitted or rejected; and if the truth of that
theory, either wholly or in part, is established
by experiments, how far it advances us in
the philosophy of fire?"—Dissertations on
this subject will be received by the secretary at
Harlem till January 1, 1786.

Mr. Cavendish, in a very ingenious paper read
lately at the Royal Society, has related experi-
ments to prove that the diminution of common
air by phlogification is not owing to the genera-
tion or separation of fixed air from it, as hath
been commonly supposed, but to the production
of water formed by the combination of the phlo-
giftion, disengaged in the process, with the de-
phlogificated part of common air. On firing a
mixture of inflammable and dephlogificated airs
in close vessels, in the manner first suggested by
Mr. Warltire (see vol. II., p. 102.), Mr. Caven-
dish has found, that the two airs, thus mixed and
exploded, are almost wholly converted into water.
The experiments of this very respectable philo-
sopher have convinced him, that dephlogificated
and phlogificated airs are not to be considered
as the same fluid, differing only in degree of
phlogifiction, but as two distinct substances, the union of which forms common atmospheric air. He contends, that phlogisticated air is nothing more than nitrous acid combined with phlogifton; and he is inclined to think, that inflammable air is not pure phlogifton, as Dr. Priestley and after him Mr. Kirwan have asserted, but rather water united to phlogifton. Since this Essay, of which we pretend here to give only the principal outlines from memory, was read, Mr. Kirwan, in a paper of considerable length, read also at the Royal Society, has, with his usual ability, defended his opinion concerning the generation of fixed air in phlogisticating processes, and likewise concerning the identity of inflammable air and phlogifton. These observations have been followed by a reply from Mr. Cavendish.

The perfection of telescopes, and other optical instruments, has hitherto been impeded by the different refrangibility of the rays of light, the prismatic colours occasioned thereby, rendering the images of objects more or less confused. It is well known, however, that those rays which fall perpendicularly on a surface, are transmitted without any refraction. If these rays,
rays, therefore, can be separated from those which fall obliquely, dioptical instruments may be brought to as great perfection with regard to the distinctness of the images, as catoptrical ones, and in point of luminousness much more so. This has at length been effected by an ingenious artist in London, who has already constructed a great variety of instruments on this principle.

A case of hydrophobia has lately occurred in Westminster, which may serve as an additional proof of the inefficacy of the Ormskirk remedy. The patient (Mr. Dawson, grocer, in Barton-street) having been bit in one of his thumbs by a favourite dog that was supposed to be mad, began the use of this medicine the next day, and persevered in it in the usual manner. The wound in his thumb healed, and he felt no inconvenience from it till Monday the 8th of March, the forty-second day after the bite, when he began to complain of a tingling in the part that had been bit, and said his arm felt stiff and uneasy, which he attributed to rheumatism. The symptoms of hydrophobia came on the next day about noon, and he died on Thursday, the 11th, in the afternoon.
The Abbé Mann (a native of this country and a very respectable member of the Academy of Sciences at Brussel, where he now resides) of whom some mention was made in a former volume of our Journal (vol. II. p. 410) as having been cured of the gout by the use of the extract of cicuta, has published a very full account of his case in the Esprit des Journaux for February 1784, from which we have collected the following particulars for the information of our readers. The learned Abbé, it seems, passed several years of the early part of his life in the Spanish service; but a love of retirement and study induced him, at the age of five-and-twenty, to resign his military employment, and enter into a convent of Carthusians, at Nieuport in Flanders, of which he afterwards became Superior. In 1763, being then in his 29th year, he began to be attacked with the gout. The change of climate he had experienced by removing from Spain to Flanders; the excessive cold he was exposed to in winter, by passing constantly seven or eight hours of the day in the church; his close application to study, and his want of exercise, all contributed to increase his disposition to this disease, which returned at intervals; and at length became so frequent, that from 1768 till
1779 he did not pass a year without having three or four severe fits.

In the summer of 1772 the perusal of Dr. Cadogan's pamphlet on the gout induced him to adopt the regimen recommended by that writer, and he adhered to it strictly for the space of four months. Twice during that time the gout appeared slightly, but continued only a day. He now found himself in a very infirm state, and at length, in the month of September, the gout attacked his stomach, breast, and head. This, which was by far the most violent and dangerous paroxysm he had ever experienced, lasted seven months.

In 1778 he quitted the order of Carthusians, became a secular priest; and removed to Brussels, but without experiencing any considerable amendment in his health. He now became subject to violent spasms, but he acknowledges that his gouty paroxysms were less violent than that of 1772.

Such was the state of his case in the spring of 1779, when he was advised by Mr. Himelbaur, surgeon at Brussels, to try the effect of the extracts of cicuta and aconitum, procured from Vienha, and taken in pills of two grains each. At first he took the cicuta alone three times a day, swallowing
lowing four pills, or eight grains of the extract, each time. By degrees he increased the dose and added a pill of aconitum. At length, after five or six months, he took daily, of these two extracts, 100 or 120 grains; but commonly in the proportion of one pill of aconitum to five or six of cicuta, and in this same proportion he still continues to take them, though in much less quantity than during the two first years. To these two extracts he added the use of a camphorated julep, and from time to time he has taken a dose of rhubarb. These are the only remedies he has made use of during the last four years, and he has observed no particular regimen, except that he has been careful to take only such kind of food as is easy of digestion.

During the first three months of his taking the cicuta he experienced no sensible effect from it, either good or bad. His surgeon then advised him to add the aconitum, and soon after he began to experience a degree of ease in his joints he had long been a stranger to. His appetite improved, and his spasms, and other symptoms of morbid irritability, diminished very sensibly.

This encouraged him to persevere in the use of his remedy, and before the winter came on
he took it in the largest doses. During that and the winter of 1780-81 he was several times threatened with a return of the gout, but had no fit, and since the last-mentioned period he has been perfectly free from the disease. He has lately had an eryspelasious inflammation on one of his legs, which was soon dissipated, and he is now in perfect health, and uses a great deal of exercise, being able to walk ten or twelve miles without fatigue.

Extract of a letter from Mr. Thomas Henry, F. R. S. to Dr. Simmons, dated Manchester, March 10, 1784.

"The present winter has afforded ample opportunities for repeating Dr. Black's experiments on latent heat. One of them which I accidentally made was attended with a circumstance somewhat remarkable. Two four ounce vials were left during the Christmas recess in the same window, in my lecture-room, next the street, where great numbers of carriages are constantly passing. The one contained sand and water; the other mercury 3ij and water. The water upon the sand was completely frozen; that over the mercury had no sign of congelation; but
but on my shaking the mercury and water violently together, the water instantly became an almost solid cake of ice.—Would one not have expected, that the action of the mercury would have impeded the crystallisation of the water by disturbing the arrangement of the particles?

"Mr. Wedgewood writes me word, that he has made trial of M. M. Lavoisier and de la Place's method of measuring heat (described in the London Medical Journal, vol. IV. p. 235;) as an intermediate measure of heat for connecting his thermometer with Fahrenheit's, but could not make it succeed; for a part of the ice which is melted by the heated body is absorbed and detained by the unmelted part; and, what seems extraordinary, a new congelation takes place even in the melting ice. He has also finished a set of experiments for the same purpose on another principle, viz. the expansion of metals, in which he met with several difficulties, but it proved more satisfactory, though perhaps not so exact as might be wished. He intends to communicate both to the Royal Society."

Count Augustine Cafati, member of the Royal Academy of Sciences at Berlin, has communicated
cated to the college of physicians of that capital, a remedy which is said to be of great efficacy in the rickets. It is the root of the *ofmunda regalis* or flowering fern given in decoction, powder, or extract.

We formerly mentioned the inspissated juice of *saponaria officinalis* or sopewort as having been administered with success in cases of gonorrhoea. (See vol. I. p. 433.) In the *Journal General de France* (a new Journal lately set on foot at Paris) for Feb. 14, 1784, M. Segey, one of the physicians to the king of France, has published the manner in which he has succeeded with this plant in the most obstinate cases of *lus venerae*. He directs an ounce and a half of the dried root, and half an ounce of the dry plant, to be boiled in three quarts of water to two. One or two quarts of this decoction are to be taken daily, and in bad cases, the patient is to take at the same time the plant in powder, or in the form of an extract. The same plant is likewise said to have been useful when applied externally to venereal ulcers, either in fomentation, or in a dry form by sprinkling it in powder over the fores.
We are indebted to M. Andry, Doctor Regent of the Faculty of Physic at Paris, and to Mr. de Magellan, F. R. S. for the following anecdotes of the late Dr. Sanchés, whose death we announced in our last number (vol. 4, p. 432)—This learned physician was born on the 7th of March, 1699, at Penna-Macor, in Portugal. His father, who was an opulent merchant, and intended him for the bar, gave him a liberal education; but being displeased at finding him at the age of eighteen obstinately bent on the profession of physic, withdrew his protection, and he was indebted, it seems, to Dr. Nunés Ribeiro, his mother's brother, who was a physician of considerable repute at Lisbon, for the means of prosecuting his medical studies, which he did first at Coimbra, and afterwards at Salamanca, where he took the degree of Doctor of Physic in 1724; and the year following he procured the appointment of physician to the town of Benevente in Portugal, for which, as is the custom of that country, he had a small pension. His stay at this place, however, was but short. He was desirous of seeing more of the world, and of improving himself in his profession. With this view he came and passed two years in London, and had even
even an intention of fixing here, but a bad state of health, which he attributed to the climate, induced him to return to the continent. Soon after we find him prosecuting his medical studies at Leyden under the celebrated Boerhaave, and it will be a sufficient proof of his diligence and merit to observe, that in 1731, when the empress of Russia requested Boerhaave to recommend to her three physicians, the professor immediately fixed upon Dr. Sanchés to be one of the number.

Just as he was setting out for Russia, he was informed that his father was lately dead, and that his mother, in an unsuccessful law-suit with the Portuguese admiralty, had lost the greater part of her fortune. He immediately assigned over his own little claims and expectations in Portugal for her support. Soon after his arrival at Peterburgh Dr. Bidloo (son of the famous physician of that name) who was at that time first physician to the empress, gave him an appointment in the hospital at Moscow, where he remained till 1734, when he was employed as physician to the army, in which capacity he was present at the siege of Aisoph, where he was attacked with a dangerous fever, and when he began to recover found himself in a tent,
tent, abandoned by his attendants, and plundered of his papers and effects.

In 1740 he was appointed one of the physicians to the court, and consulted by the empress, who had for eight years been labouring under a disease, the cause of which had never been satisfactorily ascertained. Dr. Sanchés, in a conversation with the prime minister, gave it as his opinion that the complaint originated from a stone in one of the kidneys, and admitted only of palliation. At the end of six months the empress died, and the truth of his opinion was confirmed by dissection.

Soon after the death of the empress, Dr. Sanchés was advanced by the regent to the office of first physician, but the revolution of 1742, which placed Elizabeth Petrowna on the throne, deprived him of all his appointments. Hardly a day passed that he did not hear of some of his friends perishing on the scaffold, and it was not without much difficulty that he obtained leave to retire from Russia. His library, which had cost him 1200 pounds sterling, he disposed of to the academy of St. Peterburgh, of which he was an honorary member, and in return they agreed to give him a pension of forty pounds per annum.

During
During his residence in Russia he had availed himself of his situation at court, to establish a correspondence with the Jesuits in China, who, in return for books of astronomy and other presents, sent him seeds and plants, together with other articles of natural history. It was from Dr. Sanchez that the late Mr. Peter Colinson first received the seeds of the true rhubarb, but the plants were destroyed by some accident, and it was not till several years afterwards that rhubarb was cultivated with success in this country from seeds sent over by the late Dr. Mounsey.

In 1747 he went to reside at Paris, where he remained till his death. He enjoyed the friendship of the most celebrated physicians and philosophers of that capital, and at the institution of a Royal Medical Society he was chosen a foreign associate. He was likewise a member of the Royal Academy of Lisbon, to the establishment of which his advice had probably contributed, as he drew up, at the desire of the court of Portugal, several memorials on the plans necessary to be adopted for the encouragement of science. Some of these papers, relative to the establishment of a university, were printed during his life-time in Portuguese, and the rest have been found among his manuscripts. His
His services in Russia remained for sixteen years unnoticed; but when the present empress ascended the throne Dr. Sanchés was not forgotten. He had attended her in a dangerous illness when she was very young, and she now rewarded him with a pension of a thousand roubles, which was punctually paid till his death. He likewise received a pension from the court of Portugal, and another from prince Gallitzin. A great part of this income he employed in acts of benevolence. Of the liberality with which he administered to the wants of his relations and friends, several striking instances, which the limits of our Journal will not permit us to insert, have been related to us by Mr. de Magellan.

He was naturally of an infirm habit of body, and, during the last thirty years of his life, frequently voided small stones with his urine. The disposition to this disease increased as he advanced in years, and for a considerable time before his death he was confined to his apartments. The last visit he made was, in 1782, to the grand duke of Russia, who was then at Paris. In September 1783, he perceived that his end was approaching, and he died on the 14th of October following. His library, which was con-
considerable, he has bequeathed to his brother, Dr. Marcello Sanchés, who was likewise a pupil of Boerhaave, and who resides at Naples. His manuscripts (among which, besides a considerable number of papers on medical subjects, are letters written to him by Boerhaave, Van Swieten, Gaubius, Haller, Werlhof, Pringle, Fothergill, and other learned men) are in the possession of Dr. Andry. His printed works, on the origin of the venereal disease and other subjects, are well known to medical readers; but his knowledge, it seems, was not confined to his own profession; he possessed a fund of general learning, and is said to have been profoundly versed in politics.

It is in compliance with the request of some of our correspondents, rather than from any favourable opinion we ourselves have of the remedy, that we here give some account of a specific lately published in Spain for the cure of cancers (see vol. 4, p. 323). This remedy, which is said to have been long in use amongst the Indians of Guatemala, in South America, consists in swallowing one, two, or three raw lizards every morning fasting, after skinning

Vol. V. N° I. N them
them and cutting off their heads and tails. The little lizard known by the name of *Lacerta vulgaris*, and which the French call *Anoli de terre*, or *Gobe mouche*, is the species recommended for this purpose. This remedy is said to have produced good effects, not only in cancers, but likewise in leprosy, and the venereal disease.

New works about to be published.—1. A Treatise on Fevers, by Dr. John Gardiner, Fellow of the Royal College of Physicians at Edinburgh. —2. A work on poisons, by Dr. Houlton, physician at Liverpool.

PROMOTED.

Lately, Dr. Anton. Scarpa of Modena, to be professor of anatomy and surgery at Pavia.—M. Daubenton and M. Brousset, to be professors of rural economy in the veterinary school at Paris.—M. Fourcroy, to be professor of chemistry in the king’s garden at Paris, in the room of the late M. Macquer.

1783.
1783. Dec. 27. John Philips, Esq., to be surgeon to the prince of Wales’s household.

1784. Jan. 8. Dr. Robert Hamilton, physician at Ipswich, to be an extra-licentiate of the College of Physicians, London.—12. Archibald Richardson, Esq., state surgeon, to be the surgeon general in Ireland, in the room of William Ruxton, Esq., deceased, and George Stewart, Esq., to be state surgeon in Ireland, in the room of Mr. Richardson.—16. Dr. George Sandiman, to be physician to the General Dispensary in London, in the room of Dr. Adair Crawford, who resigned.—17. Mr. James Barton, late of the 88th regiment of foot, to be surgeon to the 10th regiment of dragoons.—22. Mr. Edmund Pitts to be surgeon to St. Bartholomew’s Hospital, in the room of Mr. Robert Young, deceased.—Mr. William Long to be assistant surgeon to the same hospital, in the room of Mr. Pitts.

Feb. 26. Dr. William Hamilton, to be physician to the Surry Dispensary, in the room of Dr. John Sims, who resigned.

March 4. Dr. William Pitcairne, to be treasurer of St. Bartholomew’s Hospital, in the room of John Darker, Esq., deceased.—20, Mr. Benjamin
jamin Shield, hospital mate, to be surgeon of the 58th regiment of foot.

DEATHS,

Lately at Dublin, William Ruxton, Esq. surgeon general in Ireland.—At Enfield, Mr. Tho. Pritchard, surgeon.

1783. Jan. 16. At Strafburgh, Dr. John Pfeffinger, profeffor of phylfic.

Feb. 12. At Farnham in Surry, aged 59 years, Mr. Richard Sumner, apothecary.

April 3. At Zutphen in Guelderland, aged 60 years, David de Gorter, M. D. formerly profeffor of botany at Harderwyck, and for some time (viz. from 1754 till 1764) first phyſician to the empress of Russia, a station his fa-
ther; John de Gorter, had likewise the honour of filling. He was the author of several botanic works.

Sept. 8. At Strasburgh, John Reinbold Spielman, M. D. professor of chemistry, botany, and the materia medica in that university, and member of the academies of Peters burg, Berlin, &c.; born at Strasburgh, March 31, 1722.

Dec. 20. At Morpeth, in Northumberland, aged 62 years, John Fenwick, M. D.—25. At Haverhill, in Cambridgeshire, Mr. Hempstead, apothecary.—30. In Great Russel-street, Bloomsbury, Mr. Robert Young, surgeon of St. Bartholomew's Hospital, and one of the court of examiners of the company of surgeons, London.

Feb. Lost on board the packet from India, on the rocks of Scilly, Mr. William Perry, late surgeon of His Majesty's ship the Superb.—At Paris, Mr. Nicolas Simeon Caignard, and Mr. Henry Didier, surgeons.—2. George Bell, M. D. Physician to the Infirmary and Lunatic Hospital at Manchester. He was a native of Dumfries, and graduated at Edin-
Edinburgh in 1780.—3. At Bradford in Yorkshire, aged 50 years, Mr. William Wright, apothecary. — 4. Mr. David Story, assistant surgeon to Greenwich Hospital.—5. At Enfield, Mr. Thomas Brown, surgeon, late of Peckham in Surry.—At Kentish Town, Mr. John Freake, apothecary. —13. At Stroud in Gloucestershire, Samuel Jones, M.D. — 17. At Paris, Peter Joseph Macquer, M.D. a celebrated chemical writer, of whose life we mean hereafter to give some account.—26. At Manchester, Samuel Kay, M.D. formerly physician to the Infirmary of that place. He was a native of Lancashire, and graduated at Edinburgh in 1731.—27. At Skelton in Cleveland, Mr. Thomas Busfield, formerly an apothecary at York.

March. At Preston in Lancashire, Dr. Heyes. —7. At Canterbury in Kent, aged 75 years, Hugh van der Poll, M.D. in the university of Leyden, where he graduated in 1743, and formerly in great repute as a physician at Amsterdam. The public are indebted to him and Dr. Jacob Visscher, another physician at Amsterdam, for a description of the lever invented by Roonhuyzen (see vol. iv. p. 162).—At Plymouth, M. Nicholas May, surgeon and apothecary.—24. At Kennington in Surry, Matthew Morley, M.D.
M.D. in the university of Cambridge, and fel-
of the royal college of physicians, London, into
which he was admitted in 1740.

SECTION VI.

QUARTERLY CATALOGUE.

1. A Serious and friendly address to the pub-
ic on the dangerous inconveniences of
neglecting common coughs and colds, so fre-
quent in this climate, containing a simple and
efficacious method of cure. By a Gentleman of
the Faculty. 8vo. Murray, 1784. 1s. 6d.

2. Curfory observations on a treatise intituled,
"Medical advice to the consumptive people of
England, by Philip Stern, M. D." Addressed
to the consumptive people of this kingdom. By
Thomas Hodson. 8vo. Murray, 1784. 1s.

3. Chemical reflections relating to the nature,
causes, prevention, and cure of some diseases;
particularly the sea-scurvy, the stone and gravel,
the gout, the rheumatism, &c. Containing ob-
servations upon air; upon constituent principles;
and the decomposition of animal and vegetable
substances: with a variety of occasional remarks,

philoso-
philosophical and medical. To which is added, the method of making wine from the juice of the sugar cane. By James Rymer, surgeon at Ryegate. 12mo. Evans, London, 1784. 202 pages.

4. The philosophy of physic; or phlogistic system, in which phlogiston supplied in an aerial form by the ingesta, and regulated in its agencies and evolutions by atmospheric and tonic reactions, is considered as constituting, actuating, and supporting the vital power or stimulating susceptibility; and hence a concise plan of medical practice is proposed on fixed principles, which result from a general and particular view of causes and effects. By T. Dewell, surgeon. 8vo. Murray, 1784. 47 pages. 1s. 6d.

5. A system of anatomy from Monro, Winflow, Innes, and the latest authors; arranged, as nearly as the nature of the work would admit, in the order of the lectures delivered by the professor of anatomy in the university of Edinburgh. 8vo. 2 vols. Elliot, Edinb. 1784. With 16 copper-plates. Vol. I. p. 440. vol. II. p. 587.

6. Observations on Hepatic diseases incidental to Europeans in the East Indies. By Stephen Matthews, surgeon in the Honourable United East India Company’s service and formerly of the
the Duke of Portland East Indiaman. 8vo. Cadell, London, 1783. 4s.

These ingenious dissertations are three in number. The first is on the study of chemistry; in the second the author offers some conjectures concerning the origin and antiquity of the use of symbols in astronomy and chemistry; and the third contains observations on the diseases prevalent in the South Sea Islands, with some remarks concerning the first appearance of the lues venerea in Europe.

8. An essay on the principles and manners of the medical profession; with some occasional remarks on the use and abuse of medicine. By J. Whitaker Newman, member of the Corporation of Surgeons of London. 8vo. Dodgson, London, 1783. 1s. 6d.

9. Aphorisms composed for a text to practical lectures on the constitution and diseases of children. By Andrew Wilson, M. D. fellow of the royal college of physicians, Edinburgh, and physician to the General Dispensary for the relief
of the infant poor. 12mo. Murray, London, 1783. 1s.

11. An essay on the most efficacious means of treating ulcerated legs; in which the topical applications in general use are considered, and some new methods for relief proposed; with particular observations on the safety of healing old ulcers. 8vo. Nicholl, London, 1783. 1s.

The remedy here recommended consists of a drachm of broom seed well powdered and sifted, which is to be infused twelve hours in a glass and a half of rich white wine, and taken in the morning fasting. The patient is afterwards to walk or ride for an hour and a half, and then to swallow two ounces of olive oil. This method is to be repeated every other day, or once in three days, till the cure is completed.—A similar prescription may be seen in Lemery's Recueil des secrets, tome 1, p. 192.

This translation, which is dedicated to Sir Joseph Banks, Bart. is literal and accurate. The editors have been assisted by their learned townman Dr. Samuel Johnson in forming a botanic language, of which a glossary is prefixed to the work. The technical words they have adopted are such as would necessarily be used in an English conversation by botanists acquainted with the original of Linnaeus, such as calyx, coroll, pistil, pericarp, &c. and the diminutives of these; as calycle, corollet, &c. In a list of lovers of botany, to whom they return thanks for advice and assistance, we find enumerated "the learned and ingenious ladies Mrs. Egerton of Oulton Park, Cheshire; Mrs. Blackburne of Orford in Lancashire; and Mrs. Cummins of Kensington."
In an advertisement to the volume we are told that the editors intend as soon as possible to publish a translation of the *Genera* and *Species plantarum*, and have therefore only given the essential characters and specific distinctions of plants in this work; intending to put the references and observations into their proper places in the *Species*, and the natural characters from the supplement into the *Genera*.

14. *Hortus Uptoniensis*; or a Catalogue of stove and green-house plants in Dr. Fothergill’s garden at Upton at the time of his decease. 8vo. *Dilly*, London, 1783. 1s. 6d.

15. Description of a Glass Apparatus for making in a few minutes, and at a very small expence, the best mineral waters of Pyrmont, Spa, Seltzer, Seydschutz, Aix la Chapelle, &c. together with the description of two new eudiometers, or instruments for ascertaining the wholeomeness of respirable air, and the method of using these instruments. In a letter to the Rev. J. Priestley, L. L. D. F. R. S. By J. H. de Magellan, F. R. S. The 3d edition, revised, corrected, and enlarged by the author, with an examination of the strictures of Mr. T. Cavallo, F. R. S. upon these eudiometers. 8vo. London, 1783. 80 pages.

This work contains a great deal of erroneous theory. Its object is to recommend the external use of a solution of volatile alkali fluor in water in cancerous ulcers. Four cases are related in which this application is said to have been of use.

19. Flore de Bourgogne; ou Catalogue des plantes naturelles à cette province, et de celles qu'on y cultive le plus communément, avec l'indication du sol où elles croissent, du temps de leur fleuraison, et de la couleur de leur fleurs. i.e. A Burgundy Flora, or Catalogue of the indigenous plants of that province, and of those which
which are the most commonly cultivated there, with an account of the soil in which they grow, the time of their flowering, and the colour of their flowers. 2 vols. 8vo. Dijon, 1782.

This work is the production of M. Durande. The number of plants described in it amounts to 1284. The description of these fills the first volume. In the second volume he treats of their properties and uses in physic, the arts, rural economy, &c.

This eulogium, which is elegantly printed on vellum, was pronounced by Count Tana, Nov. 8, 1781, at the academy of painting at Turin. It affords but an imperfect view of the history and writings of the learned father Beccaria. We here learn, that he was born Oct. 2, 1716, and died after a painful and lingering illness, May 27, 1781. The English translation of his works was the book he opened with the most pleasure. He was a great admirer of Virgil, Catullus, and Dante, and is said to have had a taste for pictures.

24. Aanmerkingen over de Veranderingen, walke de Steenen in de Pisblaas der menschen ondergaan.—Brief over het Steensnyden in twee reifen volgens P. Franco.—Verhandeling van den Heere Maret, over de Voordeelen van het steensnyden in twee tyden.—Als mede de Sterrigels van Cellus, Albucafis en Le Dran, over de steere Konstbewerking.—Geeftaaf door de Waarnemingen van de heeren Ten Haaf en Van Wy op-
opgeefteld, overgezet, en met Verklaaringen
witgegeeven door Petrus Camper. i. e. Obser-
vations on the changes which the stone in the
human bladder undergoes.— A letter concern-
ing the operation of lithotomy at two different
times as recommended by P. Franco, and an
essay by M. Maret on the advantages of litho-
tomy performed in this manner, together with the
rules laid down by Celsus, Albucasis, and Le
Dran on this subject, and the results of the ex-
periments of Messieurs Ten Haaë and Van Wy.
Written, translated, and illustrated with notes,
by Peter Camper. 8vo. Amsterdam, 1782.
203 pages.

25. Beytrage zur fieberlehre. i.e. Additions
to the theory of fevers. By Christian Frederic
Elsner, M. D. 8vo. Koningsberg, 1782. 142
pages.

26. Hebammenunterricht in Gesprachen, &c.
i.e. Obstetric institutes for the use of preg-
nant and lying-in women. By John Christoph
er Stackens, professor of physic at Jena. 8vo. Jena,
1783. 216 pages.
SECTION I.

BOOKS.

I. Histoire de la Société Royale de Médecine. Année 1779. Avec les Mémoires de Médecine et de Physique Medicale pour la même année, tirés des Registres de cette Société, i.e. History of the Royal Medical Society for the year 1779; with the Memoirs relative to Physic and Medical Philosophy for the same year, taken from the Registres of the Society. 4to. Paris, 1782. 958 pages, with 15 copper-plates.

In the historical part of this volume, we have an account of the prizes distributed by the Society since the publication of their second volume; and a copy of the king’s edict which invests them with the direction of all the mineral waters in the French dominions, and the privi-
lege of examining, approving, or proscribing all quack medicines. After these follow the eulogies of the following deceased associates; viz. Messieurs Le Roy, Navier, Bucquet, Lieutaud, and Gaubius; and likewise short accounts (under the title of Notices) of the late Messieurs Bonafos and Bernard, associates, and M. Planchon, a correspondent, of the Society.—We shall review each of these in the order in which they stand.

Charles Le Roy was born at Paris, January the 12th, 1726. He was the youngest of four sons of Julian le Roy, a famous watch-maker, and studied physic first at Paris and afterwards at Montpellier, where he graduated in 1752. But before this; viz. in 1750, he travelled into Italy, and at his return, in 1751, communicated to the Academy of Sciences at Paris some observations, made in his travels, on the Grotto del Cani, and the luminous appearance of the sea. His experiments on the dew soon after procured him the honour of being elected of the Academies of Sciences at Montpellier and Paris, and of the Royal Society of London.—In 1759, he was appointed to a Medical Professorship at Montpellier, where he obtained considerable reputation as a teacher and practitioner
tioner of physic, and likewise as a medical writer. He devoted much of his leisure time to chemical enquiries, and after the death of M. Venel was appointed by government to revise and complete the work undertaken by that celebrated chemist on the mineral waters of France. The materials of this work are now in the possession of the Society.—In 1777, on the death of M. de Bordeu he was induced to remove from Montpellier to the capital, where his professional talents were known and esteemed. Instead of purchasing, as is usually done, a medical appointment, which might give him the privilege of practising at Paris, he chose rather to go through the forms prescribed by the College of Physicians, being of opinion, as he observed to his friends on this occasion, that a physician cannot possess too many claims to the confidence of the public. He had not been many months, however, in this new situation before he began to vomit after meals, and to have lancinating pains and other symptoms of a chronic pylorus, which proved fatal to him on the 10th of December, 1779. Of his medical writings the most interesting is his work on the Prognostic in acute diseases,
of which an English translation has lately been published (see our 3d vol. p. 257).

Peter Toussaint Navier was born Nov. 1, 1712, at St. Dizier in Champagne, and after graduating at Rheims, in 1741, took up his residence at Chalons sur Marne, where he afterwards became one of the institutors of an Academy of Sciences, to which he communicated many useful papers; but the work which gained him the most reputation was on the antidotes to arsenic and other poisons (Contrepoisons de l’Arsenic, &c.) in 2 vols. 8vo. Published in 1778. He died at Chalons, July 16, 1779, aged 67 years.

John Baptist Michael Bucquet was born at Paris, Feb. 18, 1746. His father, who was an advocate, designed him for his own profession; but he soon quitted the study of the law and pursued that of physic. He was one of the first members of the Royal Medical Society, and in 1777 he was appointed by the College of Physicians to succeed M. Roux as professor of chemistry. He likewise gave private lectures on chemistry and natural history. His knowledge and eloquence eminently qualified him for the office of a teacher; but frequent attacks of a most painful colic interrupted his pursuits, and at
at length terminated in death in Jan. 1780, before he had completed his 34th year. During the last course of his lectures he used to go from his bed to his lecture-room, and there his moans ceased, and he forced a placid countenance. During his lecture, when his pains were excessive, he pressed against the table, but never lost sight of his subject. His pupils listened to him with pity and astonishment. After the course was ended he determined to indulge in the use of sedatives. Of æther, which had constantly afforded him a temporary relief, he at last swallowed a Paris pint every day, taking also in the same space of time an hundred grains of opium. After his death the principal disease was found to be in the colon, which was contracted, scirrrous, and ulcerated. The stomach and intestines were inflamed and softened by the use of æther, and the bile in the gall-bladder was of a rose colour.—He was author of several papers published by the Society, and by the Academy of Sciences, of which he was also a member.

Joseph Lieutaud was the son of an advocate, and was born at Aix, June 21, 1703. The relation, who superintended his education, was named Garidel (not Lieutaud, as we formerly
merly mentioned, vol. i. p. 279) being his uncle by his mother's side. In the case of the duke of Burgundy, when the physicians and surgeons, who were consulted, differed in opinion, they were ordered to deliver their sentiments in writing, M. Lieutaud, who was one of the number, wrote, "the complaint of his highness is a luxation of the thigh, occasioned by a contusion of the cartilages, ligaments, and synovial glands of the cotyloid cavity." This opinion was afterwards found to have been well founded.

After the death of M. de Senac, the place of First Physician was for some time put in commission; but when the present king of France came to the throne he vested it in M. Lieutaud. His majesty, who was fond of conversing with him, one day asked him about a physician, who had been excessively praised in his presence. "Sire," said M. Lieutaud, "this man is very far from deserving any of the fine things that have been said of him; but it is often in this manner that the great pay their physicians."

He died after a short illness. There remain of his family a sister, who is in her eighty-sixth year,
year, a brother who is a Franciscan monk, and several nephews.

Jerom David Gaubius was born at Heidelberg, Feb. 24, 1705. His grandfather was a colonel of horse, who died leaving four sons to subsist on a small pension, which they lost at the death of the elector palatine Charles. Christopher, the youngest, who was the father of our physician, engaged in trade at Heidelberg, and though a protestant, placed his son at the Jesuits college in that city; but fearing they might make him a proselyte to their religion, he removed him to the Orphan-house at Halle, where his master is said to have treated him harshly, and to have considered him as a youth destitute of genius. But Gaubius persisting in his attachment to a learned profession in preference to trade, for which his father had designed him, was sent to Amsterdam to be under the care of his uncle, John Gaubius, who practised with great reputation in that city as a physician for fifty years, and is known by an Epistola problematica in Ruyfch's works. By this relation, who first added an as to the family name of Gaube, young Gaubius was sent first to Harderwyk, and afterwards to Leyden, where he attracted the notice of Boerhaave, and took the degree of doc-
tor of physic in 1725. After quitting Leyden he passed a year at Paris, and went from thence to Strasburgh and Heidelberg, where his stay was but short, as he soon returned to his uncle at Amsterdam, whose daughter he afterwards married. By this marriage he had six children, of whom only one daughter survives him. Soon after his return to Amsterdam he was appointed physician to the town of Deventer, where he went to reside after having consulted Boerhaave, who promised never to lose sight of him in whatever country he might chance to fix. At Deventer he applied himself much to the study of pharmacy. In 1731, Boerhaave beginning to feel the infirmities of old age resigned his botanic chair to Van Royen, and his chemical professorship to Gaubius. In 1734 he was elected professor of physic, and then became the colleague of his master, who died four years after.

The writings of Gaubius are few in number, but they have established his reputation on the most solid foundation. His Institutiones pathologicae medicinalis, Adversaria varii argumenti, and his discourses de Regimine mentis, are all admired for the elegant style in which they are written, and for the clear and accurate views they exhibit of the different subjects on which they treat.—
In a paper in the Harlem Memoirs he gives an account of a case of inoculation of the smallpox which had like to have ended fatally, and which afterwards made him not very friendly to that practice.

His medical fame spread throughout Europe, and the empress Elizabeth invited him to St. Peterburgh to be her first physician, but he declined accepting this flattering offer. In 1761 the States General appointed him first physician to the stadtholder, then a minor; and in 1768, when the prince came of age and honoured the university of Leyden with his presence, Gauibus composed some Latin verses on the occasion, which were much applauded.—He preserved his health till the age of seventy, when he began to be troubled with the gout. In November 1780, after returning from the Hague, he was attacked with a fever, which carried him off on the 29th day of the same month, in his 75th year. He has left a large fortune to his daughter, Maria Amelia, who is married to Mr. Henry Twent, one of the magistrates of Leyden.

Joseph Bonafos, senior member of the faculty of physic at Perpignan, was born there December 4, 1725. He was physician to the Military Hospital and Hotel Dieu in that city, and died on the 5th of February 1779 of a putrid
trid fever. He has left behind him a MS. treatise on the Practice of Physic.

John Bernard was born May 14, 1702, at Nantes, where his father was a physician. He graduated at Montpellier, and practised first at Rochelle; but M. d'Aguesflau, chancellor of France, who patronized him, procured for him a medical professorship at Douay, where he taught anatomy and physiology with much reputation. His physiological doctrines are contained in seven dissertations published at different times in Latin. He was elected of different academies, and among others of the Royal Society of London. He was a man of pleasantry, and even in scholastic ceremonies found it difficult to preserve a grave countenance, but he is said to have been strict in his examination of candidates for academical degrees. He died of a strangulated hernia in 1781, aged 80 years.

John Baptist Luke Planchon was born at Renaix in Flanders, Nov. 5, 1734. His father, who was a physician, practised at Leuze, a small town in Hainault, and was ruined by a fire, which destroyed the greatest part of the town in 1742, so that he was incapable of giving his son a learned education. For this he was indebted
debted to his uncle, who was in the church, and
sent him first to study at Ath, and afterwards at
Louvaine, where he was admitted a licentiate in
physic in 1758. He settled as a physician at
Tournay, and was the author of some ingenious
dissertations which obtained the prizes offered by
different academies, and among others of a trea-
tise on the millary fever of lying-in women,
which obtained the approbation of the faculty
of physic at Paris in 1778. The late empress of
Germany honoured him with a gold medal, and
ordered Baron Störck her physician to thank
him for his services during an epidemic disease
that had prevailed in the Low Countries. He
died of a fever Nov. 6, 1781, aged 47 years.

Meteorological Observations, by Father Cotte.—
These are on the same plan as those of the for-
mer volume. (See our 4th vol. p. 41.)

Practice of Physic.—I. Observations on the ve-
nereal disease, and the threath with which new-born
children are attacked, with reflections on the nature
and treatment of these two disorders. By M. Co-
lombier.—An hospital called Hospice de Vaugi-
rard, has lately been established near Paris for
the reception and cure of infants afflicted with
the venereal disease, and likewise of their mothers
or nurses. The greater number of such infected

Q a chil-
children, we are told, are born before the usual period. The first circumstance that strikes the physician on seeing them is, that the skin of the face as well as of the rest of the body, is shrivelled, and that they seem to bear the marks of old age. Many of these poor children are reduced to a true state of marasmus, and in the advanced stage of the disease the lips, tongue, and fauces are covered with chancrous apthæ, which are found to extend along the larynx, and even down the pharynx and oesophagus to the internal surface of the stomach. In some the armpits, nipples, and belly are ulcerated; but the most common symptom is an ophthalmia, which in the slighter stage of the disease is confined to the eye-lids, but in the more advanced stage affects the túnica conjunctiva. In both cases the great angle of the eye is filled with purulent matter, and sometimes is ulcerated. In some patients the parts of generation are affected, and almost all have a diarrhoea. In these cases mercurials, though administered in small doses, having been found to be too active, our author was induced to try the effect of mercurial frictions on the mothers and nurses of the patients. For this purpose a number of pregnant women afflicted with lues, were admitted into the
the hospital to lie-in and suckle their children, on condition that each of them, if their strength would permit, should suckle another infected child. Infected nurses were likewise admitted on the same condition. The cure was effected by bathing and frictions as in the Montpellier method, or cure by extinction as it is called. From June 1780 to July 1781, 136 infected children were admitted into the hospital. Of this number 42 were cured of their venereal complaints; the remainder died. Concerning the latter, however, we are told, that many of them were so much diseased, when brought to the hospital, that they died in a day or two after their admission. Our author likewise informs us, that from calculations it appears, that in this hospital a greater proportion of infected children are saved than of healthy children intrusted to the care of nurses, and that before this institution was set on foot hardly any children were preserved when infected with the venereal disease.

The thrush (which our author distinguishes by the names of Millet and Muguet, neither of which are to be met with in the writings of Sauvages) is another disease that particularly affects new-born children, and under some circumstances
cumstances becomes contagious. The symptoms of it are small, white, hard pustules on the lips, tongue, and even alimentary canal, which prevent deglutition. These are succeeded by diarrhoea; the face grows pale, and at length purple spots appear on the body, and may be considered as the signs of death. This disease, when contagious, is ascribed by our author to the noxious effluvia produced by crowding together a great number of children in confined apartments. Nine children, we are told, who had remained only twenty-four hours in a room where it prevailed, were all of them attacked with it. A pure air and wholesome diet, cleanliness, mild tonics, and exposure to the vapour of mercury for a few hours every day, are said to be the only means of cure as yet discovered. Care is to be taken to purify the apartments by fresh air and other means.—2. *New Observations on Medical Electricity*, by M. Mauduyt.—3. Account of a Solvent of biliary Concretions, by M. Durande. This solvent had been spoken of in a former volume (see our 3d vol. p. 160); but no mention had been made of the proportions of the ingredients that compose it, or the method of administering it. We are now directed to mix two drachms of spirit of turpentine,
pentine, with three drachms of æther, in a Florence flask well stopped. A fifth or even a fourth part of this mixture is to be swallowed every morning; but, before recourse is had to so heating a remedy, cooling remedies, such as venæfection, warm bathing, and a milk diet are to be employed. After each dose of the solvent the patient is to swallow some veal broth. M. Durande thinks it right to wait till the concretions are dissolved before any purgative medicines are administered, as without this precaution a violent colic is sometimes produced; but he has omitted to inform us by what signs we may learn that the solvent has produced the desired effect. In some cases, we are told, the liver has been rendered painful, and violent colic excited, by the use of this remedy; but these symptoms have easily given way to the use of asses milk, mucilaginous drinks, &c. —

4. **Researches and Observations on various Subjects of Phylet, Surgery, and Anatomy**, by M. Vicq d’Azyr. In this paper the author has combined several communications of the Society’s correspondents, with others presented by himself. He first treats of concretions of the stomach and intestines, concretions of the kidneys, urinary bladder, uterus, and gall-bladder.

Some
Some observations on diseases of the bones likewise make part of the paper; and among other things we have an account of an ankylosis of the os humeri with the scapula in a scrophulous subject. Next follow remarks on the treatment of aneurismal tumours by compression, and a description of the disposition of the vessels in the pituitary membrane of the horse and ruminating animals. The paper closes with an account of the state of the bodies in the vault of the church belonging to the Cordeliers at Toulouse. This church was built about the middle of the 16th century, and there are bodies in the vault under it which have been there since that time, and were seen by the Editor of this Journal in 1776. They have long been an object of curiosity to travellers. M. Vicq d’Azyr, having brought several limbs of these bodies to Paris, found their levity very great. The bodies themselves commonly weigh from nine to twelve pounds each. There remains only the basis of the parts that had the most consistence, and when the dry, tanned-like skin is removed, insects are found in the place of cellular membrane.—The different subjects described in this paper are illustrated by a great number of elegant figures in nine plates.

[To be continued.]

Of the first part of this volume, published in the year 1778, we have already given an account (vol. ii. p. 26). The first 84 pages of this part now before us are allotted to the History of the Academy. Under this head we are met with the following articles; viz. 1. Observations on the medicinal virtues of some indigenous plants, the use of which has either been unknown to, or neglected by, the moderns; extracted by Professor Pallas from a paper presented to the Academy by John Emanuel Gillibert, M. D. formerly Professor of Anatomy and Botany at Lyons, Director of the Royal Medical Academy at Grodno, &c.

The author of these observations begins with recommending the leaves of the *Euphorbia Cyparissias*, dried and powdered, as a substitute for jalap. Thirty grains of this medicine are said to prove gently purgative to children seven years old. In adults the dose may be increased to two scrupules. The author speaks of this as a remedy of singular efficacy in cutaneous diseases. He observes that the roots and seeds of this species...
species of Euphorbia were in use amongst the ancients, and are particularly extolled by Ru-
landus; but these parts of the plant, from their containing a large proportion of resin, operate
with too much violence; an objection, it seems, which does not hold good with respect to the
leaves. As a substitute for Ipecacoanha, the author recommends Asarum given either in pow-
der (in any quantity from twelve to thirty grains) or in decoction. Twenty grains of the
powder mixed with three ounces of manna are said to prove strongly purgative as well as
emetic. The root of the Eupatorium Cannabi-
num, formerly recommended by Gefner, has
likewise been found by our author to be a very
mild emetic, and speedy in its operation. He
observes that the bark of this root excites vomit-
ing, when infused either in wine or water; but
he gives the preference to it in substance.

M. Gillibert next speaks of the efficacy of a
decoction of Saponaria in visceral obstructions.
As a substitute for Cantharides in the way of
blisters, he thinks that several of the acrid
plants might be used with success. He speaks
of an old woman in Poland, who used to cure
tertian fevers, after the third fit, by applying
to the wrists an episthem composed of the fresh
bark
bark of the *Clematis recta*, which raises vesicles without exciting inflammation. He himself, he observes, has seen the external application of the bruised leaves of the *Ranunculus acris* procure immediate relief in an obstinate case of *calvus hystericus*. To this account Professor Pallas adds, that the peasants in Russia are accustomed to apply as a vesicatory the bruised leaves of the *Anemone patens*.

In cutaneous diseases M. Gillibert recommends a decoction of liquorice root (taken as common drink, and likewise applied externally in the way of lotion) as a useful remedy when assisted by a milk-diet.

2. *Remedy of the Calmucks against the Rheumatism.*—An interpreter who resides among the Calmucks, at the expence of the Academy, with a view to acquire information concerning their language, customs, &c. has communicated this account of a remedy which these people have lately begun to make use of against the rheumatism. It consists of a decoction of the *Ephedra Monantha*, a small shrub which grows in great abundance in elevated and sandy situations in the southern parts of Russia and Siberia. The patients, who take this medicine, are directed to be well covered in order to favour
your sweating, which it excites very profusely. The complaint, we are told, seldom fails to be removed after the first or second sweat. Professor Pallas thinks it probable that the *Ephedra Distackya*, which grows in Spain, and the southern provinces of France, possesses similar virtues.

The History of the Academy is followed by the *Astia*. The papers which compose this part of the work are arranged under the several heads of *Mathematica*, *Physico-Mathematica*, *Physica*, and *Astronomica*. The papers contained in the first of these divisions are, 1. *Lobelie Hybridae, author J. T. Koelreuter*.—In our account of the former part of this volume (vol. ii. p. 33) we noticed the experiments of this ingenious academician on the production of *hybridae* or mules in the vegetable kingdom. In the present paper he gives the result of his experiments, with different species of *Lobelio*.—2. *Dissertatio de Cranio Rbinocerotis Africani, Cornu Gemino, author Petro Camper* (see our 3d vol. p. 30).—3. *Additamentum ad precedentem Dissertationem, author P. S. Pallas*.—4. *Observatio de Dentibus molaribus fossilibus ignoti animalis, Canadenibus analogis, etiam ad Uralense jugum repertis*.—5. *Observationes circa Myrmecophogam Africanam & Didel-
Didelpbidis novam speciem orientalem; e Literis celeberr. Petri Camper excerpta & illustrata.—6: Description du Busse a queue de cheval, precedee d'Observations generales sur les especes sauvages du gros betail.—7. Observations sur l'Asne dans son etat sauvage, ou sur le veritable Onagre des Anciens.—The last four articles are by Professor Pallas.

In reviewing collections like the present we are obliged, by the limits of our work, to confine ourselves, as much as possible, to subjects strictly medical. Of articles, like those just now enumerated, we must in general content ourselves with mentioning only the titles.

1. On the means of saturating the mother waters of nitre without loss of alkali; and of avoiding the mixture of the salt of Sylvius with the saltpetre. By M. de Morveau.—2. Sequel to the Essay
Essay on biliary concretions. By M. Durande, (see our 4th vol. p. 381).—Eight cafes are here related, in which a mixture of æther and spirit of turpentine was administrated with success. The reader will find an account of this remedy in a former part (p. 126) of our present volume.—3. Account of the lead mine found at Saint Prix sous Beuvray, with mineralogical observations on that part of Burgundy. By Messieurs de Morveau and Champy.—4. Astronomical observations, by M. Roger.—5. On the glow-worm. By M. Guennau de Montbeillard.—6. Analysis of the mineral waters of Premeaux in Burgundy. By M. Maret.—7. Observations relative to natural history, made in crossing the province of Burgundy, from the Yonne to the Saone, that is, from Auxerre to Chalons; to which are added some philosophical remarks. By M. Pazumot.—8. Cafe of a colic occasioned by biliary concretions, and cured by the solvent of those Calculi. By M. Maret.—The patient, whose cafe is here related, was a man sixty years old, of a robust habit, and subject to frequent attacks of colic, accompanied with jaundice. These symptoms were ascribed to biliary concretions, and recourse was had to M. Durande’s method of treatment. At first the patient took the Solvent once, and afterwards
wards twice a day, in the doses recommended by M. Durande, and during the use of this remedy he drank plentifully of diluents, and avoided all strong liquors. Before he had taken two ounces of the medicine his jaundice had in a great measure disappeared, and his urine and faeces had almost entirely resumed their natural colour. By the time he had taken another ounce of it, he found himself perfectly cured, and when this account was written he had remained well six months. No gall-stones were observed in his stools. M. Maret adds, that he could mention other instances of the efficacy of this Solvent.—9. Farther remarks on juices. By M. Gauthey.—10. Extract from the meteorological diary kept by M. Maret from the year 1763 to the present.—11. Natural and botanic history of Cevadilla. By M. Willemet. Monard, a physician of the 16th century, was the first who mentioned this plant, of which he has given a wooden cut in his Historia simplicium Medicamentorum ex novo Orbe delatorum. He speaks of its caustic qualities; but observes that its strength may be moderated by infusing it in rose-water. Lemery, who has copied from this writer what he says of the Cevadilla in his Dictionary
Dictionary of Drugs, observes that, in his time, none of it was to be seen in France, but at present, we are told, its seeds and capsula are very common in trade. The plant that produces them is not yet satisfactorily ascertained. Linnaeus, tho' he speaks of its acrid and poisonous properties in his Materia Medica, has not been able to class it in his sexual system. Haller classes it with the Delphinium consolida and Aconitum. An herborist of Lorraine has assured our author, that it is no other than the yellow aconite, and he is endeavouring, he tells us, to ascertain the truth of this by attempting to make the seeds of Cevadilla vegetate. The most satisfactory account, which Mr. Willemet has met with of the natural history of the plant in question, is in the botanic observations of Retzius, published at Leipsic in 1779. The powder of Cevadilla forms the basis of a composition called Capucbins Powder (Poudre des Capucbins) used in France for destroying lice, and this, we are told, is the only use to which it is at present applied.

The dysentery which prevailed at Herford in Westphalia, and which is the principal subject of this little work, first made its appearance about the close of July 1779. During the first week or two it was confined chiefly to the lower classes of people, who are uncleanly, and badly fed and clothed; but towards the latter end of August it spread among all ranks of people. The town contains about 3000 inhabitants, and, of these, 340 were labouring under the disease at the beginning of September, when the epidemic is said to have been at its height. Its violence abated as the heat of the weather subsided, and before the beginning of October, we are told, it had almost entirely disappeared.

To oppose the progress of this contagion, a council of health, composed of the magistrates, clergy, and physicians of the town, gave directions for the interment of the dead on the day on which they died, in a place at some distance...
from the town. At the same time the town was divided into sixteen districts, in each of which two persons of known vigilance and probity were appointed to enforce the precautions and modes of treatment recommended by the physicians. To these circumstances and the liberality with which the poor were assisted by the more opulent inhabitants, our author thinks it was in a great measure owing, that of 660 patients who were attacked with the dysentery in the course of two months, only 168 died.

Among the predisposing causes of this epidemic our author enumerates the uncommon heat of the summer; the occupation of the greater number of the inhabitants, who are employed in agriculture; their food, which consists chiefly of salted and smoked meat; their want of cleanliness; the situation of the town, which is marshy; and lastly, neglect at the first attack of the disease.

He remarks, that patients in affluent circumstances had commonly only slight attacks of the disease, and sometimes simply a diarrhoea. He had occasion to observe that fear, in some cases, seemed to assist in propagating the disease.

This dysentery, we are told, was commonly sudden in its attack. It usually began with a shivering,
vering, and pain in the loins; to these succeeded violent pains in the belly, and frequent stools, which were oftentimes bloody and always mucous. The greater number of patients preferred their appetite for the first day or two, but in a few the stomach was disordered even at the beginning. The pulse was seldom affected till the disease had made some progress, and then it often became extremely quick. The treatment which was found to be most successful consisted in the use of emetic tartar, eighteen grains of which were dissolved in six ounces of water sweetened with syrup. Of this mixture a tablespoonful was directed to be taken every half hour till the patient vomited. To this was added the use of a purging mixture of two ounces of tamarinds, and half an ounce of Glauber’s salt, dissolved in four ounces and a half of water, and sweetened with an ounce of syrup; of this a teacupful was administered every two hours. In some cases, where the state of the pulse seemed to indicate it, bleeding was had recourse to, and when the pains were violent blisters were sometimes applied with success to the belly, and to the calves of the legs. Glysters were likewise frequently thrown up, and fomentations to the
helly, of linseed oil, camphor and opium, were found to be useful in mitigating pain.

These celebrated discourses on the different kinds of Air—on the Torpedo—on the Attraction of mountains—on some late Improvements of the means for preserving the health of mariners—on the Invention and Improvements of the reflecting telescope—and on the Theory of gunnery, do not come within the plan of our Journal, if we except the first and the fourth; and with these, when we consider the length of time that has elapsed since they first made their appearance, we may reasonably suppose our readers to be well acquainted. It is on account of the elegant account it contains of the learned author, that we introduce this volume to our readers. We have long
long wished to communicate to them some authentic anecdotes of this deservedly celebrated physician, and we cannot do this more satisfactorily than by availing ourselves of the candid and accurate information here given us by Dr. Kippis.

Sir John Pringle, we are told, was born at Stichel-house in the county of Roxburgh, on the 10th of April 1707. He was the youngest of several sons of Sir John Pringle of Stichel, Bart. His mother was sister to Sir Gilbert Eliot of Stobs, Bart. Both the families from which he descended were very ancient and honourable ones in Scotland. After pursuing his academical studies at St. Andrew’s and Edinburgh, he went to Amsterdam in 1728, being intended for the mercantile line; but his mind was turned to physic, by accidentally hearing at Leyden a lecture of Boerhaave’s, which struck him in a remarkable manner. From that time he applied himself diligently to medical studies, and on the 20th of July 1730, was admitted to the degree of doctor of physic. His inaugural dissertation was “De marcore senili.” During his residence at Leyden he contracted an intimate friendship with Van Swieten, who was not only his fellow-student, but also his physician, when he
he happened to be seized there with a fit of sickness. Nevertheless he did not owe his recovery to his friend's advice; for Van Swieten having refused to give him the bark, another prescribed it, and Mr. Pringle was cured. From Leyden, Dr. Pringle went to complete his medical studies at Paris, and soon after settled as a physician at Edinburgh, where, in March 1734, he was appointed professor of pneumatics and moral philosophy. In discharging the duties of this new employment, his text book was Puffendorff *De officio bominis et civis*. Besides this he annually delivered several lectures on the immateriality and immortality of the soul; subjects which were not a little discussed at that period.

He remained at Edinburgh till 1742, when, by the interest of the earl of Stair, to whom he had been recommended by Dr. Stevenson, an eminent physician at Edinburgh, he was constituted physician to the military hospital in Flanders. With this appointment he was permitted to retain his professorship, and Messrs. Muirhead and Cleghorn were allowed to teach in his absence.

At the battle of Dettingen Dr. Pringle was in a coach with Lord Carteret during the whole time of the engagement, and the situation they were
were placed in was dangerous, as they were betwixt the fire of the line in front, a French battery on the left, and a wood full of hussars on the right.

Soon after this his friend the earl of Stair retired from the army. Dr. Pringle offered to resign with his noble patron, but that liberal minded commander would not permit him to think of it for a moment. He therefore continued to attend the army, in Flanders, through the campaign of 1744, and in the spring following, the duke of Cumberland appointed him physician general to his majesty's forces in the Low Countries. He now thought it right to resign his professorship in the university of Edinburgh, and in 1745 he was recalled from Flanders to attend the troops which were to be sent against the rebels in Scotland. On the 30th of October of that year he was elected a fellow of the Royal Society.

In 1747 and 1748 he again attended the army abroad; but after the treaty at Aix la Chapelle came to reside in London, and in April 1749 was appointed physician to his R. H. the duke of Cumberland. In 1750 he published his Observations on the Jail or Hospital Fever, which were afterwards incorporated in his great work on
on the Diseases of the Army. In the same year he began to communicate to the Royal Society his experiments upon septic and antiseptic substances, which procured him the honour of Sir Godfrey Copley's gold medal. He afterwards communicated to that learned body several other papers, which appear in different volumes of their Transactions; and he likewise published in the Edin. Med. Essays, vol. V. an Account of the success of the vitrum ceratum antimonii.

On the 14th of April 1742 he married Charlotte, the second daughter of Dr. Oliver, an eminent physician at Bath. This connection, which we have heard was not a happy one (tho' this circumstance is not mentioned by the learned and worthy biographer) did not last long; the lady dying in the space of a few years.

In the same year Dr. Pringle published the first edition of his "Observations on the Diseases of the Army." Of this work, which hath now passed through seven editions, Dr. Kippis very properly observes, that it hath placed the writer of it in a rank with the famous Sydenham. "Like Sydenham, too—says he—he hath "become eminent, not by the quantity, but "the value of his productions; and hath af-"forded a happy instance of the great and de-"served
"served fame which may sometimes arise from
a single performance."

In the war that began in 1755, Dr. Pringle
attended the camps in England during three sea-
sons. In 1758 he entirely quitted the service of
the army, and on the 5th of July in that year
was admitted a licentiate of the college of phy-
sicians of London. In 1761 he was appointed
physician to the queen's household. In 1762 he
was constituted physician extraordinary, and the
year following (on the decease of Dr. Wollaston)
physician in ordinary to her majesty. In 1766
he was raised to the dignity of a baronet. In
1768 he was appointed physician in ordinary to
the late princess of Wales, and in 1774 he re-
ceived the last promotion that was given him in
his medical capacity; which was his being made
physician extraordinary to his majesty.

In 1772, on the decease of James West, Esq.
Sir John Pringle was elected president of the
Royal Society: this was undoubtedly the highest
honour that he ever received. "It was at a very
a auspicious time—Dr. Kippis observes—that Sir
John Pringle was called upon to preside over
the Royal Society. A wonderful ardour for
philosophical science, and for the advance-
ment of natural knowledge, had of late years
Vol. V. No. II.
"displayed itself through Europe, and had appeared with particular advantage in our own country.—The spirit of experimental investigation was high; and nothing could be more agreeable to the genius of Sir John Pringle, than to cherish such a spirit. He endeavoured to do it by all the methods that were in his power; and he happily struck upon a new way to distinction and usefulness, by the discourses which were delivered by him on the annual assignment of Sir Godfrey Copley's medal." Dr. Kippis points out the particular merits of each of these excellent discourses.

Several marks of literary distinction had been conferred on Sir John Pringle, before he was raised to the President's chair. But after that event almost all the learned societies in Europe were anxious to enroll him in the list of their members. Of the academical honours, enumerated by the learned biographer, we shall content ourselves with mentioning that conferred by the Royal Academy of Sciences at Paris, who, in 1778, elected Sir John Pringle to succeed the celebrated Linnaeus, as one of their foreign members. This honour, being limited to
to eight persons, is justly esteemed a most eminent mark of distinction.

As Sir John Pringle was in his sixty-sixth year when he was elected President of the Royal Society, it was natural to expect that in the course of a few years the various and important duties of this station would become burdensome to him. A fall, from which he received considerable hurt, and which in its consequences affected his health and spirits, likewise contributed, we are told, to induce him to resign the chair. It hath indeed been reported that he was much hurt by the disputes of the Society concerning electrical conductors; but Dr. Kippis, who was then in the habit of a strict intimacy with Sir John Pringle, never heard from him any suggestion of this kind. His declining years, and the general state of his health, form sufficient reasons for his resignation, which took place in 1778, when Joseph Banks, Esq. (now Sir Joseph Banks, Bart.) was unanimously elected President in his room, "a gentleman," says our candid and learned biographer, "who had "eminently distinguished himself by his ac- "quaintance with natural history; who had "failed round the globe, and performed "other voyages in pursuit of that branch of "science;
"science; who is preparing, at an immense
expense and labour, the noblest and most
splendid botanical work, which hath ever
been presented to the public; and who hath
amplely justified the choice that was made of
him, by his attention to every part of his
duty, and his assiduous concern to promote
the interest and honour of the Society."

Though Sir John Pringle now did not attend
the meetings of the Royal Society so constantly
as he had formerly done, his house still continued
to be the resort of ingenious men. He was held
in particular esteem by eminent and learned for-
reigners, none of whom came to London withou-
out visiting him, and it would have been an
uncommon thing not to have seen some of them
at his Sunday evening conversations.

In the summer of 1780 he made an excursion
to Scotland, and purchased a house at Edin-
burgh, where he intended to pass the remainder
of his days. When he returned to London in
the autumn, he set about preparing to put his
scheme in execution. Accordingly he disposed
of his house in Pall-mall, and of the greatest
part of his library, and in the spring of 1781
removed to Edinburgh. "In this city," Dr.
Kippis observes, "he was treated by persons of
" all
all ranks, with every mark of respect. But Edinburgh was not now to him what it had been in early life—many, if not most, of his old friends and contemporaries were dead; and, tho' some of them remained, they could not meet together with the same strength of constitution, the same ardour of pursuit, the same animation of hope, which they had formerly possessed. The younger men of eminence paid him the sincerest testimonies of esteem and regard; but it was too late in life for him to form new habits of close and intimate friendship.” He likewise found the air of Edinburgh too cold for his frame. These evils were increased by his increasing infirmities, and he determined to return once more to London.

Before he quitted Edinburgh he presented ten volumes, folio, of medical and phical observations, in MS. to the College of Physicians, on condition that they should neither be printed, nor lent out of the library.

He came back to London in September 1781, and resided in King-street, St. James’s Square, where he renewed his Sunday evening conversations. The other evenings of the week he usually passed with a philosophical society, of which
which he had long been a member, and which met at Mr. Watfon’s a grocer in the Strand. In the mean time, however, his strength was declining with rapidity, and on Monday the 14th of January 1782, being with the society at Watfon’s, he was seized with a fit, which carried him off on the Friday following, in the 75th year of his age. On the 7th of February, he was interred in St. James’s Church, Westmin-

ter.

Dr. Kippis adds that, as a testimony of regard to his memory, at the first meeting of the College of Physicians at Edinburgh after his decease, all the members appeared in deep mourning.

Sir John Pringle bequeathed the bulk of his fortune to his nephew and heir Sir James Pringle of Stichel, Bart. but a sum, equal to seven hundred pounds a year, was appropriated to annuities, revertible to that gentleman at the death of the annuitants. He provided likewise for two servants, who had lived with him a considerable time; and he left legacies to Dr. Kippis and some other particular friends.

We come nnow to the character of Sir John Pringle.—Dr. Kippis considers him first as a practical physician. “He was distinguished,”
we are told, "in this respect, by his attention
and sagacity. For the recovery of his pa-
tients he was anxiously concerned; and his
anxiety might, perhaps, be increased from
his conviction, that the art of physic, though
eminently useful, must ever, from unavoid-
able circumstances, be attended with a cer-
tain degree of uncertainty. His care was
rewarded with much success in the course of
his practice. In the exercise of his profes-
sion, he was not rapacious; being ready,
on various occasions, to give his advice with-
out pecuniary views. This he never denied
to the poor; and from many of his friends
in better circumstances, and who were well
able to afford the customary gratifications,
he refused to accept of fees.
"The turn of Sir John Pringle's mind,"
continues our author, "led him chiefly to the
love of science, which he built on the firm
basis of fact. With regard to philosophy in
general, he was as averse to theory, unful-
pported by experiments, as he was with respect
to medicine in particular. Lord Bacon was
his favourite author; and to the method of
investigation, recommended by that great
man, he steadily adhered. Such being his
intel-
"intellectual character, it will not be thought surprising, that he had a dislike to Plato. The speculations of that sublime and ingenious, that elegant and beautiful, but at the same time fanciful writer, were by no means suited to the sober spirit of enquiry cultivated by Sir John Pringle. Indeed, whatever attention he might have paid, in his earlier days, and when he was Professor of Ethics at Edinburgh, to metaphysical disquisitions, he lost all regard for them in the latter part of his life."

Dr. Kippis does not conceal from his readers, that Sir John Pringle had not much fondness for poetry. He had not even any distinguished relish for the immortal Shakespeare. As an excuse for this want of poetical taste, the Doctor, who professes himself one of the warmest admirers of our great dramatist, observes that the mind of Sir John Pringle was too closely occupied by philosophical enquiries to have much leisure or inclination for attending to the operations of the imagination.

Though Sir John was not fond of poetry, his biographer relates of him, that he had a great affection for music, of which he was not merely an admirer, but became so far a practitioner
titioner in it, as to be a performer on the violoncello, at a weekly concert, given by a society of gentlemen at Edinburgh. He is said, however, to have neglected music, as he advanced in years.

In his youth he had not been neglectful of philological enquiries. We are told he paid great attention to the French language, and was fond of Voltaire’s critical writings. Dr. Kippis adds, that among all his other pursuits, Sir John Pringle never forgot the study of the English language. This he regarded as a matter of so much consequence, that he took uncommon pains with respect to the style of his compositions.—During the latter part of his life, he devoted much of his time to the study of divinity.

Passing from the intellectual to the moral character of Sir John Pringle, his biographer observes, that the ruling feature of it was integrity. “All his acquaintance,” observes Dr. Kippis, “with one voice agree that there never was an honester man. He was equally distin-

guished by his sobriety. He told Mr. James “Boswell, that he had never in his life-time

been intoxicated with liquor.”

Vol. V. No II. U He
He was ardent and steady in his friendships. He paid a very respectful attention to those who were honoured with his esteem, and to such strangers as came to him well recommended. Dr. Kippis acknowledges, however, that he had, at times, somewhat of a dryness and reserve in his behaviour, when he was not perfectly pleased with the persons who were introduced to him, or who happened to be in his company.

In the latter part of his life he sometimes nodded in company. This, we are told, was owing to his having for many years been so remarkably troubled for want of rest, that there was scarcely a single night, in which he did not lie awake for several hours. To this wakefulness Dr. Kippis imputes a certain wearisomeness and restlessness that hung about him, and which he sought to remove by changes of situation. To the same cause likewise, he thinks may be ascribed, if, in any respect, Sir John did not sustain the infirmities of age with that full fortitude and dignity of mind, which, tho' always desirable, cannot even by the best characters always be attained.

Dr. Kippis is at considerable pains to investigate the religious character of his author. "He " was another instance," we are told, "of " those
"those illustrious philosophers, who have not
been ashamed of religion; and added another
name to the catalogue of the excellent and
judicious persons, who have gloried in being
rational Christians."

"Such having been the character and emi-
nence of Sir John Pringle," observes our au-
thor, "it was highly proper that his name should
be recorded among the worthies of Westminster
Abbey. Accordingly, under the direc-
tion, and at the expense, of his nephew and
heir, a monument is preparing, of which Mr.
"Noll:ken is sculptor, and for which an Eng-
lish inscription is intended."—We may add,
that since the publication of the work, the mo-
ument in question has been erected.

We shall conclude this article with the fol-
lowing elegant inscription, which the Doctor in-
forms us was written by a friend of Sir John
Pringle. We shall venture to add, that this clas-
ical friend is now pretty generally, and we
believe with good reason, supposed to be Sir
George Baker.

M. S.

Viri egregii Johannis Pringle Baronetti;
Quem exercitus Britannicus,
Celsissima Walliae Principessa,
U 2 Regina
Regina serenissima,
Ipsum denique Regis Majestas,
Medicum sibi comprobavit
Experientissimum, sagacem, strenuum:
Quem, studiis academicis floretem,
Edinburgenses olim fui
In cathedra disciplinæ ethicæ dicata
Adhue juvenem collocarunt,
Quem posse, ætate ac scientiâ provectum,
Primum perhonoriifico ornavit præmio,
Deinde ad sumnam apud se dignitatem egressit
Societas Regia Londinensis,
Qualis fuerit medendi artifex,
Quali rerum comprehensione praeditus,
Materiem suam multiplicem
Quam scientiâ explicauerit et illustraverit,
Scripta viri doctissimi testentur
Per Europam omnem disseminata,
Nec foris minus quam domi nota.
Qua autem fide et integritate fuerit,
Quam veri tenax et inimicus fraudi,
Quam constans Supremi Numinis cultor,
I, quibuscum vixit,
Testes sunt.
Excessit e vitâ, &c.

VI. The
VI. The History of the absorbent System, Part the first, containing the Chylography or description of the human lacteal vessels, with the different methods of discovering, injecting, and preparing them, and the instruments used for these purposes; illustrated by figures. By John Sheldon, Surgeon, Professor of anatomy in the royal academy of Arts; and Lecturer of anatomy and surgery. 4to. Cadell, London, 1784. 52 pages, with six copper plates, 1l. 1s. in boards.

In the late Mr. Hewfon's work on the Lymphatics we have no representation of the lacteals, nor of the lymphatics of the different visceræ of the thorax or abdomen; the lymphatic vessels of the visceræ, and the lacteals in the human subject, having been but very imperfectly known even at the late period at which Mr. Hewfon's treatise was published. The work now before us is intended to supply this deficiency. The author proposes to correct the errors of former writers on this subject, and to give figures from nature of those parts of the lymphatic system in the human body, which have been either erroneously described or recently discovered.
In this first part of his work, after giving a concise history of the lymphatic system, he describes the method of discovering, injecting, dissecting, and preparing the absorbent vessels, and then treats of the discovery of the lacteals, the structure of their coats, the *ampullae Lieberkühnii*, and lastly, the manner in which nature produces absorption in the lymphatic system. These descriptions are illustrated by five very elegant engravings; the sixth plate exhibits the instruments necessary for injecting the lymphatics.

In a future part of the work, (most of the plates for which are said to be already engraved) Mr. Sheldon means to describe the lymphatics of each particular viscus, where he has been able to discover them by injection or otherwise. He promises also to give a view of the lymphatics of the upper and lower extremities in their natural size; and as a supplement to the work, to add specimens of the lacteal vessels in quadrupeds, birds, amphibious animals, and fishes.

These essays having been originally printed in the Memoirs of the academy of sciences at Paris, have already been noticed in our Journal (Vols. II. and IV.). The subjects on which they treat are, the Respiration of animals—Combustion of candles in atmospheric air and in dephlogisticated air—Combustion of Kunc-ker's phosporus—Existence of air in the nitrous acid, and the means of decomposing and re-composing that acid—Solution of mercury in vitriolic acid—Combustion of alum with phlogistic substances, and the changes effected on air in which pyrophorus has burned—Vitriolification of martial pyrites—Nature of the acids, and the principles of which they are composed—Combination of the matter of fire with evaporable
rable fluids; and the formation of elastic æri-
form fluids.—The public are much indebted
to Mr. Henry for his accurate translation of
tese ingenious papers; and for a very sensible
preface, in which, among other things, he gives
us some interesting observations on phlogiston.

VIII. A System of the Practice of Medicine; from
the Latin of Dr. Hoffman, in two volumes.
By the late William Lewis, M. B. F. R. S.
author of the New Dispensatory, &c. Revised
and corrected by Andrew Duncan, M. D. fel-
low of the Royal College of Physicians, Edin-
burgh; and member of the Royal Societies of
Medicine, of Paris, Copenhagen, Edinburgh,

The works of Hoffmann have long been
held in high esteem by medical readers; but from their voluminous size, joined to the
circumstance of their being written in the Latin
language, they have been less extensively useful
in this country, than might otherwise have been
the case. The public, therefore, we have no
doubt,
doubt, will receive with pleasure this abridged English translation of his *Medicina rationalis systematica*, which is confessedly the most valuable of his writings. It may be objected by some readers, and not without reason, that the number of remedies which he has recommended in different diseases, is much greater than intelligent practitioners in this country now employ; but at the same time, as the learned editor of this abridgment very properly remarks, the fidelity, extent, discernment, and accuracy of his observations cannot fail to stamp a high value on his work in the opinion of every reader, who prefers useful facts to fanciful speculation.

The MS. copy of this abridgment was one of those manuscripts which we formerly mentioned (vol. II. p. 52.) as having been sold with the rest of the late Dr. Lewis’s library. It was soon after put into the hands of Dr. Duncan, who has carefully revised and compared it with the original; but the attention he has bestowed on it, as he informs us in his preface, has served rather to convince him of the fidelity with which it was executed, than to add to the value of the abridgment. He has, however, introduced several diseases, which Dr. Lewis had probably omitted from their being of little importance,
or rarely occurring in this country. By this means every part, section, and chapter of this abridged translation correspond exactly with the same divisions in the folio edition of Hoffman's works published at Geneva in 1761.

SECTION II.

ESSAYS AND OBSERVATIONS.

I. Some Remarks on Angina Peloris, communicated in a letter to Samuel Foart Simmons, M. D. F. R. S. by Malcolm Macqueen, M. D. physician at Yarmouth.

It was my opinion, even before I left the university, that the disease described by Dr. Heberden and the late Dr. Fothergill, under the name of Angina Peloris, had been, in the greater number of instances, if not in all, a irregular gout. The sex and habits of the patients, the form of their bodies, and their time of life, correspond with the notion we have of the gouty diathesis. The flatulent eructations from the stomach, the benefit frequently received from aromatics and Bath waters, &c. also lead to the same
same conclusion. But the following case proves beyond doubt, that the disease is in some instances intimately connected with gout.

About twelve months ago I was called to a man 60 years of age, of a fair, fanguine complexion, and a strong and corpulent habit, with a short neck. He complained of frequent fits of sudden pain about the pit of the stomach, extending to the left breast, and shooting towards the middle of both arms, particularly the left. This pain or spasm was accompanied with a difficulty of breathing that threatened suffocation. It had ceased him for some time before, and often in his sleep; but he was more peculiarly subject to its attack when he attempted to walk quick, or against a strong wind; he was then obliged to stop short in an instant, and remain at perfect rest for one or two minutes, in which time the disorder generally went off. He observed also, that the fit was apt to return by the least exciting cause soon after meals; insomuch indeed that he used to say, "he should be well, " if he could live without food." Passion too, or any strong agitation of mind, seldom failed to bring it on. His pulse was pretty regular, his bowels not coltive, yet his appetite was very indifferent, and he complained much of flatulency.

X 2 Such
Such was the state I found him in, and he then gave me the following account:

He said that he had always been accustomed to live well, and for several years had been subject to regular fits of the gout in his feet. But about six months before, when his feet were slightly affected, he perceived a general faintness, and a dizziness of his head, which recurred frequently. He applied to his apothecary, who immediately bled him, and inserted an issue in his left arm. Very soon after this the gout entirely left his feet, and he felt the first attack of the pain and stricture across the præcordium. This new complaint returned by short and slight fits, which grew gradually stronger till the time I saw him, and from its first accession he had been free from any uneasiness of his feet, and every other symptom of the regular gout. — From this history of his disorder, and the consideration of the present symptoms, I did not hesitate in imputing the whole to a gouty affection: accordingly he was ordered aromatic bitters in considerable quantity, and a draught with *tinct. guaiac. vol.* twice a day. By these medicines and a suitable regimen he was soon considerably relieved; and I left him on this plan, hoping to hear in a short time that he had got a regular
regular fit of the gout. In this wish, however, I was disappointed, and, in about two weeks after, he was seized, in the night-time, with a most violent paroxysm of the disorder in his stomach and breast. It continued four-and-twenty hours with scarce any intermission, before I saw him, notwithstanding he had taken freely of spirituous bitters and _tin'ét. guaiac. vol._—I immediately ordered a draught of _tinét. fustid. vol._ 3¿s. and _elixir. paregor._ 3¿. without any other dilution. This draught, which he imagined had burned his whole inside, removed his complaint almost instantaneously. A warm plaiter was applied to the pit of his stomach, and his feet were bathed in warm water largely impregnated with common salt. He felt no further affection of his stomach or breathing, and a fit of the gout in the right foot succeeded on the ensuing night. This fit fortunately proved a smart and a long one; for he was confined to his house upwards of three months, during which time he had not the slightest return of his former complaints. I have seen him within these few days, apparently in good health. He says, that in the intervals of the gout he is still subject to slight degrees of his disorder, when he attempts to walk quick after
after dinner; but is perfectly free from it in bed, and when at rest in the day-time.

The above case, which is taken from my Journal, proves, I think, beyond a doubt, that the angina pectoris may arise from an irregular gout. That it does so in many instances, I have always thought highly probable: to assert that it does so in all, might appear too bold.

Dissections seldom have thrown any light on the nature of the disease, except indeed in a negative way, by showing us, from the want of any uncommon appearance, that it is a spasmodic affection. Dr. Fothergill himself confesses, that it terminated for the most part fatally; and though it was a disease he frequently met with, yet it was not in his power, in a single instance, to learn the seat of it from dissection. Altho' in some few cases, water has been found in the thorax, this is to be considered as an effect only of the disease. Water in the chest is often a consequence of spasmodic asthma, and may also follow an angina pectoris, which bears a strong analogy to the asthma, and in the judgment of some, ought to be considered as one and the same disease.

It might be thought too confident an assertion, to say, that the stomach is the organ chiefly and primarily
primarily affected here. It cannot be denied, however, that in this disorder the stomach is invariably affected to a certain degree. Dr. Heberden remarks, "that the patients feel the "stricture under the sternum, and always to-"wards the left side." My patient felt the stricture about the cartilago ensiformis; and in one of the cases related by Dr. Fothergill, the villous coat of the stomach was found to be inflamed after death.—In the spasmodic asthma, the paroxysm is always attended with flatulency at the stomach: substances that cause this flatulency, and that otherwise disagree with the stomach, frequently bring on the paroxysm. In like manner, different remedies taken into the stomach sometimes very quickly remove it. Why may not a like sympathy take place between the stomach and lungs in the angina pectoris as in asthma? I own I think the connection still greater in the former.

I am well aware, that this is not a new idea; and that the two learned gentlemen mentioned above have administered aromatics and stimulants, probably on the supposition of its being a gouty affection of the stomach. Yet their want of success does not prove the disease to be unconnected with the gout; or that aromatic and
and stimulant medicines, differently dosed and qualified, might not in many instances, as in that of my patient, have a better effect, and prove more successful than the issues in the thighs, which I know are found to fail in a great number of cases, if not in all.

I have another case before my eye, that I think deserves to be mentioned here, from the analogy it bears to the former.

About three years ago, I was called to a gentleman of this town, who was then past 50 years of age, of a full habit of body and a florid complexion. He had always enjoyed good health, till within three or four months, that he had become subject to frequent returns of pain about his heart, as he termed it, pointing to the cartilago ensiformis towards the left side. This pain, which had from its beginning increased in frequency and violence, was constantly attended with another pain, and a sense of tension in the right forearm, extending along the aponeurosis of the biceps to the wrist, and causing, for the time, little knots in the flesh, like partial contractions of muscular fibres. The affection of the breast, and that of the right forearm constantly accompanied each other, the latter immediately succeeding the former, and like-
wife disappearing along with it. Any exertion, as quick walking, or agitation of spirits, was apt to bring on the disorder; but it was certain to return every night, sometimes twice, sometimes three times before the morning. It attacked him both awake and asleep, and he was always forced to raise himself from an horizontal to an erect posture, while the fit lasted, which was generally from half an hour to a full hour; and it always went away by an eructation of wind from the stomach.

After I had considered the symptoms of this case, I was strongly of opinion, that it would terminate either in a regular gout, or in angina pectoris, and might possibly partake of both. I have, however, been hitherto disappointed.—The complaint is greatly relieved, I might say, almost cured, without assuming the character of either of the above diseases in any regular form. After administering a few anodynes at first, by way of experiment, and observing no manifest benefit from them, I continued afterwards to treat it as irregular gout. The chief remedies employed were boluses of prepared steel and cinnamon given too or three times a day, and washed down with a draught of strong peppermint water, a warm plaiter to the re-

Vol. V. No. II. Y gion
gion of the stomach, and a suitable regimen, particularly an abstinence from acids, and all flatulent food. Under this plan he soon began to amend, and the disorder, though not wholly eradicated, became so slight as to give scarce any uneasiness. The next year, the same symptoms returned with some violence, and happening to be in a neighbouring city, he consulted a physician of great experience and deserved reputation. He, I believe, conceived an idea different from mine of the disease, and the patient was ordered to lose 3xij. of blood, and to take afterwards some purges of calomel. This was complied with on his return home, without the least apparent benefit, but rather a contrary effect. He then had recourse to his former medicines, which proved equally serviceable as they had done the year before. He has ever since attended carefully to the regimen I had at first laid down for him, takes one of his bolus every day, with the addition of a little bark, and continues almost entirely free from every symptom of his disorder.

To those who admit the Cullenian doctrine of the gout, particularly what is set forth in the section on the atonic gout, in Dr. Cullen’s First Lines of the Practice of Physic, my sentiments
concerning the two foregoing cases will probably appear rational and consistent. But, independent of all systems, we are convinced by experience and observation, that the stomach is peculiarly disposed to be affected in gout; that it is subject to atony and spasms, which are also frequently communicated to other parts that sympathize with that organ. The first of the two cases, if I am not mistaken, affords one instance at least of the angina pectoris being intimately combined with gout, and, according to my opinion, appearing as a form of irregular gout. If the second shall appear to you not to partake of the character of gout, still it will serve to shew a curious sympathy existing betwixt the stomach and the fore-arm, not unlike what takes place in the angina pectoris, and this removed by aromatic medicines applied to the stomach.—We have yet reasoned a short way only on the doctrine of sympathy, facts on this head are of course the more valuable; and the present is the age of facts and observation.

Yarmouth, Apr. 8,
1784.
II. An account of the fatal effects produced by attempting to remove a Ganglion by Seton. Communicated in a letter to Dr. Simmons, F. R. S., by Mr. William Deafe, Surgeon to the United Hospitals of St. Nicholas and St. Catharine at Dublin.

THE following case, which I take the liberty of communicating to you, that it may be inserted, if you think proper, in the London Medical Journal, will, I hope, serve as a striking instance of the painful and fatal consequences that may follow an attempt to remove Ganglions by Seton.

In July 1781, a clergyman, aged 37, consulted me about a moveable Ganglion of the size of a small nutmeg, situated between the fore-finger and thumb of his right-hand, near the wrist. He was eager to have it removed, and had been advised, for this purpose, to have a Seton passed through it as the best and most certain method; but as he was apparently a robust healthy man, and the Ganglion was attended with no pain, I advised him to consider it as a matter of no consequence, and not to meddle with it.
Four months after this I was desired to visit him, and found him in a melancholy situation. A Seton had been passed through the Ganglion, and the consequences were, that the back of his hand had inflamed violently, that the Ganglion had rapidly and amazingly increased, and that the openings made by the Seton were filled with an ill-conditioned fungus, which sprung up as fast as it was removed, and was attended with frequent hæmorrhage and much pain.—In consultation it was agreed to remove this fungus by a free incision, which was done, and the metacarpal bones appeared bare and rough. Another opening was made through the Thenar, and a Seton passed through it, in order more effectually to prevent the growth of fungus. The bark was administered in large quantities, an opiate was given at night, and due attention was paid to the regimen of the patient. This method seemed to promise the most happy event. The fungus appeared to be entirely destroyed, a laudable suppuration took place, the swelling of the hand subsided, and the sores, in a short time, were so contracted as to indicate their speedy cicatrization. These favourable appearances, however, were not of long continuance; for after some time the fungus began gradually
to rise again, and any mode of keeping it down either by caustic, cutting, or pressure, seemed to produce no permanent good effect, as it increased rapidly, and at length degenerated into the most frightful cancerous fungus I have ever seen. Every local application that has been recommended in similar cases was tried in this, but without success; and internal remedies proved equally inefficacious. He took, for a considerable length of time, two ounces of bark, in substance, in the course of twenty-four hours, so that he took in the whole twenty-eight pounds of that medicine. The extract of hemlock had also a fair trial, but produced no apparent good effect.

When he had laboured under this complaint fifteen months, he was advised to undergo the amputation of his hand; but before he would consent to submit to this operation he chose to have an account of his case transmitted to the Royal Academy of Surgery at Paris, that he might have their opinion of it: the result of which was, that the members of the Academy pronounced the fungus, not cancerous, but merely scorbutic. This decision, by the bye, should make us extremely cautious in delivering our
our sentiments on similar occasions, without seeing the patient, as much depends on the general appearance of the sores in cases of this fort. The Academy were of opinion, that the disease was entirely local and required only local treatment. For this purpose they advised that the fungus should be taken down by means of Euphorbium, Savihe, &c. and afterwards washed with salt water. If this method proved ineffectual recourse was to be had to the actual cautery, from the application of which they seemed to expect the most decisive advantages. To this mode of treatment the unhappy sufferer submitted, and during the space of six weeks the fungus was almost every day burnt down with the cautery, but his complaint all the while continued to gain ground apace, so that being now disappointed in all his expectations of relief from regular practitioners he had recourse to quacks of every denomination. The arsenic plaster of Plunket was applied, and he was salivated for seven weeks. At length, after undergoing the operation of a variety of nostrums, he again placed himself under my care. In consultation it was much doubted whether amputation should now be thought of, as the patient seemed to be in the last stage of a cancerous con-
consumption. His limbs were swelled, and his whole habit was wasted by the repeated hæmorrhage from the fungus, which was now so increased in bulk as to weigh down his arm, and entirely cover the back of his hand. In short, after every return of hæmorrhage, it was apprehended that the next would put a period to his sufferings.

The hazard of the operation, and the little chance he had of its proving successful, being explained to him, the unfortunate man earnestly begged to be relieved from so hideous a load, even though he should die under the operation. I therefore yielded to his intreaties, and took off the hand a little above the wrist in November 1782, altho' there was a small indurated gland above the elbow.

On dissecting the hand immediately after I had taken it off, the fungus, on being cut, appeared to be extremely similar to the substance of the brain, and to arise from the metacarpal bones of the middle and fore fingers. These bones were in part dissolved, and the other bones of the hand were also in a morbid state.

No accident occurred during the amputation, but soon after it a colliquative diarrhoea came on, which seemed to be increased by opiates and
astringents, but was at length checked with draughts of fixed alkaline salt and lemon juice, swallowed in a state of effervescence. He afterwards took the bark, drank Seltzer water, and was allowed a liberal use of wine. The suppuration for some time was ichorous and bad, but he gained strength daily. At the end of seven weeks the stump was completely cicatrized, and the indurated gland above the elbow had disappeared. He went into the country, drank goats whey, bathed in the sea, became very corpulent, and seemed to be in perfect health, but had somewhat of a fallow, bloated appearance. He continued well till July 1783, when he began to complain of pains in his back; attended with rigidity. These pains, as they increased, extended down his thighs and legs, and occasioned him to sleep ill at night. He grew feverish, his pulse beat extremely quick, and his countenance acquired a shining yellowish red colour, an appearance which I have remarked to be characteristic of a cancerous habit. He now began to walk with difficulty. I took a small quantity of blood from him, and found the texture of the corrimentum extremely loose, and the serum in too great quantity. He was very difficult to purge, and unfortunately was

Vol. V. N° II. Z under
under a constant necessity of taking medicines to procure the necessary discharges. Antimonials in a variety of forms were given, and the bark was again tried, as were all the medicines that are usually prescribed in rheumatic cases. Blisterers were applied, and issues cut in his thighs, but all to no purpose. He was obliged to take to his bed in August, and never after quitted it.

It is difficult to form an idea of the constant and excruciating pain this poor man suffered. Opium, though given in large doses, afforded him but little relief, and at last none at all. He generally laid on his back, fixed as it were to the bed, the least motion occasioning the most intense pain. As the disease advanced he complained of a difficulty of passing his urine, which was loaded with a viscid mucus, and he once discharged an oblong calculus; but at last he voided his urine involuntarily, and sometimes even his faeces, but the latter only rarely, when he had taken a purgative, which, as I have already mentioned, was required to be of the most active kind, otherwise it produced no effect.

During the whole course of the disease his pulse was rapid, but his tongue was remarkably soft and florid. He was never delirious. Latterly he spit blood once or twice; his lower extremi-
ties became very oedematous, and his back was
covered with efchars, but these dropped off, and
the sores suppurred and healed kindly. Two
months before, his death his pains abated consi-
derably. He died without pain, March 4, 1784,
which was about two years and nine months from
the time the febon was pass'd, and a year and
four months from the time he underwent the
amputation.

His body was opened a few hours after his
death. The abdominal visceræ appeared to be
perfectly found and of their natural colour, ex-
cept the liver, which had a small fteatoma on
its convex surface, but was in other respects
healthy. The gall-bladder was rather fuller of
yellow bile than it is generally found to be. The
left kidney was enlarged, and on dividing it lon-
gitudinally much red gravel was found in its
delvis, and the ureter seemed much lessened.
The urinary bladder was contracted, and its
coats uncommonly thickened, but no fabulous
concretions were observed in it.

On each side of the vertebrae lumborum the
lumbar regions were rendered convex by a large
cancerous deposition, which elevated the psoæ
muscles, and when the cellular investitures, which
were condensed into a cyst, were opened, the
cancerous matter appeared in a large quantity, in colour and consistence exactly resembling the fungus of the hand, and not unlike the substance of the brain. The whole weighed about five pounds, and when this was removed, the left vertebra of the back, and the three first of the loins were found to be in a softened, eroded, and in some parts a totally dissolved state. There appeared not the least mark of ichor, sanies, inflammation, or hardness of the soft parts, nor were the mesenteric glands at all affected. The matter seemed to have been really a cancerous exudation, and to be formed chiefly of coagulable lymph. This cancerous mass seemed to possess a remarkable dissolving power, which was exerted wholly on the bones, and did not, as usual in cases of this sort, cause any scirrhus hardness of the surrounding soft parts.

This case may furnish many practical inferences. In the first place, it may serve to shew the great danger of developing in certain constitutions a latent virus. The patient was certainly in the enjoyment of full health when I first saw him, and probably might have long continued so, if recourse had not been had to the secon. I have observed, that by far the greater number of cancers happen to those who have been
been remarkably healthy before, but who have
had at the same time an irritable nervous system,
fully characterized by their general conduct thro’
life. The religious orders in Roman catholic
countries, among whom cancer is a very fre-
quen stud complaint, are a strong proof of this,
and in such constitutions we should be extremely
cautious how we operate, except in the most
pressing circumstances.

Secondly, in all cases of ganglions of cance-
rous tendency, extirpation will, I believe, be
found to be far preferable to any other mode of
treatment, as a cancerous fungus soon imparts
to the general mass of humours the cancerous
virus, so as to render the good effects of any
surgical operation extremely doubtful.

Thirdly, from a careful inquiry into the ori-
gin of cancers, I believe the disease, in the be-
ginning, is seldom humoral, but rather to be
imputed to a morbid degree of irritability in the
nervous system. The phenomena of the disease
and the medicines which have produced any
good effect in it, being of the class of sedatives,
seem to me to be very corroborating proofs of
this opinion.

Fourthly, we may infer, that cancerous mat-
ter does not always fall on the glandular system;
for in the preceding case, and in others which I have seen, it seems to have been formed rather by exudation, no glands having appeared to be in any degree enlarged.—How this humor was strained from the circulating mafs, and deposited in the lumbar region, our limited knowledge of the laws of secretion and excretion will not permit us even to hazard a conjecture.

I shall conclude this prolix detail with mentioning a very singular circumstance that constantly attends a morbid degree of nervous erethism, which is, that although every other part of the human body seems to be tremblingly alive, the intestinal canal is particularly exempt from this irritable state, as we find patients of this constitution extremely hard either to vomit or purge, and this is in general the case with all patients labouring under cancer.

Dublin,
April 24, 1784.
III. *A Case of painful menstruation, attended with vomiting.* Communicated in a letter to Dr. Simmons, by Samuel Daniel, M. D. physician at Crewkerne in Somersetsshire; and extra-licentiate of the Royal College of Physicians, London.

A young woman, aged 19, has, ever since the first menstruated, been afflicted, at that period, with severe and incessant vomitings. They were less so, indeed, in the beginning, but for two or three years past they have regularly returned with her menses, and continued in a very severe degree during the whole time of that discharge. She says, that in a very short time after she perceives the symptoms of approaching menstruation, she is seized with a violent pain in her bowels, has a considerable tremor and a general sensation of coldness. The pain is so exquisite, that she can scarcely speak, and after a sudden, and if possible, more exquisite torture than before, she has a motion to go to stool, which is followed with a kind of syncope, and an immediate vomiting.—Between the vomitings she has a stool every quarter of an hour for four or five times. After vomiting for some time her bowels become easier, but are still in violent pain,
pain, so that she cannot help crying aloud. If the vomiting begins in the morning, it continues till the next morning about the same time, sometimes longer, but always twenty-four hours, during which time she can neither eat nor sleep, and in the space of a day she is so extremely weakened, that she cannot stand without help. She has then no complaint for a month, or till the menstres return. She recollects, that her menstres in the beginning returned every three weeks, and were more considerable in quantity than they are at present. When the vomiting ceases she has no complaint but weakness, and after she has slept a little, and taken food she, by degrees, gets perfectly well. This complaint has continued five years, but at first it returned once in about a quarter of a year only; now it comes regularly every month. I was not ashamed to acknowledge myself at a loss with respect to the nature of this extraordinary affection; and as I was ignorant of the cause, I could not flatter myself with success in the treatment of so obscure and so inveterate a disease. It seemed probable however, that a particular degree of irritability in the bowels occasioned the circumstances above-mentioned; I therefore ordered her, upon the grounds of conjecture only, to take,
take, during the interval of menstruation, an electuary of the bark, and when she perceived the pain in her bowels to be returning, about thirty drops of the thebaic tincture in a draught. It occurred to me afterwards, that as the quantity of the discharge was evidently lessened, there would have been no impropriety in her losing a few ounces of blood a day or two before the appearance of the menses; this, however, as she lived at a considerable distance from this place, I had no opportunity of communicating.

In about a month I received from her the following account; viz. that she had taken the draught when she began to grow sick and restless as usual, and that she was soon afterwards composed and more easy; that she slept, and did not rise that day; that she was not perfectly well, but did not vomit, neither was she so sick as she used to be; that she had taken the electuary for a week, but thought that her complaints would have been as troublesome as ever, but for the anodyne draught.

From the time that this account was sent to me, which was ten months ago, I had no farther intelligence till last week, when the gentleman from whom she has her medicines informed me,
that she still continues to use them, but less constantly than in the beginning; from which I infer, that the complaint still subsists, but is relieved by the plan which was recommended to her.

Crewkerne,
May 4, 1784.

IV. Case of an Enlargement of the Spleen; to which is added an account of some remarkable appearances observed on opening the body of a gentleman whose death was occasioned by a perforation in his bladder. Communicated in a letter to Dr. Simmons, F. R. S. by Mr. William Garlick, member of the Corporation of Surgeons, London; and surgeon at Marlborough.

Sarah Nichols, aged sixteen years, was seized about four years ago with a quotidian intermittent, which, after continuing some weeks, was accompanied with constant pain in her left side and loins. The quotidian continued about ten or eleven months, and when it left her, her abdomen was perceived to be swelled. This swelling gradually increased till her death, which
which happened about four years from the first attack of the disease, so that for some time before she died she exhibited a most singular and extraordinary spectacle from the prodigious tumefaction and enlargement of her abdomen.

At first sight the swelling seemed to be general, but upon a more particular examination it was found to occupy chiefly the left side of the abdomen, and the inferior extremity of the spleen was felt just above the pubis on the right side.

She never complained of much pain, even when the tumour was pressed; but for some time before her death had hectic symptoms, such as a quick, weak pulse, a fallow, emaciated countenance, night sweats, &c.—She never had any discharge of the catamenia.

It is worthy of remark, that about half a year before she died, she lost the sight of her left eye. She was troubled with nausea and vomiting, accompanied with violent pain of the head, about a week before the blindness came on. There was no apparent defect in the eye, except that the iris did not contract upon application of the stimulus of light, unless the other eye was open, and then it did perfectly.
After death, upon opening the cavity of the abdomen, the spleen was found to be so much enlarged as to weigh eleven pounds and a half. Externally it preserved its figure, divisions, and distinguishing marks; but internally its structure deviated somewhat from the natural state, and this was occasioned by a few cysts of about the size of a small nutmeg, which were observable upon cutting into it, and were filled with a fatty gelatinous substance. The blood-vessels were somewhat enlarged, tho’ not in proportion to the increased bulk of the viscus.

There were scarcely any traces of omentum remaining. The other visceræ, abdominal and thoracic, were free from any appearance of disease, as was likewise the encephalon.

To the preceding history I shall beg leave to add an account of some singular appearances, which I observed lately on opening a gentleman, aged about sixty years, whose death was occasioned by a perforation in his bladder.

Of the complaints under which he had laboured, I have not been able to procure much satisfactory intelligence, or that is worth relating.
ing. He was said to have been much addicted to drinking to excess in the younger part of his life, and had been frequently subject to affections of the stomach, and to jaundice. He was confined to his room for many weeks before he died, during which time he suffered great pain. His urine was constantly mixed with the contents of the intestines, and during the last six weeks of his life he passed no fæces but what came away with his urine.

His body appeared to be very much emaciated. On opening the cavity of the abdomen, the first signs of disease were preternatural adhesions of the visceræ in different parts to the peritoneum. The omentum was very much diseased, enlarged, and indurated in some parts, but chiefly composed of a gelatinous substance, weighing three or four times as much as it usually does in a natural state. Several cysts of different sizes, and composed of a similar gelatinous substance, were observed upon the diaphragm and liver, and adhering to the parietes of the abdomen.

The upper part of the bladder, colon, and peritoneum formed one diseased mass, seemingly the effect of former inflammation. Upon cutting into the bladder, there was observed a communication
munication between its upper part, or fundus, and the colon, just before that intestine terminates in the rectum. Both the colon and the bladder, at this part, were equally thickened, and the diameter of the former was observed to be contracted, and lessened, on both sides of the opening which led to the bladder, but particularly its lower portion, or that part of it which terminated in the rectum. Hence appears the reason why no fæces were discharged per anum, because there was a more ready passage into the bladder. Hence also we may readily account for the circumstance of the fæces being diffused in and discharged with the urine for some months before the patient's death.

The inferior portion of the bladder, the prostate, rectum, and urethra, appeared to be perfectly found.

Marlborough, May 7, 1784.

V. Supplement to the account of the good effects of Opium in mortifications. Communicated in a second letter to Dr. Simmons, F.R.S. by Robert Hamilton, M.D. physician at Ipswich, extra-licentiate
licentiate of the Royal College of Physicians, London; and member of the Medical Society of Edinburgh.

As a supplement to the account of the good effects of opium in mortifications, published in the London Medical Journal (vol. v. p. 75) I request you to add, that Mr. Rolfe, the first patient alluded to, a farmer at Parkstreet near St. Albans, took no less than seven grains of solid opium at a dose. In the space of twenty-four hours he swallowed forty grains, with the addition of eighty drops of *sinē. theb.* in a pint of decoction of Peruvian bark.

In this case the mortification proceeded from a wound in the leg, upwards of six inches in length and four in breadth, received in attempting to open, and passed through a gate on horseback. If this plan had not been pursued he must have speedily died, as the mortification had continued two days, and was spreading most rapidly, accompanied with a constant hiccup, and continual watching, attended with excruciating pain.

Mr. Law, who had the chief merit of this cure, gives the solid opium frequently in doses of ten grains every two hours till rest be obtained;
tained; this is his criterion when to stop. What may appear to you singular (tho' he assures me it has often happened in his practice) is, that instead of producing constipation, which in small doses is the constant effect of opium, it proves in large doses as certainly laxative. He farther declares, that he has administered opium in mortifications in this manner these thirty years.

VI. An account of the poisonous effects of the Oenanthe Crocata, or Hemlock Dropwort; by Richard Pulteney, M. D. F. R. S. physician at Blandford. Communicated in a letter to Maxwell Garthshore, M. D. F. R. S. & S. A. and by him to Dr. Simmons.

A Perfon in the neighbourhood of Blandford having lately been poisoned through a mistake, and the circumstances of the fact variously misrepresented, has induced me to draw up a brief state of the case, from the best information I could procure after her death; and it is accompanied by some observations, which may have
have a tendency to put people on their guard against such errors.

It had been recommended to this poor woman to take the juice of water parsnep and water cressels. The person employed to procure these herbs, unhappily mistook, for the former of them, the hemlock drospwrt; and, as an aggravation of the evil, the juice of the root, which is more virulent than that of the leaves, was used. She drank little, if any, more than half a teacup full, in the morning fasting. In less than a quarter of an hour she complained of excessive giddiness, and soon after vomited, but not plentifully: before the half hour was completed, convulsions came on, and she was from that time deprived of the power of swallowing, and of her senses. In this condition, owing to the consternation the family was in, little or nothing was got down, and the fits following each other fast, and increasing in strength, after having suffered nine or ten of them, she died in two hours and a half from the time of swallowing the fatal potion.

Observations.

The two most poisonous plants perhaps naturally growing in England, are such as have,
from their general resemblance to the water parsnep, been frequently mistaken for it, and numerous instances have confirmed the very virulent effects of them. These two plants are the hemlock dropwort (oënanthe crocata), and the long-leaved water hemlock (cicuta virofa). These, together with the water parsnep, the hemlock, or kex, as it is vulgarly called, smallage, fools parsley, or lesser hemlock, and many others of the same natural class called by Botanists umbelliferous plants, have such a general likeness in the manner of growing, the form of the leaves, and in the mode of flowering, that it is not at all surprising, that unskilful people, and those not used to the nicer discriminations, which hold among plants of the same natural class, should mistake one for the other; add to this, that the smell of the herb, and the root of hemlock dropwort, not unpleasant, nor very unlike that of the parsnep, may still farther impose upon the ignorant and unwary.

The long-leaved water hemlock is rarely found in the county of Dorset; whereas the hemlock dropwort is very common, much more so than the water parsnep, by the sides of the rivers and brooks, and in wet ditches, particularly such as communicate with running waters, by which means
means the seeds and roots are carried by floods to a distance from the borders of the rivers. It is never seen on dry and hilly grounds, nor even meadows, unless in such as are liable to be flooded. The leaves are much smaller cut, more succulent, and of a deeper green, than those of the *water parsnep*, and more resemble those of *smallage* and *parsley*. But there is one distinction which will never fail, if properly attended to, and it is earnestly recommended to all those who are dubious of the plant they mean to procure, to attend to it. The root of the *hemlock drop-wort* consists, not of one conical or top-root, like a parsnep, neither of a number of fibres, nor of a single round bulb or two, but is what may be called a fingered root, made up of a number of oblong roots, all proceeding from the bottom of the stalk as from a center, and in proportion to the age or vigour of the plant, smaller or larger, each of them usually as thick, and nearly as long, as the finger, and from three, or four, to six, eight, or ten in number.

Of the *water parsnep* there are three species growing in England, each of them more or less frequently found in different parts of the kingdom; and all growing in water or watery situations. These are *Sium latifolium*, broad-leaved
leaved water parsnep; *fium angustifolium*, or be-
rula officin.; and the *fium nodiflorum*, creeping
water parsnep. The two first are those which
were intended to be used in medicine, and the
second particularly, is that which tradition has
so strongly recommended as an *antiscorbutic*;
but, as the last species is the most common,
and is more easily procured, it is usually gathered
for medicinal purposes, instead of the other. The
mistake is perhaps of no consequence, as it ap-
ppears to be innocent. The roots of the first
kind are, on good authority, said to be noxious;
they certainly have proved so to brutes. The
juice of the leaves of the two others may be
drank to the quantity of a quarter of a pint,
and is safe and harmless. It is perhaps however
to be regretted, that the *water parsnep* should
have obtained the character of a specific with
many people, in what are called *scorbutic* cures;
since it has occasioned such fatal errors, from
mistaaking for it, not only the *hemlock dropwort*,
but the *long-leaved water hemlock* in many in-
stances, and since also it may justly be doubted,
whether the virtue attributed to *water parsnep*,
as an *antiscorbutic*, does not rest, howsoever fa-
tioned by time, on a very slender foundation;
it probably extends no farther than may be
owing
owing to its gently diuretic quality, and the power of correcting a putrid tendency in the animal frame in common with most other vegetable productions.

The symptoms induced by hemlock dropwort, in the instance before us, sufficiently correspond with those recited in almost all the histories of its poisonous effects on record. Where the quantity swallowed was considerable, it did not fail, very soon, to bring on giddiness and sickness, which were succeeded by convulsions, and such a contraction of the jaw, as precluded, in many instances, the use of proper assistance. Those, who are disposed to see the history of this noxious vegetable farther illustrated, are referred to the following papers, among others that might be quoted.

Phil. Trans. at large. Vol. XLIV. p. 227, with an accurate engraving of the plant.

Phil. Trans. Vol. L. p. 856.

Gent. Magazine, 1747, p. 321, with a figure of the root copied from the foregoing.

Gent. Magazine, 1755, p. 114.

The most effectual method of attempting to relieve the unhappy sufferer in these melancholy cafes,
cases, although obvious to all intelligent persons, cannot be too often repeated—as soon as a mistake of this kind is discovered, the most instant relief is to be expected by discharging the poison from the stomach, without the least delay. To this end a large dose of an emetic should be given. To a grown person, thirty or forty grains of ipecacuanha in powder, or an ounce and a half or two ounces of ipecacuanha wine; or six, eight, or ten grains of emetic tartar; or twenty grains of white vitriol; assiting the operation, if possible, by large draughts of diluting liquors; as warm water, thin gruel, which will probably be rendered more advantageous by the addition of a moderate quantity of vinegar, or other vegetable acid.

This is the first and most material step where vegetable poisons have been taken; and I close these hints by observing, that vomiting is not less necessary in the case of mineral poisons; such as arsenic, or mercury sublimate, sugar of lead, &c. unless they occasion of themselves a sufficient discharge this way. Here, however, great dilution is not less necessary; but the addition of some alkaline preparation to the diluting liquor is also strongly indicated, as a means of decomposing such substances, and rendering such
such parts of them, as cannot be evacuated, in some measure inert. Moderate quantities, a tea spoonful, for instance, of salt of wormwood, of salt of tartar, or of potash, to a pint or a pint and an half of the liquid; and, as no time ought to be lost, if none of the above are in readiness, lye, made of wood-ashes, will answer, only that the quantity must be much larger; as will soap-lye also. Even spirit of harrthorn may contribute to the same purpo
pose, if nothing else is immediately at hand. Should this evacuation be speedily procured, time will be gained for such farther means as the circumstances of the case may require.

Blandford, May 29,
1784.

SECTION III.

Medical and Philosophical News.

The Academy of Sciences at Mantua have proposed the following prize question, viz.
"In what consists the poison of certain mush-rooms, and what are the surest means of pre-venting or remedying its effects?"—The prize
is to consist of two medals, each of the value of fifty florins. The dissertations are to be sent to the Abbé Carli, secretary of the Academy, before the first of January 1785.

The following question is proposed by the Royal Academy of Sciences and Belles Lettres at Angers, for a prize of 300 livres, viz. "What is the cheapest method of bringing up soundlings in the country, and what mode of education is likely to render them most useful to the state?"—The dissertations on this subject must be sent to M. de Narce, secretary to the Academy, before the first of January 1785.

The Medical Society of Edinburgh have announced the following prize question, viz. "Quot sint acris species; quænam singularum natura, et in medicina vires?"—The premium is to be a gold medal of twenty guineas value. The dissertations must be written in Latin, and transmitted to the secretaries of the Society before the first of January 1785.
The Royal Academy of Surgery at Paris, at their public meeting on the 22d of April 1784, adjudged the premium for the question announced last year (and which the reader will find in the 4th vol. of this Journal, p. 300) to M. Teffier, student of surgery at Paris.—At the same meeting were read the eulogies of Messieurs de la Martinière and Houftet, two associates lately deceased.—The secretary gave notice, that M. Vermont, a member of the Academy, and accoucheur to the queen of France, has founded an annual premium of 300 livres for the best paper on a midwifery subject that shall be presented to the Academy in the course of the year.—The Academy have proposed the following prize question, viz. “In what cases may probe scissors, which have been so much abused in common practice, be employed with advantage; what are the reasons which entitle them to a preference in particular cases to other cutting instruments, and what are the different methods of using them?”—The premium is of 300 livres value, and the dissertations must be sent to M. Louis, secretary of the Academy, before Dec. 31, 1784.

Vol. V. No II. C c Spec.
Specimens of a new species of bark, the produce of the island of St. Lucía, and which promises to be a valuable acquisition to the materia medica, have lately been sent to the Royal Society. It is of the genus of *cinchona*, but of a different species from the *cinchona officinalis*. It exceeds the latter in bitterness and astringency, and is said to have proved even more efficacious than the red bark, tho' given in much smaller doses. In doses, of more than twenty grains, it constantly excites vomiting.

An account of a very curious experiment to prove that water is a composition of dephlogisticated and inflammable airs, has been lately communicated to the Royal Academy of Sciences at Paris by Messieurs Meunier and Lavoisier. These gentlemen recollecting the affinity which the calcinable metals are known to have with dephlogisticated air, placed a tube of iron across a furnace in such a manner, that the tube might be made red hot. They then conveyed into the tube so heated the vapour of boiling water, and they found that its dephlogisticated air was attracted by the iron, and that its inflammable air passed in a separate and pure state into a reservoir prepared
pared for its reception at the other extremity of
the tube. The iron being by this process loaded
with dephlogisticated air was found to be in-
creased both in bulk and in weight. The dia-
meter of the tube was lessened, and it was ob-
served, that the iron was less attractable than be-
fore by the magnet. When the metal was in
this manner saturated with dephlogisticated air,
the decomposition of the water ceased.—No such
effects took place, when, instead of a tube of
calcinable metal, one of gold or silver was em-
ployed.—The inflammable air procured by this
process was found to be ten or twelve times
lighter than atmospheric air.

Extract of a letter from Dr. Hunter of York,
F. R. S. to Dr. Percival of Manchester,
F. R. S.

"On the 25th of October 1778, a sea-faring
person, about forty years of age, was recom-
mended as a patient to the Lunatic Asylum in
York. During his abode in the hospital he was
never observed to express any desire for suste-
nance, or to shew any preference of it to his
medicines. The first six weeks after his admis-
C c 2 sion
tion he was fed in the manner of an infant. A servant undressed him at night, and dressed him in the morning; after which he was conducted to his seat in the common parlour, where he remained all day, with his body bent, and his eyes fixed on the ground. Every thing was indifferent to him, and he was regarded by all about him as an animal converted nearly into a vegetable. In this state of insensibility he remained five years and six months: but, on the 14th of May 1782, on his entrance into the parlour he saluted the convalescents with the words Good morrow to you all. He then thanked the servants of the house, in the most affectionate manner, for their tenderness to him, of which he had begun to be sensible some weeks before, but till then had not resolution to express his gratitude. A few days after this unexpected recovery he was permitted to write a letter to his wife, in which he expressed himself with becoming propriety. At this time he seemed to take peculiar pleasure in the enjoyment of the open air, and in his walks conversed with freedom and serenity. On making enquiry concerning what he felt, during the suspension of his intellectual and sensitive powers, he replied, that his mind had been totally lost; but that about two months be-
fore his full restoration to himself he began to have thoughts and sensations, which, at first, served only to excite in him fears and apprehensions, especially in the night-time. On the 28th of May 1782 he returned to his family; and has now the command of a ship employed in the Baltic trade.” See Moral and Literary Dissertations lately published by Dr. Percival.

Extract of a letter from Mr. George Bew, secretary to the Literary and Philosophical Society at Manchester, to Dr. Simmons; dated Manchester, April 16, 1784.

“The last number of the London Medical Journal is now before me, with Mr. Henry’s observations on freezing, and latent heat.—There is something still mysterious in the act of congelation.—During the winter I was amusing myself with some experiments on that subject, and on vegetation. The cold was intense, and in a room, which was without fire, the thermometer sunk to 28° of Fahrenheit. Some hyacinth bulbs, in small glasses, which were adjacent to several thermometers, did not seem affected by the cold. The water continued unfrozen. I placed another glass with an equal quantity of water, and im-
immersed in it a very well graduated thermometer of Dollond's. In some time the temperature was reduced to 26°; still the water shewed no signs of congelation, even when agitated; but upon withdrawing the thermometer, and dropping a small particle of ice into the water, it immediately froze, and became a solid mass. On plunging the thermometer into the vessel which contained the vegetating bulbs it rose near two degrees. I must remark to you, that this happened when the temperature of the air was below the freezing point; for when it was above it, I did not distinguish much difference. Does not this prove, that living vegetables have a power of generating heat, in some degree, analogous to that of animals? Dr. Percival tells me, that some similar experiments have been made by Mr. John Hunter, which were read at the Royal Society."

In the present state of literary improvement, it is imagined, there are very few persons of any description, who have not frequent occasion to lament the want of access to a library larger than their own, and furnished and regulated in a manner different from any public one which at present
present exists. Men of learning and science, whose taste or profession leads them to study with peculiar care some particular branch of knowledge, are often under the necessity of consulting works so costly and expensive, as to be far beyond the reach of most private fortunes. Instances of such works are numerous. Most of the modern publications in Natural History, together with every later book of Plates, are examples of this kind; and as the value of such works depends upon the accuracy and beauty of the engraving, it is impossible to substitute for them others which may have been executed with less care. The transactions of the different Learned Societies in Europe are of very great extent, and would form a library of themselves; and yet there is no man of science who has not frequent occasion both to consult, and to study them. If, in order to this, he should be under the necessity of purchasing such works, he would not only suffer the hardship of purchasing what is large and expensive, but also what in a great measure will be useless to him, since they comprehend the whole circle of science, and he is employed only in the cultivation of some part of it.

With
With a view to remedy this inconvenience, a Society, entitled the London Library Society, hath lately been instituted. It is particularly intended, that this Library shall contain those books of science, whether of our own or of other countries, which it is difficult for individuals to procure; and as its funds increase, that it shall contain every book of importance in science.

Any person may become a member of this Society by paying one guinea entrance and one guinea per annum.—The Library, which is situated in Crane-court, Fleet-street, is to be open on Mondays, Wednesdays, and Fridays, from Twelve to Three, and on Tuesdays and Thursdays from Six to Nine; during which time, the members may consult any books, or send for them to their own houses.—A committee for regulating the affairs of the Society are to be elected annually on the last Thursday in June. —The committee appointed for the first year, are the Reverend Dr. Kippis, the Rev. Dr. Rees, the Rev. Mr. Walker, Dr. W. Saunders, Dr. Crawford, Dr. Lifter, Benjamin Vaughan, Esq. and William Vaughan, Esq.

We
We feel much satisfaction in being able to inform the lovers of Natural History in this country, that the Linnaean Library and Museum (consisting of the books, manuscripts, and correspondence; the Herbarium, insects, shells, corals, and minerals of the celebrated Linnaeus) are soon to be removed from Upsal to London.

—This valuable collection having been offered for sale since the death of the younger Linnaeus, has been purchased by Mr. Smith of Norwich, now a student of physic at Edinburgh, for the sum of nine hundred guineas.

PROMOTIONS.

Lately, Mr. Charles Combe, of Bloomsbury-square, London, F. R. S. and S. A. to be M. D. in the University of Glasgow,—Mr. James Simpson to be Surgeon to the Surry Dispensary.

April 5. Dr. Sibthorpe jun. to be Professor of Botany at Oxford in the room of his father, who resigned.—Dr. Adair Crawford and Dr. Robert Halifax to be Licentiates, and Dr. Charles Combe and Mr. Michael Underwood to be Licentiates in Midwifery, of the Royal Col-
lege of Physicians, London.—10. Mr. — Carroll, Surgeon's mate, to be Surgeon to the 26th regiment of foot in the room of Mr. Matthew Cahill.—17. Mr. John Bell, Surgeon of the late 94th regiment, to be Surgeon of the 5th regiment of foot in the room of Mr. St. John Neill.—Mr. Edward M'Allister, of the late 75th regiment, to be Surgeon to the 65th regiment of foot, in the room of Mr. John Gloster.—29. John Sheldon, Esq. Professor of Anatomy in the Royal Academy of Arts, to be F. R. S.

May 3. S. Hodson, of Caius College, Cambridge, M. A. to be M. B. — 4. Dr. James Wood of Doncaster to be Fellow of the R. C. of Physicians, Edinburgh.—Mr. James Wright to be Surgeon of the 60th regiment of foot in the room of Mr. John Sommers.—5. Charles Blagden, M. D. to be Secretary to the Royal Society in the room of Mr. Maty, who has resigned.—7. Mr. John Birch, to be Surgeon to St. Thomas's Hospital in the room of Mr. George Martin, deceased.—12. Dr. William Falconer, to be Physician to the General Hospital at Bath in the room of Dr. Staker, deceased.—19. Mr. William Balmé Farnell, to be Apothecary to the General Hospital at Bath.—20. Dr. Andrew Douglas, to be Physician to the
the Asylum, London.—25. Mr. Michael Grant, Assistant-surgeon to the General Hospital in North America, to be Surgeon at Providence.

June 11. Samuel Hind of Pembroke Hall, Cambridge, M. A. to be M. B.—25. Dr. John Caulet, to be Fellow, and Dr. William Rowley, Dr. John Meyer, Dr. Thomas Knowles, Dr. George Pearfon, and Dr. John Cooke, to be Licentiates of the Royal College of Physicians, London.

DEATHS.

Lately at St. Augustine in Florida, Mr. Joseph Jervis, of Ipswich, Navy Surgeon.—At Bath, aged 91, Samuel Bush, Esq. several times mayor of that city, where he formerly practised as an apothecary.

1783. Sept. At Stuttgard, of a dysentery, Charles Henry Koellin, Professor of Physic; author of letters on the natural history of the Isle of Elbe, written in French and published at Vienna in 1780.

1784, January 7. On his passage from Africa to the West Indies, Mr. John Rowand, of Brift...
toll, Surgeon of the Pearl Guinea ship, and late Surgeon of the Monmouthshire militia.

Feb. 23. At Worcester, Mr. Benjamin Tipton, Apothecary to the Infirmary.

March 28. At Edinburgh, Mr. Wm. Chalmers, Member of the Royal College of Surgeons.

April. At Paris, aged 77, Joseph Raulin, M. D. one of the Physicians to the king of France, Inspector General of the mineral waters of that kingdom, Fellow of the Royal Society of London, &c. and author of several medical works. He was born at Ayguetinte, in the diocese of Auch, and graduated at Toulouse. He practised for some time at Nerac, where he became known to the celebrated M. de Montesquieu, under whose patronage he removed to Paris in 1755. — At Winchester, Mr. John Breton, apothecary. — At Paris, Mark Anthony Guichard, M. D. in the University of Montpellier, M. Peter Francis Dreux, apothecary. — 9. In Faringhall-street, London, Mr. Richard Uwins, apothecary. — 13. At Faversham in Kent Mr. Lukyn fen. apothecary. — 24. John Staker, M. D. in the University of Oxford, and one of the physicians of the General Hospital.
pital at Bath.—26. Mr. George Martin, Surgeon of St. Thomas’s Hospital in London.

May. At Oxford, Mr. Curtis, Apothecary.

June 1. In Broad-street Buildings, London, Thomas Dickson, M.D. F. R. S. Member of the R. C. of Physicians, and Physician to the London Hospital. He was author of an inaugural dissertation de Sanguinis Missione, printed at Leyden in 1746; of a treatise on blood-letting, published in 1763, and of several papers in the Medical Observations and Inquiries.—16. At Hertford, aged 30 years, Joseph Dimsdale, M.D. third son of the Hon. Baron Thomas Dimsdale, and author of an inaugural dissertation de Morbis cutaneis, printed at Edinburgh in 1773.

SECTION
SECTION IV.
QUARTERLY CATALOGUE.

SYMPATHY defended; or the state of medical criticism in London, in the year 1781, written to improve the principles and manners of the editor of the London Medical Journal, in his present very critical situation, By a Society of Faculties, Friends to the Public and Enemies to Imposition. To which are added, the contents of Dr. Jackson's Treatise on Medical Sympathy. 8vo. London, 1784. 59 pages.

In the 1st volume of our Journal (p. 284) we took notice of a very obscure treatise on sympathy written by Dr. Seguin Henry Jackson. Many of the ideas contained in it were borrowed from Mr. John Hunter's lectures, and Mr. Hunter, in a letter to the editor of this Journal (written with a view to its being published either entire or in part as the editor might deem most proper) mentions "the crude and imperfect state in which those ideas were offered to the public," and observes, that "it was impossible for Dr. Jackson to do justice to his opinions, as he must have taken them from a manuscript copy"
"copy of his lectures, written by some young
"man; Dr. Jackson himself not having at-
tended the lectures; and of course not having
"had the advantage of hearing them fully ex-
"plained."—We gave no opinion of the me-
"rits of the performance, but contented our-
"selves with quoting from it a few passages which
might enable our readers to judge of the au-
thor's abilities as a medical writer.—In the
pamphlet now before us, which is written in the
same strain of obscurity and dulness that distin-
guishes the Treatise on Sympathy, we are said
to have quoted only the "weakest and most
"exceptionable parts."—This is not true.

In the preface we are told, that "certain fa-
culties having observed that great depreda-
tions have been committed in some of their
"newly acquired territories and possessions, by
"some able-headed book-men, assisted by for-
"eign supplies, to the detriment, as they ap-
"prehend, of our home manufactories, they
"have thought it necessary to form themselves
"into a society, not only with a view of pre-
serving their own constitution and property,
"but of warning other corporate societies of a
"similar nature, and in a similar situation, to
"be on their guard against the dark and dan-
"gerous
gerous invasions of foreign (and more pri-

tate than public) services, with which the fa-
culties in this kingdom are at present much
threatened and abused."—All this will ap-
pear perhaps somewhat unintelligible to our
readers, but it may serve as a specimen of the
writer's manner.

In reviewing that part of the Treatise on
Sympathy where the author speaks of the new
general division of physic, he wishes to add to
the three (physiology, pathology, and therap-
peia) usually enumerated by systematic writers;
we were at a loss to know what he meant by his
six asterisks. We now learn that his meaning
was "to leave the coinage of a new word to
profeffors and colleges, on which account the
"afterisks were introduced."

Something like a challenge seems to be in-
tended by the following passage: "We hope
"to find (if such should be necessary) that he
"(meaning, as we suppose, Dr. Seguin Henry
"Jackson) can use the muscles of his hand and
"fore-arm, in managing a pen (or otherwise)
"in defence of his character as a medical
"writer; and we do not think, that writing
"can have lessened the free use of the joints of
"his right hand."

Speaking
Speaking of the editors of the Journal, who are in one place styled "the long-necked critics," and in another, "the sharp-sighted editors," we are told, that they "must certainly have swallowed oil, or have used it externally, to give full and free motion to their muscles and lower jaw, when they dictated to their secretary;" that "they must have been under the influence of darkness visible in the clouds, when they read the Treatise;" and that "such unfair proceedings will never pass unpunished, though the Journal was the conscience of their body."—Other passages of a similar nature might be quoted, but our readers will perhaps think that we have already bestowed too much attention on this illiberal and contemptible performance.

2. *Joannis Nathanael Lieberkunb*, anatomici, dum viveret, summi, et medici experientissimi, Dissertations quatuor; nimirum, de valvula coli, et usu processus vermicularis;—de fabrica et actione villorum intestinorum tenuium hominis;—sur les moyens propres à découvrir la construction des viscères;—description d'un microscopes anatomique. Omnia nunc primum in unum collecta et edita cura et studio *Joannis Sheldon*, anatomatis praefectoris et societatis chi-

The value of these essays is well known, and the anatomical reader cannot fail to be well pleased at seeing them brought together into one volume. The engravings are elegant, and prefixed to the dissertations is a life of the author, reprinted from the Leipsic Commentaries for 1757.

3. An Essay on the waters of Harrogate and Thorp Arch in Yorkshire; containing some directions for their use in diseases. To which are prefixed some observations on mineral waters in general, and the method of analysing them. By Joshua Walker, M.D. physician to the Leeds Infirmary. 8vo. Johnson, London, 1784. 3s.

4. A short attempt to recommend the study of Botanic Analogy in investigating the properties of medicines from the vegetable kingdom. 8vo. Robinson, London, 1784. 1s. 6d.

5. Testacea minuta rarioa, nuperrime detecta in arena littoris Sandvicensis; à Gul. Boys, Arm. S. A. S. Multa addidit, et omnium figurarum ope microscopii ampliatas accuratè delineavit, Geo. Walker.—A Collection of the minute and rare shells lately discovered in the sand of the sea shore near Sandwich; by William Boys, Esq. F. S. A, considerably augmented, and all
their figures accurately drawn as magnified with the microscope. By Geo. Walker, bookseller, at Faversham. 4to. White, London, 1784. p. 25, with 3 copper-plates.

We have long wished to see an English translation of these excellent Essays. The one here offered to the public appears to have the merit of great accuracy; and besides the translator’s own notes, which are judicious, is enriched with those added to the French edition of these essays by M. de Morveau. (See our Ist vol. p. 293.)

7. Observations on the Jail, Hospital, or Ship Fever. By Robert Robertson, M. D. a surgeon of his majesty’s navy. 8vo. Murray, London, 1783. 5s.

8. Observations and Experiments for investigating the chymical history of the tepid springs of Buxton; together with an account of many, newly-discovered, or little known properties of
substances relating to several branches of chemistry, and animal and vegetable life. To which are prefixed a chronological relation of the use of Buxton waters from the earliest records to the present time, sketches of the atmosphere of the Peake, and of the external form and internal structure of the mountainous regions of Derbyshire: intended for the improvement of natural science and the art of physic. By George Pearson, M.D. 8vo. Johnson, London, 2 vols. with 2 copper-plates. 8s.

9. A Catalogue of the British Medicinal, Culinary, and Agricultural Plants, cultivated in the London botanic garden. By William Curtis, author of the Flora Londinensis; to which are prefixed Proposals for opening it by subscription. 12mo. White, London, 1783. 3s. 6d.

10. Apperçu sur les moyens de guérir l'Hydrophobie. i.e. Account of the means of curing the Hydrophobia. By M. de Matthiis, M.D. Surgeon to the army of the king of Naples. Published by order of government. 8vo. Paris, 1784.

M. de Matthiis, during his residence in Calabria Citerior, having one day caught a viper in the fields, had occasion in his way home to pass by a farm yard, where a dog was chained, that was said to be mad. M. de Matthiis offered wa-
ger to the dog, and the animal immediately fell into convulsions. Recollecting his viper, he was tempted to try its effect by applying it to the dog’s throat. This was accordingly done, and the consequences were, that the head of the dog swelled, the symptoms of the hydrophobia ceased, and the animal recovered. On this single case the present pamphlet is founded.

The account we lately gave of this work (vol. IV. p. 440) was copied from a foreign Journal. We have since had an opportunity of seeing the work itself. Eight numbers of it, making four volumes, are published. The descriptions are in Latin and German. The plates are coloured, and seem to be accurate. The author is Mr. John Zorn, apothecary at Kempten.

12. Lettre de M. le Comte Morozzo à M. Macquer, sur la decomposition du gas mephitique et du gas nitreux. i.e. Letter from Count Morozzo to M. Macquer, on the decomposition of fixed air and nitrous air. 4to. Turin, 1783. 22 pages.

13. L’Inoculazione de Vajuolo, componimento litico. i.e. The Inoculation of the Smallpox, a lyric

15. Lettera contenente alcuni tentativi d'esperienze per dimostrare una nuova forca esistente nel cuore, ed alcune riflessioni sopra altri punti fisioalogici, scritta al Sig. Dott. Forrè, protomedico del duc d'Aosta. i. e. A Letter containing experiments to demonstrate a new power existing in the heart, with reflections on other physiological points, written to Dr. Forré, first physician to the duke of Aosta, by Francis Bartolozzei. 4to. Milan, 1783. p. 24.

17. Osservazioni ed Esperienze sul sangue fluido, e rappresso; sopra l'azione dell'arterie; e sui liquori che bollono poco riscaldati nella macchina pneumatica. i. e. Observations and Experiments on fluid and coagulated blood; on the action of arteries; and on the liquors which boil,

This work is written in opposition to the Chevalier Rosa, of whose hypotheses we have given some account in our fourth volume, p. 267.

This and the preceding article relate to the Chevalier Rosa's doctrines.

20. Memoire concernant une espece de colique observee sur les vaisseaux. i.e. An Essay on a species of colic observed on ship-board. Read at a public meeting of the Faculty of Physic at Paris, by M. Gardane, doctor regent of the Faculty, &c. 8vo. Paris, 1783. 29 pages.

The colic here described is the same as the colica Piddonum. It is said to attack in general only the officers of ships, and is ascribed to the varnish used in painting their cabins.

The
The author gives the name of Polycholia to a disease which he ascribes to a redundancy of bile in the blood.

THE
LONDON MEDICAL JOURNAL,
For JULY, AUGUST, and SEPTEMBER,
1784.

SECTION I.
BOOKS.

I. Philosophical Transactions of the Royal Society of
London, vol. LXXIII. for the year 1783.
Part II. 4to. London, 1784. 255 pages,
with 7 copper plates.

1. Mémoire sur la maniere de preparer,
avec le moins de perte possible, le
sel fusible d’Urine blanc, & pur, & l’Acide
phosphorique parfaitement transparent, i.e. Essay
on the manner of preparing, with the least possible
lost, the fusible salt of urine white and pure, and
the phosphoric acid perfectly transparent. By the
Duke de Chaulnes, F.R.S.—In this paper the
Duke de Chaulnes begins with mentioning the
authors who have treated on the same subject.
Two of the latest of these are Pott and Marggraf,
the first of whom, we are told, has written a long and very obscure dissertation on the fusible salt; and the latter an essay, which, in the opinion of our author, is the best we have on the subject; but at the same time he remarks, that it is written very confusedly, and that several of the facts related in it are misrepresented.

The Duke de Chaumnes observes, that almost the whole difficulty attending the extraction of this salt, is owing to the great quantity of marine salt contained in the urine, which crystallizes very easily, and mixes with the fusible salt. To obviate this, he directs the marine salt to be crystallized by evaporation, and the fusible salt by cooling. In order to purify the latter, we are advised to wash it first with some of the clearest part of the inspissated liquor, and afterwards with well rectified spirit of wine. A second crystallization is required, to render the fusible salt perfectly fine and white; and this, we are told, must be conducted with great caution, the alkali contained in the salt being, in general, so volatile as to fly off instantly. The manner of conducting this second crystallization,
tion, with the least possible loss, is very fully
described in the paper itself.

On exposing this salt, in a retort, to a sand
heat, the volatile alkali soon passes into the re-
ceiver, and the acid remains in a concrete
state. This residuum, when heated to a cer-
tain degree, vitrifies. Fusible salt that has
been crystallized only once, yields a white
opaque substance like enamel, which exhales a
strong smell of muriatic acid. By repeated
fusions it becomes transparent, but when ex-
posed to the air, soon deliquesces and resumes
its opacity; this is attributed to the sea salt it
contains. The residuum of the salt, puri-
ified by a second crystallization, and exposed
to an intense heat, exhibits, when fused, the
appearance of a beautiful topaz, but on being
cooled, becomes perfectly white and trans-
parent.

The phosphoric acid of pure fusible salt,
mixed with powdered charcoal, or any other
substance containing phlogiston, produces phos-
phorus.

11. Experiments for ascertaining the point of
Mercurial Congelation. By Mr. Thomas Hut-
chins, Governor of Albany Fort, in Hudson's
Bay. These experiments to determine the
freezing
freezing point of quicksilver, were made by the direction of the Royal Society, at Albany Fort, in Hudson's Bay, situated in the latitude of 52° 14' N. and 82° W. longitude from Greenwich.

The instruments used on this occasion, were simple thermometers, except an apparatus furnished by Mr. Cavendish, who has described it in a subsequent article, and of which an engraving is given in the work. Of the former, five were mercurial, and the three others spirit thermometers; one of the mercurial thermometers was graduated so low as 2300° below 0, and the scale of one of the spirit thermometers descended to 160° below the cypher. After describing these different thermometers, Mr. Hutchins gives us a table of observations from November 23, 1781, till March 24, 1782, made with a view to compare the instruments with each other, and to adjust, with greater precision, the relative degrees on the scales.

Next follow accounts of ten experiments: of these, the first five were made to ascertain the freezing point of mercury. In all of these, the apparatus furnished by Mr. Cavendish, was uniformly at 408 below 0, when the mercury
mercury was frozen. The sixth and seventh experiments were made with a view to ascertain the greatest degree of contraction mercury is capable of. The eight and ninth experiments were made with the same view as the five first, but with a different apparatus, which allowed Mr. Hutchins to have free access to the mercury at all times. In the latter of these experiments, half a pound of mercury was frozen in a gallipot; and a mercurial thermometer, which then stood at 34°, being put into the part of the quicksilver in the gallipot which was just thawed, subsided directly to 40°, and became stationary. The frozen lump, beaten with a hammer, yielded a dead found and flattened, but soon crumbled to pieces. The tenth, and last experiment, was made on the 26th of January, 1782, and is the most interesting, as it exhibits the curious phenomenon of quicksilver, frozen by the natural cold. It deserves to be mentioned, that Dr. Black, of Edinburgh, (without knowing what had been done by Mr. Cavendish) suggested to Mr. Hutchins nearly the same method as that recommended by Mr. Cavendish, for determining the degree of cold at which mercury freezes.
iii. Observations on Mr. Hutchins's experiments for determining the degree of cold at which quicksilver freezes. By Henry Cavendish, Esq. F.R.S.—The design of this paper is to explain some particulars of the apparatus sent by the author to Mr. Hutchins; and also to endeavour to shew the cause of some phenomena which occurred in his experiments; and to point out the consequences to be drawn from them. The apparatus in question, consisted of a small mercurial thermometer, the bulb of which reached about 2½ inches below the scale, and was inclosed in a glass cylinder, swelled at bottom into a ball, which, when used, was filled with quicksilver, so that the bulb of the thermometer was entirely surrounded by it. The exact description Mr. Cavendish gives of this apparatus, and of the different thermometers employed at Hudson's Bay, throw much light on Mr. Hutchins's experiments. The disagreement which was observed in these thermometers, was, in Mr. Cavendish's opinion, owing solely to a faulty manner of adjusting the boiling point, and to not allowing for the temperature of the air in settling the degree of freezing; and as these points were examined after they came back, he thinks the experiments
ments made with them are just as much to be depended on as if they had been truly adjusted at first.

Before his entering into the examination of Mr. Hutchins's experiments, Mr. Cavendish has thought it proper to take notice of a phenomenon which occurs in the freezing of water, and which shews, that water is capable of being cooled considerably below the freezing point, without any congelation taking place; and that, as soon as by any means a small part of it is made to freeze, the ice spreads rapidly through the remainder of the water. The cause of the rise of the thermometer, when the water begins to freeze, is the circumstance first noticed by Dr. Black and Dr. Irvine, that all, or almost all bodies, by changing from a fluid to a solid state, or from the state of an elastic to that of an inelastic fluid, generate heat, or evolve latent heat, as Dr. Black expresses it; and that cold is produced by the contrary process. What occurs in the freezing of water, is now known to take place in that of quicksilver, and it occasioned many remarkable appearances in Mr. Hutchins's experiments. From a review of these experiments, Mr. Cavendish observes, that they all agree
agree in shewing that the true point at which quicksilver freezes is $38^\circ\frac{1}{2}$, or in whole numbers 39^8 below nothing, it having appeared from the examination of Mr. Hutchins's standard thermometer, after it came home, that 40° thereon, answers to $38\frac{1}{2}$ on a thermometer adjusted in the manner recommended by the Committee of the Royal Society.

After having ascertained the point of mercurial congelation, Mr. Cavendish offers some remarks on the contraction of quicksilver in freezing. The very low degrees, he remarks, to which the thermometers were made to sink in the experiments in question, were owing to this contraction, and not to the cold having been in any degree equal to that shewn by the thermometer. In one of Mr. Hutchins's experiments, the thermometer sunk to 450°, and in another to 448°, though it appeared by the spirit thermometers, that in the first of these instances the cold of the mixture was not more than 5° or 6°, and in the latter only $20\frac{1}{4}$ below the point of freezing quicksilver. From these, and some other similar facts, Mr. Cavendish imagines that the contraction which quicksilver suffers in freezing, is sometimes not much less than its expansion by
by 500° or 510° of heat, that is almost 1/4 of its whole bulk.

Mr. Cavendish concludes this elaborate inquiry with some observations on the cold of freezing mixtures, and here we learn, that by a very ingenious contrivance of diluting spirit of nitre with snow, he has, in this country, when the temperature of the air was between 20° and 25°, been able to produce as great a degree of cold within 1°, as was produced in any of the experiments at Hudson’s Bay.

iv. History of the Congelation of Mercury, By Charles Blagden, M.D. F.R.S. Physician to the Army.—The experiments at Hudson’s Bay have determined a point upon which philosophers not only were much divided in their opinion, but also entertained, in general, very erroneous sentiments; and in the general progress of science, it is always useful at intervals, and especially when any considerable advance has been made, to look round and contemplate the prospect left behind. Thus our actual situation is more distinctly comprehended, and a better judgement may be formed of what remains to be done. These considerations have induced Dr. Blagden to com-
municate this account of the different observations and experiments he has been able to collect relative to the congelation of quicksilver. Many of these are recorded in books not easily procured, and in languages little understood by the learned of this country; but these are not the only circumstances that will recommend the paper now before us to the notice of philosophical readers, the value of the materials of which it is composed being greatly enhanced by the judicious manner in which they are arranged, and by the great number of interesting remarks with which the work is interspersed.

In an introduction to his work, Dr. Blagden observes, that although "many obvious circumstances rendered it improbable, that the term of mercurial congelation should be five or six hundred degrees below 0 of Fahrenheit's scale, as had been at first supposed; yet scarcely any one ventured to imagine that it was short of 100°." Mr. Hutchins, however, continues our author, "has clearly proved, that even this number is far beyond the truth; and that quicksilver freezes in a degree of cold not exceeding that which sometimes occurs in the northern parts"
parts of Europe, and frequently in the more rigorous climates of Asia and America. It now appears that quicksilver, so far from containing any essential principle of fluidity, does not differ from some of the other metals, in its melting point, nearly so much as they differ among themselves; and as it is malleable in its solid state, and after its calcination recovers its metallic form by heat alone, without the addition of inflammable matter, there can be no doubt but it must be ranked among the perfect metals.

The work itself is divided into two parts. In the first, the author describes the various attempts which have been made to render quicksilver solid by frigoric mixtures, beginning with Professor Braun's experiment in 1759, which he considers as the first that established the fact that mercury can be made solid by a diminution of its heat. In the second part, Dr. Blagden enumerates the many instances in which that effect has been produced by natural cold. In a few of these instances, he observes, "the effect was so palpable and obvious, as to strike with immediate conviction; but in most it has never been even
“suspected, till the present time; the strange appearances which often occurred, being imputed to any other rather than the real cause, though they are now found to carry with them a force of internal evidence which establishes the truth beyond all doubt.” Many of the contradictory appearances which had perplexed former observers, now become explicable by the determination of the point at which mercury congeals, by its adhesion to other bodies on becoming solid, by its contraction in consequence of its being congealed, and by the degree of cold it is capable of receiving beyond its freezing point before it actually congeals. In the course of the inquiry, Dr. Blagden has not omitted to avail himself of the doctrine of latent heat, in accounting for several phenomena which would otherwise be inexplicable.

Among the instruments sent to Hudson’s Bay, were two spirit thermometers. These were sent at the request of our author, and his intention in recommending them, it seems, was to discover what degree of cold the freezing mixture produced; and to obtain a more exact comparison of the relative contractions of mercury and alcohol, by making their simul-
simultaneous descents on a more extended scale, or as long as both of them should continue to contract regularly. He does not think it proper, in the present inquiry, to enter into any detail of the observations that were made to settle the relative contractions of quicksilver and spirits by means of these instruments, but contents himself with mentioning, that on one of them, the 29th degree below 0, and on the other the 30th, were found to correspond with 40° of the small mercurial thermometers, or more precisely with the point that would have been 39° upon an exact standard instrument. By these instruments, the author observes, it is now determined, that the greatest effect of a mixture of snow and smoking acid of nitre, even with the advantage of such natural cold as congealed the quicksilver exposed to it, was only to diminish the heat to such a degree as would correspond with 45° or 46° of a standard mercurial thermometer; and as this was likewise the greatest degree of cold indicated during the most intense natural cold of Hudson’s Bay, according to the observations made by Mr. Hutchins, during a series of years, our author thinks we are perhaps authorised to
to conclude, that 46 degrees below o, is the extreme both of natural and artificial cold.

Although the preference due to spirit thermometers, in experiments where degrees of cold below the freezing point of mercury are to be determined, is clearly established by Mr. Hutchins’s observations; yet our author very judiciously observes, that from the boiling point to 39° or 40° below o, the use of quicksilver for thermometers must be considered as unexceptionable, all suspicion of its irregular contraction within those bounds being removed, by such a complete explanation of the cause upon which its anomalous deficient in the lower part of the scale depends. On this principle there might, he thinks, be some propriety in constructing thermometers of mercury, to fix the cypher at its point of congelation, and thence reckon the degrees of heat upwards.

v. Experiments relating to Phlogiston, and the seeming Conversion of Water into Air. By Joseph Priestley, L. L. D. F. R. S.—There are few subjects that have occasioned more perplexity to chymists than that of phlogiston. It was the great discovery of Stahl, that this principle is transferable from one substance to
to another, how different forever in their other properties, and therefore is the same thing in them all. But an idea that this principle could not be exhibited in a separate form, has given an air of mystery to the subject. Of late, M. Lavoisier and others have contended, that the whole doctrine of phlogiston has been founded on mistake, and that in all cases in which it was thought that bodies parted with phlogiston, they, instead of losing, acquired something, and, in general, an addition of some kind of air. The experiments on mercury by M. Lavoisier were so favourable to this opinion, that our author acknowledges he was himself much inclined to adopt it. His friend, Mr. Kirwan, indeed, always held that phlogiston was the same thing with inflammable air, and he has sufficiently proved this, we are told, from many experiments and observations made by our author and others. Dr. Priestley did not, however, accede to it, he informs us, till he discovered it by direct experiments, made with general and indeterminate views, in order to ascertain something concerning a subject which had given himself and others so much trouble.
He began with repeating some experiments in which he had found that inflammable air made red hot in flint-glass tubes, gave them a black tinge, and was in a great measure absorbed, which he found to be owing to the calx of lead in the glass attracting phlogiston from the inflammable air. After this, he threw the focus of a burning lens upon a quantity of minium in a large receiver filled with inflammable air, confined by water, and the result was, that the metal became first black, and then run in the form of perfect lead, the air, at the same time, diminishing at a great rate. He afterwards expelled from a quantity of minium all the phlogiston, by giving it a red heat when mixed with spirit of nitre, and immediately using it as in the preceding experiment, he reduced 101 ounce measures of inflammable air to two. These experiments convinced him, that the inflammable air went totally, and without decomposition, into the lead. He now tried all the other kinds of air in the same manner, but in none of them did he procure any thing from the minium besides glass of lead, except in alkaline air, and vitriolic acid air. In the latter of these only a small quantity of lead was procured; but in alkaline air, we
we are told, lead seems to be formed from the
minium as readily as in inflammable air. By
taking the electric spark in alkaline air, he
has repeatedly converted it into three times as
much pure inflammable air; hence he thinks
it probable, that one of them is some modi-
fication of the other, or a combination of
something else with the other: and some ex-
periments which the author relates prove
that alkaline air is the compound, and inflam-
mable air the more simple substance of the
two.

Having thus produced lead in inflammable
air, Dr. Priestley attempted to revive other
metals from their calces by the same means;
and he succeeded very well with tin, bismuth,
and silver; tolerably well with copper, iron,
and regulus of cobalt; but not at all with re-
gulus of antimony, regulus of arsenic, zinc,
or the metal of manganese. He was destrous
also to ascertain the quantity of phlogiston
that enters into the composition of the several
metals; he found more difficulty in this than
he had expected, as it was not easy to revive
the whole of any quantity of calx completely,
but after many trials, he thinks he may ven-
ture to say, that

Vol. V. No. III. H h An
An ounce of lead absorbs 100 ounce measures of inflammable air.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>tin</td>
<td>377</td>
</tr>
<tr>
<td>bismuth</td>
<td>185</td>
</tr>
<tr>
<td>iron</td>
<td>290</td>
</tr>
</tbody>
</table>

The absorption, in toto, of inflammable air, without decomposition, by the different calces in these experiments, Dr. Priestley considers as a proof that phlogiston is the same thing with this air, and that it is contained in a combined state in metals, just as fixed air is contained in calcareous substances.

Besides the formation of metals from their calces, our author has had other proofs of inflammable air containing phlogiston; having, by means of it, been able to make phosphorus, nitrous air, liver of sulphur, and sulphur itself. Thus, by throwing the focus of the lens on a quantity of that glassy matter, which is made from calcined bones by oil of vitriol in inflammable air, phosphorus was formed; but this experiment, as we learn, succeeded much better, when alkaline air was employed instead of inflammable air.

Doctor Priestley produces nitrous air, by uniting its two constituent principles, nitrous vapour, and inflammable air. The experiments which he describes as the most unexceptionable for this purpose, consisted in exposing what
what he calls a nitrate calx of lead (formed by uniting nitrous vapour with minium), in a receiver filled with inflammable air, to the focus of the lens. In this process there was a diminution of two-thirds of the inflammable air, and lead was revived from the calx; what remained of the air was strongly nitrous, and this, our author supposes, must have been formed by the nitrous vapour contained in the calx, and the inflammable air in the receiver.

—He procured liver of sulphur, by throwing the focus of the lens upon vitriolated tartar in inflammable air; and to produce sulphur, he threw the focus of the lens on oil of vitriol, contained in a hollow earthen vessel, and evaporated it to dryness in a receiver, filled with inflammable air, in consequence of which the inside of the receiver acquired a whitish incrustation, which proved to be sulphur.

Charcoal has generally been supposed to be indestructible, except by a red heat in contact with air, but our author finds that it is perfectly destructible in vacuo, and by the heat of a burning lens, almost wholly convertible into inflammable air; so that nothing remains besides a small quantity of white ashes, so small indeed, that the quantity produced from many pounds...
of wood cannot be supposed to weigh a grain. Dr. Priestley shews, that the great weight of ashes produced by burning wood in the open air, arises from what is attracted by them from the air. When the charcoal is perfectly well made, the air, which he gets in this manner, is wholly inflammable air, without any fixed air in it. He adds, that wood or charcoal is even resolvable into inflammable air, in a good earthen retort, and a fire that would about melt iron.

The learned author next mentions some experiments, which prove the generation of fixed air from dephlogisticated and inflammable airs, and confirm the opinion of Mr. Kirwan, that fixed air is a factitious substance composed of dephlogisticated air and phlogiston. From some of these experiments it appeared that three ounce measures of dephlogisticated air go into the composition of two ounce measures of fixed air.

The experiments relating to phlogiston are followed by others, concerning the seeming conversion of water into air. This seeming conversion took place, when water mixed with calcareous earth, was exposed in an earthen retort to a red heat. In this process nothing came
came over in the form of steam, but there was a great quantity of air, several hundred times more than the bulk of the water, and which, when the fixed air that was in it was extracted from it, was such as a candle would just burn in. Our author was much disconcerted on finding, that when the experiment was made in a coated glass retort, the water came over in the form of steam, and little or no air was produced. His speculations on the subject were various, but at that time altogether ineffectual.

Being satisfied, that the production of air depended very much upon the retort itself, he used it only with water, without any lime or earthy substance. In all his trials in this way, however, he observed, that very little of this air was procured, till all the water that could be poured out of the retort was evaporated, for the difference in the produce was very little, whether he exposed the retort to the fire quite full, or with only an ounce measure of water in it.

The limits of our journal will not allow us to enter into an account of all the experiments which the learned author made to satisfy his own doubts, or so obviate the objections of his friends.
friends on the subject; we shall, therefore, proceed to that part of his paper where the mystery is explained.—Having observed, that the purity of the air which he procured, depended upon the state of that which was contiguous to the retort, and that some communication with the atmosphere was necessary to the production of any air; he was desirous of ascertaining what the influence of the external air in this case really was. For this purpose, he inclosed an earthen retort filled with moistened clay in a large glass receiver open at both ends, through the upper orifice of which he thrust the neck of the retort, luting it so as to be perfectly airtight; and placing the receiver in a basin of water, by which the air within was cut off from all communication with the external air; he fitted to the mouth of the retort a glass tube, through which he could receive whatever was produced in the process. In this situation, he heated the retort, by means of Mr. Parker's excellent burning lens (the same that had been used in the former experiments on phlogiston), and found that air was received, through the tube communicating with the inside of the retort, as usual; but, at the same time, the water rose within the receiver. This effect might
might be owing to a phlogification of the air within the receiver; but it was soon diminished far beyond the utmost limit of that process, so that very little of it remained; and examining this air, the author found it to be but very little worse than atmospheric air, as that which came from the retort was a little better.

This experiment made it probable, that the air on the outside of the receiver had actually passed through it, only a little purified in its passage; and yet it was contrary to all the known principles of hydrostatics, and to anything known in chemistry, that air should be transmitted through a vessel of this kind, and in a direction contrary to that in which it would have been forced by the pressure of the atmosphere; while the water with which the clay was moistened went the other way. This, however, appeared to be the case by other decisive experiments related by the author, and from which he infers, that the clay of the earthen retort being thus heated, destroys, for a time, the aerial form of whatever is exposed to the outside of it, which aerial form it recovers, after it has been transmitted in combination from one part of the clay to another, till it has reached the inside of the retort, while the water
water is drawn through it in the contrary direction.

Among the other papers in this volume are some experiments upon the oebra friabilis nigra fusca of Da Costa, Hist. Foss. p. 102; and called by the miners of Derbyshire, black wadd, by Jofiah Wedgewood, F. R. S.; and a description of an improved air pump, by Mr. Tiberius Cavallo, F. R. S.

II. Memoirs of the Royal Medical Society at Paris, vol. III. (continued from page 128.)

MEDICAL Chemistry.—1. Remarks on the magnesia of Epsom salt. By M. Macquer.

Although the process for making magnesia is not unknown, yet it has hitherto, we are told, been but little practised in France, so that almost all the magnesia used there has been imported from England. The present paper is intended by its author, to make its uses and the manner of preparing it, more known to his countrymen. In the course of the paper, he takes occasion to correct a mistake in the new edition of his chemical dictionary, where he directs magnesia to be only slightly washed. When
When he published that work, he was not aware, it seems, of the insolubility of magnesia in boiling water; a fact, for the knowledge of which, we are indebted to Mr. Butini of Geneva (see our 2d vol. p. 358); and moreover, he imagined, that the faults remaining in the magnesia, after its being slightly washed, might contribute to its purgative quality; but he is now convinced, that its perfect insipidity is one of the qualities which ought to recommend it; and, therefore, that it must be thoroughly washed with boiling water.—

2. Analysis of columbo root, by M. Josse, apothecary at Paris.—

3. Analysis of the root of John de Lopez, by the same.—

4. Observations on a mixture of Peruvian bark, with emetic tartar. By M. Cornette.—Our author having prepared this medicine, in the proportion of 24 grains of the emetic to an ounce of bark, found it to be a medicine of great efficacy in intermittent. He is of opinion, that the reguline part of the antimony is precipitated by the astringent property of the bark.

Botany.—Observations on two species of quinquina, lately discovered near Santa Fé in South America. By Messieurs Daubenton, Macquer, Bucquet, de Jussieu and Cornette.—These gen-
tlemen were requested by the society to examine two species of bark sent to them from Madrid. The reader will see the result of their observations mentioned in our fourth volume, page 308.

Medical philosophy.—Inquiries and experiments, relative to the organ of hearing and the propagation of sounds, by M. Perolle.—This paper has lately been published in a separate form, under the title of *Dissertation Anatomico-acoustique*. (See vol. 4, p. 218.)

Supplement to the historical part of vol. II. for 1777 and 1778.—I. On the Cesarean operation.—M. Chabrol, surgeon at Mezières, has communicated some observations on the operation he performed there, and of which an account was communicated to the society by M. Hennequin (see vol. 4, p. 239.) Previous to the operation the parts of generation, we are told, were much irritated and swelled. The first incision, though of considerable length, was not sufficient. Two lateral incisions were made into the uterus. The omentum which protruded at the wound, was reduced, and three flat ligatures were passed through the integuments, to bring the lips of the wound together. During the cure, portions of intestine and omentum
omentum appeared at the upper part of the wound, but were reduced. — 2. Supplement to M. Van Woensel's observations on the virtues of muscus pyxiodes in the cbin cough (see vol. IV. p. 362). — We have here an account of the manner of administering this remedy. Three drachms of it are directed to be boiled in a pint of water, till it is reduced to ten ounces. This quantity divided into four, six, or more doses, and sweetened with sugar, is to be taken every day.

Having finished our account of the first or historical part of the volume, we come now to the second part, or mémoirs. Under this head we meet with the following papers.

1. Constitution of the year 1779, at Paris. By M. Geoffroy. — 2. Sequel of the constitution of the year 1779, with observations on the epidemic cough at the end of the year 1779 and beginning of 1780. By the same. — 3. On the epidemic disease of Rouvray St. Denis. By Abbé Taffier. — 4. Historical account of the epidemic dysentery, which prevailed during the autumn of 1779 in most of the provinces of France. By M. Caille. — This epidemic, of which we have here a good account, and which, in consequence of neglect and mismanagement seems to have been extremely fatal in the begin-
ginning, was analogous to the dysentery that prevailed at Nimby in 1736 and has been so well described by Degner.—5. Account of an epidemic disease, which prevailed during the winter of the year 1779, at Bois le Roy near Anet in Normandy, communicated by M. Galeron, physician at Jury la Bataille.—6. On the diseases which prevailed at Dinan in Brittany, among the English prisoners. By Messrs. Jeanroy and Lalouette.—The disorder here described was a jail fever, which proved extremely fatal. The number of sick, at one time, amounted to eight hundred, and one in fifteen of those who were attacked with it died.—7. Medical topography of Montmorency and its environs, by Father Cotte.—We have here a very accurate account of the situation of Montmorency;—its latitude and longitude;—its elevation above the Seine at Paris, and above the ocean;—its mineralogical history;—its well water, spring water, and sulphurous mineral water;—diseases that have prevailed there during the last eleven years;—state of its population, from which we learn, that the proportion of deaths annually, is one in thirty-four; that the total number of inhabitants is 1580, and of families 270; that on an average, five children are produced by each marriage; that
that the proportion of widows to widowers, is as seven to four; that of unmarried women to unmarried men, as six to four; and that of boys to girls, under fourteen years of age, as ten to nine: that the births of boys and girls, are in the proportion of thirteen of the former to twelve of the latter; that in the burials, the proportion of men to women, is as nine to ten; and that of boys to girls, as fifteen to twelve: so that more females than males die among adults, and more males than females among children.

[To be continued.]

III. Reliquiae Houftouniana: seu Plantarum in America meridionali a Gulielmo Houftoun, M. D. R. S. S. collectarum Icones manu propria aere incisa; cum descriptionibus ejusdem in bibliotheca Jofephi Banks, Baronetis, R. S. P. affervatis. 4to Londini.

Dr. Houftoun, an ingenious Scotch physisian, who was employed by the trustees of the province of Georgia to collect the most useful plants of the West Indies for that colony, engraved
engraved many of the plants he collected, with his own hand, and described them according to Tournefort’s method.

After his death, which happened at Jamaica in 1733, his plants, drawings, and engravings came into the possession of the late Mr. Philip Miller. Linnaeus, during his stay in England, saw this collection; and it seems likely that Mr. Clifford received some of the plants, as several of them are described by Linnaeus in his *Hortus Cliffortianus*. After Mr. Miller’s death, the whole of his collection, including that of Dr. Houstoun, was purchased by Sir Joseph Banks, Bart., the learned President of the Royal Society, a gentleman to whom every branch of science, but particularly Natural History, is eminently indebted; and to him the thanks of the botanic reader are due for the present work, which has been printed at his expense, and liberally distributed to learned societies, public libraries, and botanists in different parts of Europe.

The work consists of the whole of Dr. Houstoun’s engravings, which are 26 in number. The descriptions are copied from his MS., and to the name of Houstoun are in general added those of Linnaeus or Miller. As no copies...
pies of the work are fold, we shall here mention the names of the plants it contains; viz.
Linn. — 22. Ricinoides folio subrotundo, ferrato; fructu parvo, conglomerato — Croton glandulosum Linn. — 23. Mimosa non spinosa, palustris, et herbacea, procumbens; flore luteco pleno — Mimosa plena Linn. — 24. Mimosa fruticosa, spinosa; foliis latis, hirsutis et articulatis — Mimosa asperata Linn. — 25. Mimosa herbacea, procumbens et spinosa; caule quadrangulo, foliis quadrivalvis — Mimosa quadrivalvis Linn. — The twenty-sixth plate, which closes the work, exhibits a species of mimosa, of which no description is to be found amongst Dr. Houftoun’s papers.

In a well-written preface to this work the editor informs us, that it was begun by his father, who described and arranged the plants he received a little before his death, from Surinam and Africa. To these the editor has been enabled
enabled to make considerable additions by the kindness of his botanical friends.

In classification our author has made one change, by excluding the class *Polygamia.* His reasons for this we shall give in his own words. "Progressus temporis experientia dicit illam classem potius damnam quam uti-" litteram attulisse methodo. Laceratio Gen-
"rum Naturalium inde orta, variatio, quam" cultura interdum in sexu efficit, et in primis "difficultates, quando ex his hermaphroditus "five abortiens flos se unice offert, satis su-
"perque neceffitatem hujus mutationis mihi "probarunt. Vix tamen auffus fuifsem pro-
"priae confidere experientiae, atque illa unice "nifus hanc infituiere reformationem, nifi il-
"lud ipsum, quod attuli, a celeberrimis Bo-
tanicis, (in primis qui sequiorem aetate pere-
"grinati sunt) fuerit observatum, quorum con-
"ficio uti in hoc puncto mihi gratum fuit. "Omnia itaque nova genera in reliquis collo-
cavi classibus, sed antiquorum generum spe-
cies suis collocatas locis volui ad evitandum "majorem confusionem."

He professes to have been sparing in forming new genera. "Genera annifus sum," says he, "quantum fieri potuit, paucia formare nova;"
"sed quæ herbæ potuerunt transferri ad aff-
"quod genus jam antea cognitum sine damno
"characteris essentiæ, illuc quoque easdem
"assignavi, quantumvis singularem nactus ef-
"fem characterem in iisdem dignoscendis:"
and a little farther on he adds, "Satis fu-
"perque expertus sum, quod multa genera
"inutiliter scientiam extendant, affines sepa-
"rent, multiplicant difficultates in iisdem in-
"ternoscendis, et impedire plerumque soleant
"perspicuitatem in charactere essentiæ, quo
"eventit, ut genera senfim per nova inventa
"ingrediantur se invicem, nec facile discerni
"possint, Debet Botanicus in novo genere
"formando ante omnia exquisire ejus affinita-
"tem, ac studiose, quantum fieri potest, sarta
"rectaque habere genera naturalia, sequel hoc
"in caelo subjicere Naturæ legibus."

The preface is followed by a description of
ninety-three genera, which are either new, or
such as have been imperfectly described before;
after which the editor proceeds to the different
species. Among these, the number of which
amounts to 1403, we observe the *Myroxylon
Perniferum*, the tree which furnishes the balsam
of Peru; — *Quassia Simaruba*, the bark of the
root of which is the *Simaruba* bark of the
shops;
fshops; — Psychotria Emetica, the root of which our author supposes to be the true Ipecacuanha; — Ignatia Amara, the plant which bears the Faba Santii Ignatii; — Myristica Officinalis (nutmeg tree); — Pterocarpus Santalimus, the tree which yields the true red sanders (Santalum rubrum), and also a juice resembling dragon’s blood; — Hypericum bacciferum, from the juice of which is prepared the Gummi Gutta Americana; — Jatropha Elastica, the tree which yields elastic gum; — Mimosa Catechu, the plant from which Terra Japonica is extrécted, (See Med. Obs. & Inq. Vol. V.); — Diospyros Ebenum, the tree which furnishes black ebony. — Several plants, of which descriptions have been published by eminent botanic writers, are intentionally omitted by the editor, as he professes to describe only such as he himself has seen.

We observe that the names of many plants are changed; and that some plants, formerly supposed to be different, and arranged under different genera or species, are now united into one species. Thus the Caffea capensis, ramulis tetragonis, foliis petiolatis ovato oblongis, retusis crenatis, is the same plant as the Caffea Capensis and Caffea Barbara of the System. Veg. ed. 13, p. 243;
p. 243. A few species are divided into several. Thus a variety of *Othonna bulbofa* (Spec. Plant. ed. 2, p. 1309) is made a new species, and called *Othonna pinnata*, *foliis pinnatifidis; pinnis lanceolatis integerrimis decurrentibus*.

The perusal of this work has excited in us fresh regret for the author’s death, as we learn from it that he had formed a design of publishing a new edition of his father's *Genera Plantarum* and *Systema Vegetabilium*; an undertaking for which he seems to have been ably qualified.

V. *A Treatise on the Synochus Atrabiliosa*, a contagious fever, which raged at Senegal in the year 1778, and proved fatal to the greatest part of the Europeans, and to a number of the natives: To which is prefixed, a journal of the weather during the prevalence of that disease, with remarks on the country, formerly read at the Royal Society; and annexed to it, a short reflection on the Gum trade of Senegal, and the importance of the place on that account; concluding with an argument concerning the bad consequences which must attend the present mode of sending Convicts to Africa for soldiers. By J. P. Schotte,
THE contagious fever, which is the principal subject of this work, and which proved so fatal to the garrison and inhabitants of Senegal, made its appearance in the beginning of August, 1778, and raged till about the middle of September. The rains in that year set in early, and were so frequent and heavy, that the island became partly overflowed. To this circumstance Dr. Schotte ascribes the origin of the fever in question, as it has been observed to occur only in those years when the rains are extraordinarily frequent, and of long continuance. — The Europeans, we are told, suffered much more by it, in proportion, than the mulattoes; and these last much more than the blacks. Of ninety-two white people who were on the island when it broke out, thirty-three only were left, when the French invested the place in January, 1779, and several of those laboured under a lingering dysentery, in which the fever had terminated. Of those who died, the greater number were carried off on the 4th or 5th day; but a few died suddenly on the 3d, and some others lived till the 6th or 7th. They who
who survived the 7th day, either recovered, or fell into lingering fluxes, attended with obstructions in the liver, which sometimes terminated in suppuration; and of which death was sooner or later the consequence.

The symptoms of this fever are accurately described by our author, and are in general similar to those which have been usually observed in the malignant fevers of moist situations in hot climates; these symptoms, in the greater number of cases, were, from the very beginning, characteristic of great debility; but it seems that in some patients there were signs of inflammatory diathesis, attended with a hard pulse. In several of these the disease was preceded or accompanied by a very painful ophthalmia; and it is remarkable that all those who were afflicted with such an inflammation, died. A continual bilious vomiting usually prevailed through the whole course of the disease; and in the advanced stage of it, most patients complained of a burning heat about the pit of the stomach, attended with an unquenchable thirst. The bile vomited up was, at first, yellow and liquid; but, as the disease advanced, became green, brown, and, at last, black, and was coagulated in small lumps, which floated
flotted in a limpid matter not unlike saliva. The same kinds of limpid matter and coagulated lumps of black bile were likewise evacuated by stool. In those who survived the 3d or 4th day, the skin was filled with petechiae. Towards the close of the disease, many patients became comatose; the stools came away imperceptibly; the tongue was shrunk up, dry and black; and they were troubled with an almost uninterrupted hiccough. The delirium, we are told, was generally rather mild than violent; and some who were seized with a pain in their throat, and a difficulty of swallowing, died suddenly.

Dr. Schotte considers the definition of Synochus, given by Dr. Cullen in his Synopsis Nojol. Meth. as the most applicable to the fever he has described; and as it is customary to annex some epithet to the generic name of a disease, in order to distinguish its particular species from others of the same genus, he has chosen to call it the Atrabilious Synochus, on account of the black bile evacuated upwards and downwards, and which was so prevailing and fatal a symptom.

The author enters very fully into the remote causes of this fever, and these he ascribes to the heat
heat of the weather, the constant use of animal food without fresh vegetables, and the brackishness of the water. In the course of this inquiry, we meet with much curious information concerning the climate, diseases, &c. of Senegal.

The continual vomiting which accompanied the disease, seemed to preclude the use of remedies, till our author, towards the decline of the epidemic, tried the effects of opium. This lessened the irritability of the stomach and enabled him to administer the bark, which was the medicine on which he seems to have placed his chief dependence. He very candidly acknowledges, that the cautions which are to be met with in the most celebrated practical writers, concerning the use of opium in fevers, prevented him from having more early recourse to that remedy; and also that as the violence of the disease had much abated before he determined to administer it, he had no opportunity of ascertaining its good effects by a sufficient number of trials.—Blisters, he observes, did more harm than good. When the fever was overcome, he found wine, particularly Rhenish, an excellent medicine.—As prophylactics, he recommends a decoction of farfaparrilla, and a moderate use of wine.
In the course of the volume, Dr. Schotte takes occasion to mention an instance of a disease not known in Europe; with his account of which, as it is curious, we shall conclude the present article: "The right foot," says he "of a black girl had been much inflamed for a time, when a boil appeared afterwards near the inward metatarsal bone, which breaking, the head (as it was called) of a Guinea worm made its appearance. In the mean time another boil near the outward metatarsal bone opened, and the head of another Guinea worm shewed itself. I took hold of the one and the other, and wound as much of each as followed easily, upon two separate little sticks. I continued this work every day for about three weeks, and then nothing more would follow by pulling, but I observed, that while I was pulling the one stick, the other was drawn close to the skin, which shewed, that what I had wound upon the two sticks, were the two ends of one and the same worm. I, therefore, unrolled the end of the worm from the one stick, and by pulling the other, it re-entered the foot, in which it made different windings, and came out at the other boil. The whole
"worm was two yards long, and not so thick
"as the smallest chord of a violin, but which
"of the ends was the head, if there is any, I
"cannot pretend to say."

VI. Rapport des Commissaires chargés par le Roi, de
l'examen du magnetisme animal: i. e. Report of
the Committee appointed by the King to inquire
into animal magnetism. Printed by order of the
King. 4to, Paris, 1784. 66 pages.

It was a favourite opinion of many philoso-
phers of the last century, that a magnetical
principle, or very subtile fluid, to which they
gave the names of anima mundi, spiritus univer-
salis, &c. pervaded the universe, and gave to
animal bodies a power of attraction and repul-
sion. This was the Ζωο μαγνητισμός, or animal
magnetism, of Father Kircher*; and as this
fluid was supposed to have great power over
the nerves, and to be analogous to the vital
principle, it was soon adopted in the cure of
diseases; especially as a discovery was thought
to be made of poles in the human body, by

* Magnes, sive de arte magnetica, lib. 3, pars 6.
means of which a current of this magnetical fluid might be directed to any particular part. It was imagined, that music rendered it more efficacious; and that, like light, it was capable of being reflected by mirrors. Van Helmont published a treatise *de magnetica vulnerum cura-tione*, and other writers extolled it as an universal remedy. These opinions became a copious source of empiricism and imposture in this as well as other parts of Europe. In 1637, as we learn from Dr. Goodall's *historical account of the college's proceedings against empirics*, one Leverett, a gardener, was summoned before the college (of Physicians) for "curing or healing all manner of diseases, but particularly the king's evil, by way of stroaking or touching with his hand." He was accused of having said that "when he stroaked any persons to cure them, there went out of him so much virtue and strength, that he did not recover it for several days," and that the sheets wherein he had laid were "a special remedy for many diseases." About thirty years after the prosecution of Leverett, a person named Greatracks, acquired great reputation by a similar practice. An account of his success was published in 1668, and it is probable that much of his ce-

lebrity
lebrity was due to Mr. Boyle, who considered him as an extraordinary person, and attested several of his cures.

In proportion as sound philosophy came to be more cultivated, the visionary doctrine of animal magnetism was less regarded, and at length seemed to be totally neglected and forgotten. At this time of day we could hardly have expected to see it revived, and adopted with enthusiasm in one of the most enlightened capitals of Europe: yet so it has happened. Dr. Mesmer, a German physician, educated at Vienna, after having attempted in different parts of Germany, though with little success, to make proselytes to his system, came to Paris about the year 1778, and having there announced his opinions, and commenced his operations, soon acquired uncommon celebrity; and is said to have amassed a very considerable fortune, at the expense of a credulous public.—At length the government have interfered, and a committee has been appointed to investigate the merits of his practice. This committee, whose very judicious report is now before us, consisted of Messrs. Borie, Sallin, Darcet, Guillotin, and Majault, of the faculty of physic; and of Dr. Benjamin
Benjamin Franklin, and Messrs. le Roy, Bailly, and Lavoisier, of the academy of sciences.

The committee begin with giving a concise view of M. Mesmer's doctrine, as delivered by himself in a work entitled *Memoire sur la découverte du magnetisme animal*, published in 1779. This doctrine, though announced by M. Mesmer as the result of a discovery peculiar to himself, agrees in all its leading principles with the ideas concerning animal magnetism, delivered by Kircher, Maxwell, and other writers on that subject, in the last century.

After learning the theory of animal magnetism, the committee were desirous of observing its effects. For this purpose they applied to M. Deslon, a physician at Paris, who having long been a pupil of M. Mesmer, was thoroughly acquainted with his principles, and had established a house for the reception of patients, where he had an apparatus similar to Mesmer's, and produced the same effects. This physician undertook to convince the committee of the existence of animal magnetism, and of its efficacy in the cure of diseases, and at the same time promised to communicate to them all he knew of it. They visited the apartment in which his operations were carried on, and there
there they found a circular platform made of oak, and raised about a foot and a half from the floor. In this platform, which is called the baquet, they observed a great number of iron rods with moveable joints for the facility of applying them to any particular part of the body. These iron rods were supposed to act as magnetical conductors, and when the process began, the patients taking hold each of one of the iron rods, formed themselves into a circle round the platform, being connected together by a cord passed round their bodies. The operator placed himself near them, with an iron rod or wand (baguette) as it is called, about twelve inches long in his hand; and in a corner of the room stood a piano forte, which was occasionally played, with the addition, sometimes, of vocal music. The baquet, according to M. Deslon, served as a reservoir of magnetism. The committee took care to satisfy themselves that no magnet was concealed in it, and also that electricity made no part of the apparatus.

The effects of the process were various. Some of the patients seemed to be but slightly affected, while others were thrown into convulsions. Some appeared to be sensibly affected merely by variations in the music of the piano forte; and it
it was impossible, the committee observe, on seeing these effects so constantly produced, not to acknowledge the operation of some great power which agitated and overpowered the patients; and of which he who held the baguette or wand, seemed to be the source. All appeared to be under his control. His voice, or merely a look from him, was oftentimes sufficient to affect them very sensibly.

The committee observed, that among the patients who were convulsed, there was always a much greater number of women than men, and that an hour or two generally elapsed before any convulsion took place; but that as soon as one patient became convulsed, several others were affected in a similar manner, and that the spasms brought on in this way sometimes lasted for three hours. To this convulsive state Mesmer gives the name of crisis; and he considers it as a salutary crisis similar to that produced by nature in the cure of diseases.

The committee soon found that it was impossible to satisfy their doubts by observing the effects produced in this public manner. They were likewise desirous of determining the existence of animal magnetism, before they made any
any inquiries concerning its utility, as this last appeared to be only a secondary question. It might exist, they observe, without being useful; but it could not be useful unless it existed. Its existence, according to M. Deslon, could be proved only by its effects on animal bodies, that is, either by its effects in diseases, or by its instantaneous effects on the animal economy. The former of these proofs, viz. its effects in diseases, seemed to be exceptionable on account of its uncertainty; the committee, therefore, confined themselves to physical proofs, and began with themselves. They all went, at first once a week, and afterwards every day for three days, and submitted to M. Deslon's processes, but not one of them experienced the least sensible effect from it. Hence they concluded that animal magnetism has no effect on persons in health.—They next resolved to try its effects on sick people, and to select those from the lower class of people. Seven such persons were collected at Dr. Franklin's, and magnetized by M. Deslon. Of these seven, four declared they felt nothing; the other three pretended to be more or less affected. One of these was a man with an ophthalmia, who said his eye became painful when
M. Deslon had magnetized it a considerable time, by placing one of his thumbs near the eye; another, who was a very irritable woman, seemed to be much affected.

After this, a large company of genteel people that were assembled at Dr. Franklin's, several of whom were in an ill state of health, submitted to the same trials, but not one of these felt anything. The committee observed likewise that it produced no effect on children. All they had seen, therefore, concurred to make them suspect that the imagination was the sole cause of all the effects they had seen produced. Their next view was to ascertain this. For this purpose they selected eleven patients, of whom only one, a female, pretended to be affected. This woman, when the operator's hand was near her face, said she felt a burning heat there. The same effect was produced in her stomach, and back when his hand was placed near those parts; and she even complained of head aches and of a sensation of heat over her whole body. A bandage was now placed over her eyes, and then every thing she said was contradictory. Similar experiments were made with others; and when the eyes were bound, questions were artfully put to the patient; as if...
the operation was going on, while, in fact, nothing was doing. All these trials served to convince the committee, that the imagination only was affected; and as a farther proof of this, they relate some anecdotes of M. Sigault, who, by feigning to be possessed of the secret of animal magnetism, has produced in several instances the same effects as are produced by Mesmer.

Hitherto the committee had seen no crisis or convulsions excited. Their next experiment, therefore, was with a magnetic tree; because, according to Mesmer, when a tree has been filled with the magnetic fluid, every person who approaches it must feel more or less of its effects, even to convulsions. That no excuse of want of sensibility might be made, they requested M. Deslon to choose a proper subject for the experiment, and he procured for this purpose a young man who was said to be extremely magnetic. He was blindfolded, and led to different trees, and at length became convulsed, but without having touched the tree to which M. Deslon's wand had been directed. M. Deslon attempted to account for this fact, by observing that all trees are magnetic per se, and that their magnetism was increased
creased by his presence: but if this were true, no person sensible to magnetism could walk in a garden, or near trees, without being in danger of convulsions. The truth is, as the committee remark, the young man thought he was led to the magnetic tree, and his imagination was struck with sufficient force to produce the effects that took place. Other similar experiments were made, the results of which were the same.

The committee observe, that in the public treatment, many causes co-operate with the imagination. The operator sometimes presses strongly, and for a length of time, on different parts with his hands. The hypochondria and the pit of the stomach are the parts most commonly compressed; and it is certain in women, that by pressure of the hypochondria, the ovaries may be affected. The committee, therefore, are of opinion, that the sympathy which is known to subside between the uterus, stomach and diaphragm, may be a cause of the phenomena produced in very irritable women. They observe, that the force of example in exciting convulsions is well known; and among other instances, they refer to the memorable fact of this sort related by Kau Boerhaave, as having hap-
happened at Haerlem. They add, that so lately as the year 1780, as the charity girls belonging to a parish in Paris were going in procession to church, to perform what is called the first communion, one of them was seized with convulsions, and in less than half an hour fifty or sixty others were in the same state. Several of them relapsed in the course of the week; and when they met together on the Sunday following, twelve fell again into fits, and more would probably have followed the example, had they not been separated from each other, and distributed into small parties for several weeks, by which means the affection ceased. This and other instances of a similar kind are related by M. Hecquet in his *Naturalisme des Convulsions*. In fact, it does not seem difficult to conceive that a number of sick people collected round the magnetical platform may have their imagination so heated, that when some one, more irritable than the rest, gives the signal, by falling into a state of spasm, all or the greater number may be affected in the same manner. And this irritability, in part natural and in part acquired, may by degrees become habitual; so that when convulsions have been once produced, it will be necessary only to wind up
up the imagination to the same pitch as before, to produce a repetition of the same effects.

The conclusion drawn by the committee from all their experiments and observations on this subject is, that animal magnetism is a mere chimera. They inform us that M. Deslon himself has been induced to acknowledge, that the imagination has the greatest share in the effects produced; but they observe, that although the imagination may occasionally be useful in physic, as in the instance of faith, where its effects are mild, and where it may have some influence on the cure, yet that when it produces convulsions, it acts by violent and destructive means, and becomes dangerous by multiplying the number of victims to nervous sensibility.

SECTION
SECTION II.

Essays and Observations.

I. Account of an expeditious cure of a fractured skull. By Mr. William Jones, Surgeon at Birmingham; with remarks on the case by Mr. Robert Mynors, Surgeon of the same place. Communicated in a letter to Dr. Simmons, F. R. S.

CASE.

J. BURTON, a boy about five years old, on the 12th of September, 1783, received a wound on his head by a brick, which fell from the top of a chimney twelve yards high, and struck him to the ground. He was immediately taken up senseless, and conveyed to his father's house, which was only a few yards distant. I saw him in about half an hour after the accident, and found him in a comatose state, vomiting frequently. His body and extremities were cold, and his pulse small. The wound bled freely, and was of a triangular shape. Upon introducing my finger into it, I felt a fracture of the cranium with depression;
this determined me to apply the trephine, and I sent to Mr. Mynors, desiring the favour of his advice and assistance in the operation. When he arrived, which was within an hour and a quarter after the accident, he recommended the wound of the scalp to be dilated at each angle. Accordingly, I made two incisions across the head, nearly over the angular junction of the occipital with the two parietal bones, and a third, which had its direction nearly in the course of the sagittal future, so as to meet the other two at their junction over the angle above mentioned. Each of these incisions measured about two inches and a half. The portions of the scalp marked out by these incisions being carefully dissected from the pericranium, and raised, the whole of the fracture, (which was situated nearly in the middle, between the posterior, superior and inferior angles of the left parietal bone, and almost close to the lambdoidal future) presented itself to our view. It had somewhat of a semicircular form, and in circumference was more than equal to the size of a half-crown piece, exclusive of several angular points made by the irregularity of the fracture. Mr. Mynors advised an immediate application of the trephine
to that part of the sound bone nearest to the lambdoidal suture, in such a manner, that the edge of the instrument might fall into the fracture; this appearing to be the most favourable part for the elevation of the depressed portion of bone, as well as the most depending. This was accordingly done after the previous use of the rugine; in applying which, however, care was taken to denude only so much of the bone as the crown of the trephine might be able to cover. On removing this circular piece of bone, I tried to elevate the depressed fractured portion, but without success. A second application of the trephine therefore became necessary; and this was made on the most prominent part of the bone, near the edge of the fracture, in the same manner as the first, from which it was distant about three quarters of an inch. At the particular request of Mr. Mynors, I made no use of the rugine, as preparatory to this last application of the trephine.

After these perforations, a portion, as large as a halfpenny, of the depressed bone, which on our attempting to raise it with the elevator, was found to be loose, was removed by means of a pair of forceps; the remaining part of the fractured and depressed piece was then elevated, and
and every small splinter and angular point of bone carefully removed. On the dura mater, thus exposed to view, we found a small quantity of extravasated fluid and coagulated blood, which was very cautiously removed with a sponge. Mr. Mynors now mentioned to me the use he intended to make of the flaps of scalp which had been so carefully raised from the pericranium, and preserved intire, requesting, at the same time, that he might dress the wound the first time after his own manner, which I readily agreed to. He began with moistening the inner surfaces of the flaps of the scalp, as well as the pericranium, and parts of the dura mater, which were now become dry by exposure to the air, by touching them gently with a sponge wrung out of warm water; after which he desired me to apply my hands to the patient’s head on each side of the wound, so as to press the flaps gently towards the centre, while he brought the edges of these flaps every where into easy and close contact, and retained them in this situation by narrow and long slips of sticking plaister, placed at small distances from each other. The dressings consisted of a tow pledgit spread with wax and oil,
and a soft linen compress, and the whole was secured by a fix-tailed bandage.

The patient was then carried to bed, and directed to be put on a low diet, and to take at stated times a mixture with antimonial wine and Thebaic tincture. He remained comatose during the first part of the night.

Sept. 13. I found that he had vomited once since the operation; but that in other respects he had passed a very good night. His heat was a little more than natural; his pulse rather quick, and his skin moist. He made no complaint, and had had no more sleep than might be attributed to the medicine he had taken.

Sept. 15. The pledgit which adhered to the scalp was removed only in part, and a fresh one applied over it.

Sept. 17. The former pledgits, as also the flaps of plaster, were this day removed entirely and new ones applied. The scalp was now found to be perfectly united every where to the pericranium, except a very small portion of it, of about half the size of a little finger nail at the meeting of the angles of the flaps, where one of these angles had retracted for want of bony substance to support it. In the course of the incisions, a kindly but trifling digestion appeared,
appeared, which diminishing daily, they healed in the space of a fortnight. Granulations from the angles of the flaps of scalp, and from the small portion of the dura mater, which was found uncovered after the first dressing, by degrees joined together, so that that membrane was completely covered in three weeks, and the whole wound was entirely healed in the space of six weeks after the operation. It would have been cicatriséd sooner, had not some scabs formed, which retarded the cure during the last fortnight. The small portion of the dura mater found uncovered, as described above, and the incisions of the scalp were continued during the whole of the cure to be dressed as at first, being only just covered with a pledgitt thinly spread with wax and oil.

On the fifth day after the operation, the heat of the child’s body and his pulse appeared to be perfectly natural. He had no complaint after the first night, and when asked how he did, always replied, that he was very well; so that no medical assistance was necessary, farther than occasionally opening his bowels during the first week or ten days.

P. S. Yesterday (June 2) I saw the boy, and had the pleasure to find him in perfect health,
and that nature was repairing the loss of bony substance very fast, the cicatrix appearing merely as a line, and producing no deformity, as the hair grows on the portions of scalp which were raised from the pericranium, as well as if no operation had ever taken place.

Birmingham,

June 3, 1784.

Remarks on the preceding case, by Mr. R. Mynors.

In a little treatise, which I lately published, under the title of 'Practical Thoughts on Amputation, &c.' after describing the operative as well as curative process of the particular mode of amputating therein recommended, and faithfully relating the success which had attended it, I observed, that an equal degree of success had attended a similar method of treatment in cases of wounds, formed by the extirpation of various species of diseased tumors as well as of large accidental recent wounds of different kinds.

The
The case of a fractured skull, just now related, may serve as a farther illustration of the doctrine laid down in the work in question.

Having long lamented the great deficiencies which the practice of surgery, in cases of this fort, labours under, and having my mind strongly impressed with the idea of uniting divided parts by the first intention, after all operations in surgery that could possibly admit of it, I was induced to put in practice the above-mentioned treatment, hoping that it would be found capable of obviating a great many evils, which are too generally observed to follow the operation of the trephine, when conducted upon the plan hitherto commonly adopted; and I am happy in being able to observe, that the success of this new mode of treatment in the preceding case has established, as clearly and satisfactorily as a single case can, the propriety of my opinion on this subject.

But if it should be asked, whether from the very expeditious cure, and the remarkably mild symptoms after the operation, which happened in this case, the same treatment indiscriminately used in all similar cases, may be expected to be equally successful, I answer in the negative; being too well convinced, that the brain
brain, and its meninges, from various external causes, may frequently suffer such great violence, as to render vain our best and most improved attempts to save the patient.

Nevertheless, in all those cases, where reasonable hopes of success may be entertained, I cannot be too solicitous in recommending the aforesaid practice, and in desiring the surgeon to consider the very different effects which must be produced in the constitution by such opposite methods as the one hitherto generally followed, and that which has been now described; the former exposing a large surface of dura mater, &c. to a suppurative inflammation, and all its consequences, while the latter solicits nature to employ her friendly processes, the adhesive inflammation, and close up the wound with mildness and dispatch.

II. Observations to prove that the Hydrophobia is not, as some writers have asserted, unknown in America. To which is added, an account of the decussation of the optic nerves in quadrupeds. Communicated in a letter to Dr. Simmons, F. R. S.

by Frederick Michaelis, M. D., physician to the Landgrave
IT is the opinion of many men of learning, both in Europe and America, that canine madness is a disorder unknown in the western world, and we find this idea in some of our principal writers on the natural history of America. One of them (Mr. Paw) even goes so far as to account for this surprising difference, by saying, that the climate is too damp to admit of the disease; a kind of explanation, which, I confess, I do not understand.

Having always doubted the fact, I made it my business to investigate the matter; and was it long before a decisive accident of the kind happened. A Hessian soldier, then a prisoner at Lancaster, was attacked with symptoms of hydrophobia after being bit by a mad dog, and the person, in whose house he lived, opened his veins, and suffered him to bleed to death.

A medical friend of mine at New York (Dr. Bard, senior) communicated to me two similar cases; the one of a person who died of the true hydrophobia, after being bit by a mad dog, and the other of a man who attempted to force medicines down the throat of a cow that had been bit
bit by a mad dog; unluckily he happened to have a slight sore on one of his fingers, which imbibed the poison, though he was not bit; and he died of the hydrophobia, though every thing was done that was thought likely to be of use.

Upon reading in the New-York paper, for July 1783, several instances of people's having died a little before in New England, with all the symptoms of hydrophobia, after having been bit by mad dogs; and observing soon after in the same paper, a very circumstantial account of the case of a boy in Connecticut, who died of the hydrophobia eight weeks after being bit by a mad dog, I made it a point to inquire into the truth of these accounts, and every circumstance was confirmed to me, by a friend who resided in that quarter, and who added, that the dog last mentioned had bit a cow and a hog, who both died mad.

Nor are instances of this kind rare; Doctors Rush, Morgan, and Kuhn, three of the most distinguished medical characters in America, have assured me, that they have now and then, in the course of their practice, met with instances of the true hydrophobia, occasioned by the bites of mad dogs.
It has also been doubted, and is doubted even now by many of the inhabitants of the West-India islands, whether the dogs there ever become mad, which is the more astonishing, as Hillary has mentioned his having seen the disease in Barbadoes.

Of the decussation of the optic nerves in quadrupeds.

Professor Soemmering, of Caffel, has lately had an opportunity of seeing the decussation of the optic nerves in some species of quadrupeds. As no anatomist, as far as I know, has ever observed it in animals of this kind, I have no doubt but a short account of this discovery will prove agreeable to you; particularly as I have had an opportunity of examining all the anatomical preparations, on which the fact is established.

The first animal in which the professor observed this remarkable phenomenon, was a squirrel, which happened to have a cataract in its left eye. On opening the cranium with all possible care, he found the nerve of the affected eye more oval, flatter, in every respect smaller,
and of a more cineritious colour, than the nerve of the healthy one; and this evident difference in the colour, shape, &c. of the affected nerve, might be clearly traced across the union of the optic nerves, to the right side, while the sound nerve might be seen crossing this union, and afterwards appearing of its natural size and colour on the left side of the brain.

He soon after had occasion to observe the same appearance in a horse, whose right eye was small and collapsed, while the left was in a healthy state. In this animal the nerve of the affected eye was found to be shorter, smaller, of a cineritious colour, and nearly of a cartilaginous hardness, adhering firmly to its dura mater coat. All these appearances (the last one of course excepted) might be traced across the union of the optic nerves from the right side to the left, in the same manner as had before been observed in the squirrel.

The professor has seen nearly the same appearance in the brain of another horse, but with this addition, that the diseased nerve, which crossed the other, was distinguished by a cineritious, and, in some degree, pellucid streak, which made a very striking contrast with the milk-white substance of the other sound nerve,
which appeared at the place where they crossed.

But still more interesting is the observation he made in a monstrous pig with two heads, each of which had a distinct brain. In one of these heads there was no appearance of an eye or of a nerve belonging to it, on the interior or left side, but the right eye was perfect; and the nerve of this eye, which was in a sound state, evidently crossed over to the left side, where it continued to retain its natural appearance.

From these observations, however, though extremely interesting, we cannot infer, that a similar organization takes place in the human body; and I am aware, that the illustrious Morgagni has been unable to discover any thing like it in the brain of blind men, and also that he has sought for it in vain in dogs. Petit assures us he has met with it in birds; in the Cyclopterus Lumps, it has been seen by the celebrated Camper; in the Raja and Squalus acanthias, by Professor Sommerring; and in fishes by every anatomist. My ingenious friend suspects, that all the nerves cross one another in the more interior parts of the brain or medulla spinalis; a conjecture which deserves to be the object of future experiments.

Coffea, August 17th, 1784.
III. Case of Injury of the Brain, occasioned without any blow or external violence upon the Head. Communicated in a letter to Dr. Simmons, F.R.S. by Mr. William Houlston, Member of the Corporation of Surgeons, London.

A lady of Salisbury Street in the Strand, was walking out during the frost in February last, and in consequence of treading upon a part of the pavement, rendered slippery by the frequent passing of persons in the street, received a smart fall. As she fell in a fitless posture, her feet flying suddenly from under her, she seemed to have sustained no material hurt, and being assisted in rising by some of the by-standers, readily walked home. On the evening of the following day a pain in her head came on, and she felt some inclination to be sick. She passed the night without sleep, and on the third day from the time of the accident complained greatly of a kind of sensation within her head, unlike any thing she had ever before experienced. It was, to use her own words, a drowsy, heavy pain, and giddiness; with dimness of sight, and a sort of weight in the forehead, which when she leaned forward
forward seemed to incline her head towards the
ground. She had not as yet any vomiting, nor
was there any observable alteration in the pulse.
Upon being desired to point out the particular
situation of the pain she complained of, she
said it was not fixed to any distinct part, except
when her head had remained long in one po-
ture; and then that side which pressed against
the pillow was the most painful, and became
fore to the touch. Although the head in this
case had not received the least stroke or out-
ward violence, these were evidently the symp-
toms of approaching mischief, perhaps from
conceussion, and I, therefore, though in vain,
desired her to lose some blood. She had un-
fortunately such a dread of the lancet, as to
have determined never, in any instance, what-
ever might be the consequence, to submit to
its use; I, therefore, directed an opening me-
dicine, a cooling regimen, and the avoiding
every thing which might disturb the mind, or
act powerfully on the external senses. The
next day, she found herself better, and getting
up, remained the whole day with the family,
though greatly incommode by the smallest
noise, and obliged to recline upon a pillow,
and sometimes upon a sofa. The pain in her
head,
head, though not without some intermissions, was now exceedingly violent, and in the evening she began to vomit, and her pulse was fuller and more frequent than natural, till at length finding herself grow worse, she very willingly retired to bed. She was ordered laxative clysters, and the use of the pediluvium; and as I thought the case required that something effectual should be attempted, I directed the use of what Mr. Bromfeild in his first volume of Observations calls the sudorific anodyne, consisting of one drachm of Thebaic tincture and three drachms of antimonial wine. Of this twenty drops were given in a eupful of barley water. On the fifth day, having slept a good deal, though with some interruption, she was better, and got up, complaining that the stiffness of her head increased by her continuing in bed. Towards afternoon she became worse, from being fatigued with too much company, had frequent returns of sickness, and at night vomited, as she said, a teacup-full of blood. The anodyne draught was repeated, together with the methods before recommended. I pressed her to lose blood from the jugular veins, but even the application of leeches was not to be admitted. Soon after taking the
medicine; a severe rigor took place, succeeded by a hot fit of two hours, and a slight delirium; but as the morning approached, a mild sweat came on, and produced great relief of all the symptoms. She was kept in bed all the fifth day, and took ten of the anodyne drops every three hours; but as they rather produced a hot and dry than a relaxed skin, the form of the medicine was altered on the seventh to a solution of emetic tartar, three grains in five ounces of cinnamon water, with sixty drops of thebaic tincture, two drachms of nitre, and an ounce of common syrup. Of this she took a table spoonful every three hours, passed the day better than she had hitherto done, had less pain in her head, and kept on her stomach a light dinner of bread pudding. In the evening she began to perspire, and continued in that state all the night. The eighth, ninth, and tenth days she continued to mend, though both her head and stomach were occasionally affected, and the sputum was particularly offensive to her eyes, though I could never, upon examination, discover any dilatation of the pupil that could be deemed morbid. On the twelfth day, notwithstanding these favourable appearances, she experienced a relapse, had a very severe rigor
in the evening, and a return of all the symptoms. This, however, I found was accounted for by some little irregularity in her diet, and the omission of her medicine, which I ordered to be repeated; and by the continuance of which, with the occasional use of laxatives, she gradually, but perfectly recovered.

I confess, that in this case, if bleeding had been permitted, I should not have had recourse to the anodyne treatment. It appears, however, from the good effects produced here, that sudorific remedies of this kind are by no means to be held in a secondary light; and we may farther observe, that in constitutions particularly affected by opium, where the stomach yields more to the anodyne than to the diaphoretic power of the drops advised by Mr. Bromfeild, and where on that account their sudorific effect is not produced, but, on the contrary, a dry and hot skin; in that case, it should seem most advisable so to augment the quantity of antimonial wine as to obviate this objection. Though there may be a tendency to vomiting, an increase of this disposition certainly need not be apprehended; for, till a certain degree of this nausea is induced, such a degree, at least, as is just within the power of the opiate to over.
overcome; a sweat, we are told, cannot be produced. This seems to be one of those cases to which Mr. Pott alludes when speaking of injury of the brain, he says, "It may be produced, not only when the cranium is unhurt by the blow, but even when no violence of any kind has been offered to, or received by the head." A very eminent gentleman of the profession lately told me of a boy who died of an affection of the brain, occasioned by a stroke on the eye by the lash of a whip; and certain it is, that the head is liable to very serious injuries from causes not altogether violent.

Palgrave Place,
August 26, 1784.

IV. A Case of chronic dysentery successfully treated by large doses of the Vitrum Antimonii ceratum. Communicated to Dr. Simmons by Nicholas Chavasse, Member of the Corporation of Surgeons of London, and Surgeon at Walsall, in Staffordshire.

The efficacy of the vitrum antimonii ceratum has been attested by several medical.
cal practitioners, who have experienced its utility in cases of Dysentery, which had obstinately resisted the remedies usually employed in this painful and loathsome disease; and I feel much pleasure in being able to add my testimony in favour of a medicine which, if judiciously employed, is, I am persuaded, equal to the cure of every dysenteric complaint that is remediable by art.

In a variety of cases of this sort I have administered it with success; but in none has the relief it produced been so extraordinary as in the following instance, which I take the liberty of communicating to you, to be inserted, if you think proper, in the London Medical Journal.

CASE.

H. Smith, aged 55, had for more than seven years been afflicted with constant and excruciating pains in his back and bowels, accompanied with tenesmus, which was for the most part relieved by a discharge of blood, always to the amount of half a pint, and oftentimes more, in the space of twenty-four hours. He had taken a variety of medicines, which had been recommended to him by different prac-
practitioners, both in London and in the country; and, according to his own account of his case, had not been unmindful of trying several nostrums which had been recommended to him by different friends. Nothing he had tried, however, had moderated his complaint except some opiate medicines; and when the soothing effects of these ceased, he was sure to be tortured by additional pain, and debilitated by an increased discharge of blood. When I first saw him, he complained of hectic heat, intense thirst, incessant pain in his back and bowels, flatulence, dyspnœa, and loss of appetite. He made but little water, his belly was tense, and his legs much affected with anaestous swelling. Under such a train of formidable symptoms, I could not entertain very sanguine hopes of success, especially when I considered the severity and long continuance of his complaints, his age, and his unhealthy calling, which was that of an engineer to a coal mine. I began with directing him to take ten grains of the vitrum antimonii ceratum twice a day. In this dose it excited very little nausea, and no increased discharge by the bowels; the quantity was therefore gradually augmented to twenty grains, when my patient visibly began to mend,
and at the end of twenty-seven days the discharge was entirely suppressed. His bowels now became regular, and, if we may judge from the appearance of his stools, we may venture to assert, that the diameter of the rectum had been much diminished by the severity of his complaint. After the suppression of the discharge, all his other symptoms gradually disappeared, and in less than two months he was restored to his former good health and cheerful spirits, and remains so to this day, which is more than half a year since he first applied to me. While he was taking the medicine, I directed him to drink a mixture composed of equal parts of milk and lime water, which I have often found serviceable in restoring a due tone to the bowels when weakened by dysenteric purging.

In addition to the above case, I beg to observe, that having, during my residence in the West Indies, had frequent opportunities of experiencing the salutary powers of the vitrum antimonii ceratum in cases of dysentery, which had resisted the remedies commonly employed in that disease, I trust I shall be excused for venturing to recommend a more frequent trial of this medicine to the surgeons both of the army...
army and navy, who, as well as myself, most often have had the melancholy opportunity of witnessing the fatality of this disease in our West-India islands, where it sweeps away, with unrelenting fury, so many of our soldiers and sailors.

Walfall,
August 29, 1784.

V. Farther Remarks on the spontaneous evolution of children, presenting with the arm at the time of birth. Communicated in a letter to Samuel Foart Simmons, M. D. F. R. S. by Thomas Denman, M. D. Licentiate in Midwifery of the Royal College of Physicians, Physician-man-midwife to the Middlesex Hospital, and Teacher of Midwifery in London.

YOU did me the favour of inserting in the first number of the London Medical Journal for 1784*, an account of the spontaneous evolution of children presenting with the arm at the time of birth. I trust it will appear in that paper, that, as far as it depended upon

* See page 64.
my own experience, I have been sufficiently careful to ascertain the fact, and to prevent any inferences which could be prejudicial to patients, under such circumstances. I now take the liberty of requesting you to add the following extracts from letters sent to me on that subject. The letters are written by gentlemen of high character in the profession, for their integrity, ability and experience, and may be considered as affording a full confirmation of the truth of the observation which I had the pleasure of communicating to you.

Extract of a letter from Dr. Cogan, late Physician to the Charity for delivering Poor Women at their own Habitations.

"In the presentation of children with the superior extremities, it has always been concluded, that every pain, which the mother had, increased the difficulty; that the lower the child was protruded into the vagina the more immovable it would be fixed; and that there was no possibility of saving the life of the woman, but by turning the child, and
and delivering by the feet. You were the first who taught us to expect, that, even under these circumstances, Nature, by the exertion of her own powers, is able to extricate herself, by first moulding and adjusting the child to the pelvis, and then expelling it. I am fully convinced of the truth of your doctrine, and have the pleasure of sending you two cases selected from many others, which, in my opinion, place it beyond any reasonable doubt.

In January 1773, a midwife belonging to the charity sent for me to a woman who had twins. The first child was born, but the second presented with the arm. Another engagement prevented my immediate attendance; but I went within the hour, and when I arrived at the place, I found, to my great surprise, that the second child was already born, but dead. The midwife informed me that the pains had been exceedingly strong, and had finished the labour without any assistance; and though the arm had presented, that the child came foetal into the world. Examining the child, I observed that the right arm was very much swollen, that the blood had settled upon the ribs, and that the position
Position in which it could be placed with the greatest ease, seemed most correspondent with such presentation.

In June 1776, I was desired by a young gentleman to visit, with him, a person who lived near Aldgate, to whom he had been called by a midwife. He informed me, that the arm of the child was protruded very low, and that he had made many attempts to turn the child, but without success, on account of its great size and the violence of the pains.

I was convinced, by an examination, that his representation of the position of the child was truly stated. Whilst we withdrew to deliberate upon the method in which we should proceed, and to give the patient a little respite after the long and painful attempts which had already been made, the labour advanced so kindly, that when I sat down I was able to hook my finger in the groin of the child, when by very gentle assistance, the child was presently expelled by the feet.
Extract of a letter from Dr. Patrick Hair, at Lisbon.

"I have received your aphorisms on preternatural presentations, and very much regret, that I had not them some years ago. They would have given me authority and courage to have pursued a method, by which the life of a very deserving woman might have been saved. Of the spontaneous evolution of children presenting with the arm, you have now had many instances. My experience has supplied me with three, which were undisputed proofs of the truth of what you have advanced upon that subject, and of these I will send you a particular account, if you think it will answer any good purpose."

Extract of a letter from Mr. Hey, F. R. S. surgeon at Leeds.

"I must now give you the history of a delivery, in which a lusty child was expelled by the natural efforts of the mother, after the arm and shoulder had been pushed down into the vagina, and the uterus was so closely and strongly
"strongly contracted, that it was impossible to introduce the hand in order to bring down the feet.

"The membranes had been broken six days, during which period the woman had slight labour pains. The midwife, whose attendance had not been constant, first perceived the right arm to be fallen into the vagina in the beginning of the sixth day; for when the membranes broke, no part of the child could be felt. A young practitioner had been called in, as soon as the position of the child was known. He gave the patient a mixture, with some tintura thebaica, frequently in the course of the day, and in the afternoon made an attempt to turn the child, but the labour pains being strong and frequent, he found the delivery impracticable.

"I first saw the woman at four in the afternoon, and in a short time attempted to carry my hand into the uterus in the most slow and cautious manner, but I was obliged to desist, finding the operation impossible with any force which I dared to exert, and that I was unable to endure the very strong compression upon my hand by the contracting uterus.

"As
"As considerable efforts to deliver had been made before my arrival, I was afraid, lest these renewed attempts should cause an inflammation of the uterus, and therefore desired the gentleman, who was yet attending the patient, to take away some blood, and to give forty drops of *tinctura thebaica*. I then left the woman for an hour, during which time she was kept in a state of perfect tranquillity, and drank nothing but balm tea or cold milk and water.

"At my return, I made another attempt to deliver, but the stricture at the *collum uteri* was absolutely unyielding, and I was again obliged to desist. Twenty drops of *tinctura thebaica* were now given to her, and she was suffered to rest for another hour, in which time the pains went off and she slept.

"Though every circumstance now seemed very favourable for the delivery, yet I found, upon making a third attempt, that the stricture before mentioned, would not give way to any force I could safely use, and I was convinced that it was impossible to deliver by the feet.

"When I ceased to make any farther attempts to deliver, the pains became exceedingly
ingly strong, the shoulder descended lower into the pelvis, and I began to entertain hopes that the delivery would be effected by the natural pains, as in the cases which you were so obliging as to communicate to me. I then suffered the woman to make her efforts without interruption. The shoulder was soon protruded through the external parts; the side of the child could be perceived, and the spine was incurvated; the loins then appeared, and the child was at length expelled by the feet. The placenta came away properly. The child was dead, but the mother recovered.

The knowledge of what you have said upon this subject was a great comfort to me, when I found the artificial delivery impracticable, and I think you ought to make your observations as public as possible.”

The fact of the spontaneous evolution being thus ascertained, I must leave it to the future observations of other practitioners, to determine upon the particular cases, in which that event may be reasonably expected and properly waited
waited for. Though the knowledge of the
fact has already been attended with advantage
to many women in very deplorable circum-
stances, much remains to be done to complete
the doctrine, not by reasoning upon the subject,
but by careful attention to practice.

I am, dear Sir,

Your obliged and most humble servant,

20th August, 1784.
Old Burlington-street.

T. DENMAN.

SECTION III.

MEDICAL AND PHILOSOPHICAL NEWS.

THE Medical Society of London, held in
Crane-court, Fleet-street, have proposed
the following question, as a subject for a prize
medal of ten guineas value, viz. "What disease
may be mitigated or cured, by exciting par-
ticular affections or passions of the mind?"
Dissertations on this subject must be written in
Latin, English, or French, and delivered to
the secretary, at least two months before the
meeting for adjudging the medal, which will
be on the 8th day of March, 1786.

The
The Royal Medical Society at Paris, not being sufficiently satisfied with any of the dissertations that have been sent to them on the prize question announced last year, (see vol. IV. page 204) relative to the connection between the liver and the skin, have agreed to propose it a second time.—Dissertations on this subject must be sent to M. Vicq d’Azyr, secretary of the society, before the 1st of May, 1786.

The society offer a premium of 300 livres to the person who shall “ascertain the advantages which the practice of physic may be able to derive from the modern discoveries relative to the art of determining the purity of the air by different eudiometers.”—Dissertations on this subject will be received by the secretary till the 1st of July, 1785.

The King has been pleased to incorporate the surgeons of Dublin into a college, to be called the Royal College of Surgeons of Ireland, with authority to examine and grant letters testimonial to all such persons as shall be deemed qualified
qualified to practice surgery in that kingdom.
The present officers of the college are,
Samuel Croker King, Esq. President.
Mr. John Whiteway,
Mr. Henry Lytter,
Mr. Robert Bowes,
Mr. Gustavus Hume,
Mr. Philip Woodroffe,
Mr. James Henthorn, Secretary.

Extract of a letter from Dr. Houlston, of Liverpool, to Dr. Simmons; dated Aug. 27, 1784.

"Within the town of Wigan, in Lancashire, there has lately been discovered, in boring for coal, a sulphureous spring, resembling in its qualities the Harrogate water. It rises in large quantity, is perfectly clear and transparent, and is not very offensive either to the smell or taste;—much less so than the Harrogate water; this being not nearly so strongly impregnated with the sulphureous principle. If carefully corked, it will remain for some time unimpaired, but exposed to the air, it soon loses much of its smell and efficacy.

"It
“It is already greatly resorted to, and is thought to have produced remarkable good effects in many cases, particularly in cutaneous and scorbutive eruptions, to which it seems peculiarly adapted. —— The proprietor of it is making a reservoir, and taking other steps to render the access to it more commodious; and there is said to be an intention of building baths, by which, the advantages to be expected from its use may be considerably increased.”

Extract of a letter from Mr. Edward Jacob, junior, surgeon at Faversham in Kent, to Dr. Simmons; dated August 30, 1784.

“I had lately an opportunity of giving relief to a poor man, in a case which, without timely assistance, might have been a cause of pain and uneasiness all his life time. It was a clear and perfect luxation of the head of the os femoris. At first I suspected there might be a fracture at the head of the bone, being aware, that on account of the great degree of violence necessary to produce a luxation of the thigh bone, some have even doubted the possibility of such an
an accident. But being soon clearly convinced of the nature of the case, I proceeded to the reduction, which was effected in a very short time by a steady extension and counter extension. The noise produced by the return of the bone into its socket, was distinctly heard by me and my assistants; and immediately after the reduction, the patient, who before had been unable to move his leg, was able to raise it without help. The next day he walked down stairs with the assistance of crutches; and in a few days after the accident, went about his ordinary business. On perusing the 2d vol. of Med. Obs. and Inq. I find a similar case mentioned by Mr. Travis, which tempts me to write this to you."

The section of the symphysis pubis has lately been performed at Paris, for the fourth time (in that metropolis), with success. The patient was a rickety woman, twenty-nine years old, who had twice before been pregnant, and had each time been delivered, with difficulty, of a dead child. The operation of the section, in this third labour, was performed by M. de Matthiis, in the presence of M. Alphonso le Roy and others;
others; and the patient was delivered of a live child. When this account of the case was written, (August 7, the day after the operation) the state of the patient was said to be extremely favourable.

In a former part of this volume (page 85) we had occasion to mention an instance of hydrophobia. Another melancholy case of the same kind has lately occurred at New Grange, near Bolton upon Dearne in Yorkshire. The patient, a poor labouring man, named George Wilson, was bit in one of his hands by a mad dog, at the beginning of May last, and having taken some pretended remedy, which had been recommended to him by one of his neighbours, thought himself secure. On Wednesday, September the 8th, ten weeks after the accident, he was seized about noon with symptoms of hydrophobia, and died in the evening of the Friday following.

Mr. James Watt has lately communicated to the Royal Society, a new method of preparing a test
a test liquor to shew the presence of acids and alkalis in chemical mixtures.—Not being satisfied with the usual tests of infusions of tour-nesfol' and litmus for ascertaining the point of saturation of acids and alkalis, Mr. Watt tried several vegetable juices, and among them found that the syrup of red cabbage (brassica rubra) furnished the best test, and in its fresh state has more sensibility both to acids and alkalis, than any other before used.

Mr. Martineau, surgeon at Norwich, has lately communicated to the Royal Society, a remarkable case of dropy of the ovarium. The disease began to appear after a miscarriage, when the patient was in her twenty-seventh year. She first underwent the operation of tapping in 1757, and afterwards had recourse to it three, four, or five times a year, till her death, which happened in 1783. In that space of time, she was tapped 80 times, and lost 6631 pints of fluid.—On dissection, the left ovarium was found enlarged into an immense pouch. The peritonæum was thickened, and in some places ossified; a proof, according to Mr. Martineau, of the provision occasionally made by nature.
nature for the preservation of animals, by thus securing parts, which, if suddenly rent, would be fatal, whereas collections of matter are always allowed to make their way out of the body.

New works about to be published.—1. An Inquiry into the various theories and different methods of cure in Apoplexies and Palsy: by Dr. Chandler, Physician at Canterbury. — 2. An Inquiry how to prevent the Small Pox; to which will be added, an Account of the Proceedings of a Society for promoting general Inoculation at stated periods, and preventing the natural Small Pox in Chester: by Dr. Haygarth, F.R.S. — 3. A large Volume in folio, in English and Latin, entitled, the Natural History and Pathology of Fishes, with many copper plates; by Dr. Monro, Professor of Anatomy at Edinburgh.

PROMOTIONS.

Lately, Mr. George Forster, F. R. S. to be professor of natural history at Wilna, in Poland.

1783.
1783. Feb. 11. Charles Peter Martin de Sar-
guemines, M. D. to be fellow of the Royal Col-
lege of Physicians at Nancy.
1784. May 31. Mr. Nicholas Archer to be
surgeon of the sixth regiment of foot.
June. Dr. Frederick Michaelis to be phys-
cian to the Landgrave, and professo of the
practice of physic at Heffe Cassel.—25. Mr.
Samuel Pierson, to be surgeon of the 26th re-
giment of foot.
July. Francis Riollay, of Hertford College,
Oxford, M. B. to be M. D.—22. Mr. J. Earle
to be surgeon, and Mr. Ludlow Harvey to be
assistant surgeon to St. Bartholomew’s Hospital.
August.—Mr. William Rae to be dentif to
His Royal Highness the Prince of Wales.—3.
Dr. Robert Grant of Inverness, to be fellow of
the Royal College of Physicians at Edinburgh.
—9. Dr. David Pitcairne, and Dr. Francis
Riollay, to be candidates, and Dr. Thomas
Watson, Dr. William Woodville, and Dr. John
Relph, to be licentiates of the Royal College of
Physicians of London.—26. Dr. J. G. Cault
to be physician to St. Bartholomew’s Hospital.
—Mr. George Mitchell to be surgeon of the
Eastern Dispensary, in White Chapel.
Sept. 11. Mr. Mac Intyre, to be Surgeon of the Garrison at Annapolis Royal. — Mr. Thomas Irwin, late Surgeon of the 39th regiment of foot, to be Surgeon to the Garrison at Halifax. — Dr. John Calef, to be Surgeon to the Garrison at New Brunswick. — Dr. William Smith, to be Surgeon to the Garrison at Cape Breton. — Mr. Thomas Walker, to be Surgeon to the Garrison at St. John's Island.

DEATHS.

Lately, at Montpellier, Peter Cuffon, M.D., a learned Physician and Botanist, and member of the Royal Society of Sciences of that city. He enjoyed the friendship of the late M. de Sauvages, and had the honour of assisting him in his Nosoeligia Methodica. The sixth order of the first class of diseases in that celebrated work was written entirely by M. Cuffon. When he was a young man, he travelled to Majorca and Spain, and brought back with him an excellent collection of the plants of those countries and the Pyrenees. To this anecdote of himself, which he formerly related to the editor of this Journal, he added, that soon after his return from
from his travels, an old female relation, who lived with him, took an opportunity one day, when he was from home, to clean and rummage his study. In the course of this business she turned over his dried plants, and considering them as so much useless lumber, threw the whole of his fine collection into the street. For several years before his death he was employed in a great work on the umbelliferous plants, which he is said to have left in a state fit for the press. Dr. Brouffonnet, of Paris, has undertaken to write an account of his life. — At Leyden, Dr. John David Hahn, and Dr. Walter Van Doeoveren, two eminent Medical Professors, of whom we hope to procure some authentic anecdotes. — At Canton in China, Mr. James Dewar, Surgeon of the English factory at that place.

1782. At Dijon, M. Fournier, M. D. author of a work on hectic fevers, of which we formerly gave some account (vol. II. p. 280.)

August 17. At Berlin, Andrew Sigismund Marggraf, a celebrated chemical writer, and Director of the Physical Class of the Academy of Sciences at Berlin.

1783. Jan. 7. John Targioni Tozzetti, M. D. Professor of Botany at Florence, and author of
of a great number of learned works in physis and natural history. He was born at Florence Sept. 11, 1712.

1784. Jan. 28. At Wirtemberg, John Ernest Zeicher, M. D. Professor of Mathematics, and author of several mathematical and botanical dissertations. He was born at Weissenfels in 1720.

Feb. 3. At Leipsic, in his 31st year, Christian Frederick Ludwig, M. D. son of the late celebrated Professor of that name. In 1781, after having visited Paris, he passed a few months in this country, and soon after his return to Leipsic was appointed to a Medical Professorship. In the quarterly catalogue of our present number will be found the title of a dissertation he published on that occasion.—27. Anthony William Plaz, M. D. Professor of Botany in the University of Leipsic. He was born in that city January 1, 1708, and was author of several botanic dissertations.

June. In Warwick Court, Holborn, Mr. John Wynde, Apothecary. — 21. Aged 58 years, Cheney Hart, M. D. in the commission of the peace for the county of Salop, and senior Physician of the Infirmary at Shrewsbury. He was author of an inaugural dissertation de Cor-
tice Peruviano, printed at Edinburgh in 1748, and of an account of the effects of electricity in the County Hospital at Shrewsbury, published in the 48th and 49th vols. of the Philosophical Transactions. — 29. In Red-Lion Square, Holbourn, Mr. Stafford Crane, one of the Court of Examiners of the Corporation of Surgeons, and Surgeon to St. Bartholomew's Hospital. —

July 5. At Dover in Kent, Mr. John Bradleyn, surgeon. — 9. At Medewi in Sweden, aged 50 years, Sir Thorbern Bergman, Knight of the order of Wafa, Professor of Chemistry at Upsal, Fellow of the Royal Society of London, and of almost all the learned societies in Europe. We shall probably soon have it in our power to give some account of this celebrated philosopher, to whose genius and labours the science of chemistry is singularly indebted. —

10. At Olney in Buckinghamshire, Mr. Grindon, Apothecary. — At Oxford, aged 85 years, Mr. Anthony Rawlins, formerly an apothecary in that city. — 25. At Bath, Matthew Dobson, M. D. F. R. S., author of an inaugural dissertation de Menbruix, printed at Edinburgh in 1756; of a commentary on fixed air, printed at Chester in 1759; and of several valuable papers in the Philosophical Transactions, Medical
Observations and Inquiries, and other collections. About three years before his death, he removed from Liverpool (where he had long been in considerable practice) to Bath. His wife, who survives him, has acquired great reputation in the literary world by a very elegant life of Petrarch, and other works. We shall be thankful to any person who will enable us to give a farther account of this ingenious and respectable physician.

Auguf. At Paris, John Francis Clement Morand, (son of the late celebrated Surgeon of that name) Doctor Regent of the Faculty of Physic, and member of the Royal Academy of Sciences of that city; Fellow of the Royal Society of London, and of several other learned institutions. He was born at Paris April 28, 1726; and in 1752 acquired much reputation by his account of a remarkable instance of *Mollities ossium* in a woman named Supiot. He was also author of a letter, published in 1785, on the *Vesitis* of Roohuyzen, and of several essays in the Memoirs of the Academy of Sciences, and *Journal de Medicine.* — At Paris, Anthony Defcremeau, member of the Academy of Surgery, and Accoucheur to her R. H. the Countefs d’Artois. — At Rouen, John Peter David,
David, a Surgeon of great ability and eminence. He was a native of the Pays de Caux, and married the only daughter of the late M. le Cat, whom he succeeded as Professor of Anatomy and Surgery, and principal Surgeon of the Hotel Dieu at Rouen. He was author of an ingenious dissertation on the mechanism of respiration, printed at Paris in 1766; of an essay de laëris origine, &c. published in the 7th vol. of the Haerlem Memoirs; of observations on a disease of the bones, known by the name of Necrophia, of which we formerly gave an account (vol. III. p. 369), and of some other works, published either separately or in the Memoirs of the Academy of Surgery at Paris, of which he became a member in 1764.

— At Paris, Laurence Garnier, M. D. senior member of the College of Physicians at Lyons.

27. At Salisbury, aged 29 years, Mr. Thomas S’s 2 Fawler,
Fawler, apothecary at Clapham in Surry. — 30. At Binfield, in Berkshire, aged 38 years, Michael Teighe, M. D. in the University of Rheims, F. R. S. member of the Royal College of Physicians of London, and formerly physician to the Westminster General Dispensary. — In Old-street, London, Mr. Thomas Godman, surgeon to the Charter-house; author of "A Remonstrance against the mischievous abuse of Phlebotomy," published in 1747.

Sept. 2. At Bridlington, in Yorkshire, aged 72 years, Mr. Thomas Boardman, surgeon and apothecary. — 7. Mr. John Dray, surgeon and apothecary, at Dover, in Kent.

SECTION IV.

QUARTERLY CATALOGUE.

1. AN essay on the management and nursing of children in the early period of infancy; and on the treatment and rule of conduct requisite for the mother during pregnancy and in lying-in: including the diseases to which the mother and child are liable; with the method of curing, and particularly of preventing many
many of those diseases. The whole addressed, as well to the Medical Faculty, as to the public at large; and purposely adapted to a female comprehension, in a manner perfectly consistent with the delicacy of the sex. By William Mosby, surgeon, 8vo. Johnson, London, 1781. 372 pages. 5s.

This volume is the production of a judicious and intelligent writer, and though designed for the public at large, contains a variety of observations which entitle it to the attention of medical practitioners.

2. Curfory Remarks on the nature and cause of the Marine Scurvy, shewing that that distemper may not only be prevented, but probably cured on board ships at any distance from land. 4to. Baldwin, London, 1783. 83 pages.

This work, we are told, was written so long ago as the year 1771, and was then put into the hands of Dr. Huck Saunders. The author of it (Mr. Sherwin, surgeon at Endfield) was formerly surgeon of an East-Indian man. He recommends the meal of malted wheat in preference to sweet wort, and his observations on this and other articles of the diet of seamen, are extremely judicious.

3. An
3. An Account of the Life and Writings of the celebrated Dr. Archibald Pitcairne, delivered as the Harveian Oration at Edinburgh, for the year 1781. By Charles Webster, M. D. physician to the Public Dispensary, of the Royal College of Physicians, Edinburgh, of the Royal Society of Medicine, Paris, &c. 8vo. Edinburgh. 42 pages.

This elegant tribute to the memory of Dr. Archibald Pitcairne, is inscribed to his learned kinsman, the present worthy President of the College of Physicians of London. The most interesting particulars of his life are recorded, and in reviewing his writings, Dr. Webster takes occasion to trace the outlines of the doctrines which characterized the mechanical physicians of the last century.

4. An Essay on the bite of a mad dog, in which the claim to infallibility of the principal preservative remedies against the Hydrophobia is examined. By John Berkenhout, M. D. 8vo. Baldwin, London, 1783. 1s. 6d.

The chief design of this work, which contains many judicious observations, seems to be to induce the public to withdraw their confidence from the remedies hitherto recommended as preservatives against the Hydrophobia.

5. An
5. An improved method of opening the Temporal Artery; also a new proposal for extracting the Cataract; with descriptions and delineations of the instruments contrived for both operations, by the author * when a student at Edinburgh. To which are now added, a miscellaneous introduction, and cases and observations, chiefly tending to illustrate the good effects of arteriotomy in various diseases of the head. By the same author. 8vo. Robson, London, 1783. 213 pages.

6. A familiar Medical Survey of Liverpool, addressed to the inhabitants at large; containing observations on the situation of the town, the qualities and influence of the air, the employments and manner of living of the inhabitants, the water, and other natural and occasional circumstances, whereby the health of the inhabitants is liable to be particularly affected. With an account of the diseases most peculiar to the town, and the rules to be observed for their prevention and cure: including observations on the cure of consumptions. The whole rendered perfectly plain and familiar. By W. Most, surgeon at Liverpool. 8vo. Liverpool, 1784. 28.

* William Butter, M.D.

8. Lectures on the Gravid Uterus, and Midwifery; as taught and practiced by the late Dr. Hunter: (with the Medical terms in Midwifery explained for the benefit of female practitioners); by one who studied under him. 8vo. Flexney, London, 1783. 64 pages. 1s. 6d.

9. Some new hints, relative to the recovery of persons drowned, and apparently dead; with a view to render that practice more generally successful. By John Fuller, surgeon at Ayton, Berwickshire. 8vo. Cadell, London, 1784. 32 pages. 1s.

12. Do

13. Grifte-Tal ofver Valborne-Herrn Herr Carl von Linnë, M. D. &c. i. e. a Funeral Oration in honour of the illustrious Charles von Linné, M. D. professor of Physic and Botany in the university of Upsal, &c. delivered in the cathedral of Upsal, November 30, 1783, when the ceremony of breaking the coat of arms of the family of Linné, on account of the male line of that family being extinct, was performed by David Schulz von Schulzenheim. 8vo. Upsala, 1784. 42 pages.

To the account we formerly gave of the younger Linnæus (vol. IV. p. 433) we are now able to add, from the work before us, that he was born at Fahlun, in Dalecarlia, January 26, 1741; and was appointed demonstrator of Botany at Upsal, in 1759, and professor in 1763. His biographer mentions his travels into France and England, and gives a summary account of his writings. An engraving of the coat of arms of the family of Linné is prefixed to the work.

14. Eloge de Jean Palfyn, Chirurgien et Professeur en Chirurgie de la ville de Gand, &c. i. e. Eulogium of John Palfyn, surgeon

Vol. V. No. III.
and professor of Surgery of the city of Ghent, pronounced by M. Van Dueren, licentiate in Physic, on the 11th of February, 1783, at the opening of the mausoleum erected * to his memory in the parish church of St. James, by the College of Physicians at Ghent. 4to. Ghent, 1783. 14 pages.

We have already had occasion (vol III. p. 329) to take notice of a work of this author's on the external use of ice in the Plague. In the present essay he contends, that no person can have the Plague twice, and asserts that by inoculation the disease is disarmed of its malignancy.

* With the following inscription:

D. O. M.
Et piis manibus
Joannis Palfyn
Scriptis anatomicis et chirurgicis per Europam clari
Obit die 7 Februarii, 1733. Ætatis sua 78.
Pofuit Collegium Medicum Gandaversc
1783.

16. Lettre
16. Lettre a l'Academie de Dijon, avec réponse a ce qui a paru douteux dans le memoire sur l'incoculation de la Peste. i.e. Letter to the academy of Dijon, with an answer to what appeared doubtful in the essay on the inoculation of the Plague. By D. Samoilowitz, M. D. &c. 8vo. Paris, 1783. 77 pages.

This letter is intended to obviate some objections which have been offered to the author's proposal for inoculating the Plague. He adduces several arguments to prove that the Plague, even in Egypt, is perfectly independent of any particular state of the atmosphere; that it is not influenced by climate or season, as it has been known to rage with equal fury in the coldest winter and the hottest summer; and that it is propagated only by the immediate contact of solid bodies. He contends, that its effects are confined to the human species, and in proof of this relates, that at Kiow, during the prevalence of the Plague, a cat belonging to a house, in which every body had died of the Plague, went into another house and conveyed the infection to the family there, but was not itself affected by the disease.

gicum Viennense. Folio. Vienna, 1782, with 65 plates.

The Emperor having instituted a school of surgery at Gumpendorff, near Vienna, ordered all the instruments of surgery that are now used to be procured for it from Paris and London. This collection is the subject of the present work.

18. Precis Historique des faits relatifs au Magnetisme Animal, jusqu'en Avril 1781. i.e. Historical account of the facts relative to animal magnetism, to April 1781. By M. Mefmer, M.D. of the faculty of physic at Vienna. 8vo. Paris, 1781. 228 pages.

This writer complains of Mr. Mefmer's having unfairly gotten one of his patients from him. The patient died.

20. Lettre sur la decouverte du Magnetisme Animal. i.e. A letter on the discovery of animal magnetism to M. Court de Gibelin, Senfor Royal, &c. By the Reverend Father Hervier,
Hervier, Doctor of the Sorbonne. 8vo. Paris,
1784. 48 pages.

21. Mesmer blessé, ou reponse a la lettre du
Reverend Pere Hervier sur le Magnetisme Ani-
mal. i. e. Mesmer wounded, or an answer to
the letter of the Reverend Father Hervier on
animal magnetism. By M. —— 8vo. Paris,
1784. p. 34.

22. Mesmer justifié. i. e. Mesmer justified.

This pretended justification is ironical, and
is written to excite a laugh at the expense of
Mesmer.

23. Lettre de l'auteur du Monde primitif a
Messieurs ses Souscripteurs sur le Magnetisme
Animal. i. e. Letter from the author of the
Primitive World to his subscribers concerning
animal magnetism. 4to. Paris, 1784. 48
pages.

The learned M. Court de Gibelin here re-
lates his own case, and attributes his recovery
to M. Mesmer. The testimony of so respec-
table a writer would probably have been very
useful to Mesmer, but unfortunately M. de
Gibelin died in May 1784, very soon after the
publication of his pamphlet.

24. Me-

27. Recherches et doutes sur le Magnetisme Animal. *i.e.* Researches and doubts concerning animal magnetism. By M. Tbusret, doctor regent of the faculty of physic, and member of the

28. Richtigcr Gebrauch des bleyen extract in äußerlichen Schädens, &c. i.e. Of the proper use of extract of lead in external diseases. 8vo. Halle, 1783.

29. Kurze Nachricht von der epidemischen schnupfen krankheit und der Beschaffenheit der Luft 1781 und 1782. i.e. A short account of the epidemical catarrhal fever, and of the state of the air in the years 1781 and 1782. By a physician at Hamburg. 8vo. Hamburg, 1782.

30. Beschreibung der Epidemien, welche im Frühjahr des 1782 jahres in mehreren gegendcn von Europa geherrscht und unter dem namen der Ruffischen krankheit bekannt geworden. i.e. Description of the epidemic which in the spring of the year 1782 prevailed in many countries of Europe, and was known under the name of the Russian disease. 8vo. Leipsic, 1782.

32. Fundamenta Chirurgiae theoretico-practicæ posita
posita a D. F. W. Baumer. 8vo. Gießen 1783. p. 528.

33. Metodo per curare sicuramente l’idropisia, &c. i.e. Method of curing with safety the dropsy; with observations on the use of the Peruvian bark, on the bite of the viper, and on the cure of madness. By John Baptist Moreali, M. D. 8vo. Venice, 1784.

THE
LONDON MEDICAL JOURNAL,
For OCT. NOVEMBER, and DECEMBER,
1784.

SECTION I.
BOOKS.

I. Histoire de l'Academie Royale des Sciences. Année 1779. Avec les Memoires de Mathematique et de Physique pour la même année, tirés des Registres de cette Academie. i.e. History of the Royal Academy of Sciences for the year 1779; with the Mathematical and Philosophical Memoirs for that year, taken from the Register of the Academy, 4to. Paris, 1782. 653 pages, with 16 copper plates.

In the historical part of this volume, we find the eulogy of Joseph de Jussieu, brother of Anthony and Bernard de Jussieu, names of great celebrity in the botanic world. Joseph, who was the youngest of sixteen children, was born at Lyons, Sept. 3, 1704. In his youth, he...
attached himself with great eagerness to the mathematics; but the reputation two of his brothers had acquired in botany, soon induced him to pursue the same career, and to devote himself to the profession of physic. In 1735, he was appointed, as botanist, to accompany the French academicians to Peru, where he made those observations on the different species of bark which we have already had occasion to mention (vol. iv. p. 305.) When his astronomical friends had accomplished the object of their mission, M. de Jussieu, instead of returning with them to Europe, chose rather to make a longer stay in Peru, with a view to explore its natural history. It has been said also, that an epidemic disease happening to prevail at that time, the inhabitants, who venerated his medical talents, insisted on his not quitting the country till the disease was over; and even threatened to punish any one who should be accessory to his escape. Among his papers have been found some notes, relative to this and other epidemics, and likewise concerning the small-pox, as it appears in Peru. He was prevented by ill health, and his professional engagements, from setting out on his intended travels into the interior parts of Peru till 1747.

His
His biographer gives an account of the singular hardships and dangers he had to encounter in those travels, in which he employed three years, and in the course of which he made many useful discoveries in natural history.

In 1750, he returned to Potosí, which he had quitted three years before, and here he passed some years in drawing a map of the province, examining the mines, assisting in several public works, and practising physic. In 1755, he removed to Lima, where he continued many years; but at length his health began to decline, and he became subject to frequent vertigo, which ended in an almost total loss of memory. His friends at Lima commiserating his situation, procured him a passage to Europe, and he arrived at Paris in 1771, after having been absent thirty-six years. He knew that one of his brothers, Bernard de Jussieu, was still living; but this was almost the only thing he was sensible of, so much were his faculties impaired. He continued in this state of imbecility till his death, which happened on the 11th of April, 1779.

It is mentioned as a remarkable circumstance, that although he was for thirty-six years a member of the academy, (having been elected in
in 1743) he was never present at one of its meetings; the state of his intellects, after his return to his native country, having been such as disabled him from appearing in public.—His nephew, Dr. Anthony de Juffieu, means, we are told, to publish some account of his travels, collected from the papers he has left behind him.

In the second part of the volume, we meet with the following memoirs:

1. Of the structure of the organs which serve in the formation of the voice, considered in man, and in the different classes of animals, and compared with each other. By M. Vicq D'Azur.—We have here a very accurate description of the organ of voice as observed in man, in the ape, in quadrupeds of different kinds, in birds, and in reptiles. Several species of ape, it seems, are furnished with membranous bags, which communicate with the larynx, and by being alternately filled with and emptied of air, serve to form the cry of those animals. The structure of this bag in the Oorang-Outang has lately been described by Professor Camper, in the Philos. Trans. for 1779. In two species of monkey, (uraine and alouate of Buffon; preacher monkey, and royal monkey of Pessant) which,
which, on account of the strength of their voice, have been called finges-burleurs, or bowling monks, this reservoir is found to be a bony pouch. In the larynx of the cat, our author has observed two membranes, which have escaped the notice of Severinus and Blasius, and which vibrate on blowing into the trachea, and produce a noise similar to the purring of a cat. In the hog, the glottis, we are told, has several cavities covered by a muscle; and in the ass and the mule, the thyroid cartilage is furnished with a cavity, covered with a membrane, so as to form a kind of drum. The air which is alternately forced into and out of these cavities, increases the voice of these animals, and produces the sounds which characterize them.

The organ of voice in birds is constructed very differently from that of quadrupeds; they have no epiglottis, but their glottis has the faculty of opening and shutting. This is the only part of the organ that is at the upper part of the neck; the rest is at the lower part, above the bifurcation of the bronchiae, the membranes of which are capable of vibration, and seem to answer the same purpose as the membranes which in man are called vocal chords. In some species, as in the swan, the trachea sinks into
into the sternum; in others, it extends outwards on each side of that bone. This disposition our author supposes to be analogous to the bony pouches; and large cavities observable in certain quadrupeds; and of course he considers it as intended only to give strength to the voice, especially as he has found no such apparatus in those species of birds whose notes are varied and agreeable. In general, he has observed, that the organ of voice, like that of hearing, is most perfect in those animals where its structure is the most simple. In frogs, the vocal chords are found, but no epiglottis. In reptiles, the glottis seems to form the whole of the organ, and their voice, it is observed, is confined to hissing.

The results of our author's observations are, 1. That the glottis seems to be of no use in forming sounds; 2. that the inferior membranes of the larynx in man and in quadrupeds, and the elastic membranes of the bronchia in birds, are the true organ of voice, as they are the only parts susceptible of vibration; 3. that the bony pouches, and cavities of the trachea, which exist in many species of animals, serve only to increase the intensity of the sound.—These conclusions, however, he does not mean to
to offer as decisive, as he intends to prosecute his inquiries on this subject. His descriptions in the present paper are illustrated by a great number of elegant figures in seven plates.

11. Analysis of the yellow bolar earth of Berry. By M. Sage.—It is from this earth that is procured the red colouring substance, known by the name of Prussian or English red. The Dutch purchase it in Berry, at the rate of thirty-eight or forty solids per quintal; and after giving it a red colour, sell it again at different prices, from twenty-five to forty-eight livres per quintal, according to the goodness of the colour. The profit of the Dutch on this article has long been known; but their mode of preparing it has been kept secret. M. Sage has discovered that it consists simply in colouring it. A quintal of this earth, submitted to chemical analysis, yielded of acidulous water ten pounds, of calx of iron forty pounds, and of a colourless argillaceous earth fifty pounds.

111. Case of a strangulated intestine. By M. Bordenave.—The subject of this history was a man, forty-five years old, who was attacked with a violent cholic, which terminated fatally in eighteen days. On dissection, the ileon was found adhering to and strangulated in a pouch formed
formed in the peritonæum. Our author conjectures, that this distension of the peritonæum originated from some violent exertion, and that some of the common causes of inflammation produced the strangulation of the intestine and death.

iv. Three Memoirs on the means of dissolving platina in the nitrous acid. By M. Tillet.—From these inquiries, we learn that platina, which, on account of its specific gravity, and other qualities, in some respects approaches to gold, is, however, not to be considered as a perfect metal, as the nitrous acid separates from it a black powder, which has no metallic property, and which has hitherto appeared to be irreducible.

v. On the population of Paris, and the provinces of France, since the beginning of the present century. By M. Morand.—It is a question with philosophers and politicians, whether Europe is more populous now than in the time of the Roman republic or under the Emperors. Montesquieu and Wallace contend that the human species have diminished in number since the times we call ancient; but this opinion is opposed by Hume and Voltaire. The author of the paper now before us confines his inquiries to
to France; and after a careful examination of the different authors who have written on the population of that country, he concludes; that within the last forty years, the number of its inhabitants has considerably increased. In 1682, according to an account taken by order of M. Colbert, Paris contained 720,000 inhabitants. In 1760, the number, according to the Abbé Expilly, was reduced to 600,000, or to 558,000, according to M. de Buffon. The population is therefore considerably diminished since the time of M. Colbert; but as, during the last forty years, the number of births has constantly surpassed that of deaths, our author contends that the population of Paris is now again on the increase. Among other proofs that the population of the provinces is likewise on the increase, he quotes the observations of M. Maiffance, who, from accurate inquiries in 128 parishes of Auvergne, Lyons, and Rouen, found that in the space of sixty-two years, the population had increased more than 111th. The same writer, we are told, confirms the remark of M. Malouin, that the months of July, May, June, and August are the most frequent dates of conception; and November, March, April,
and October, the least so, in the order in which they stand.

vi. Account of a glacial acid, obtained by distilling a mixture of smoking nitrous acid and powdered charcoal. By M. Cornette.—If a mixture of vitriolic and nitrous acids be poured on charcoal, and distilled, there rises, towards the end of the distillation, a concrete salt, to which M. Cornette gives the name of glacial acid (*acide glaciale,*) and which he supposes to be the vitriolic acid, in a solid form. As this does not happen when either of the acids is distilled separately, he supposes that the nitrous acid is essentially necessary to its formation.

vii. On the Vitriol of Mercury. By the same.

—Some chemists have asserted, that if we attempt to sublime vitriol of mercury, this substance will be decomposed instead of being sublimed; and that the metal, detached from the acid, will come over in the form of running mercury. But M. Cornette, who has sublimed a great quantity of this vitriol, asserts that only a very small portion of the mercury is separated from the acid, and that the mercury, so detached, is not in a fluid state, but in the form of a gray powder. He observes also, that when calx of mercury is employed instead of fluid mercury,
mercury, in making the vitriol of mercury, the latter will be sublimed entire.

VIII. On the decomposition of several vitriolic and nitrous salts with a metallic basis, by means of the marine acid. By the same.—The author's view, in this paper, is to examine the action of the marine acid on the vitriolic and nitrous salts with a metallic basis. In the preceding volume (see our 4th vol. p. 28,) he had shewn, that this acid decomposes the vitriolic and nitrous salts with bases of fixed and volatile alkali; and he now proves that its action is the same on the salts mentioned in the title of the present paper. This property was already known with regard to silver, lead, mercury, and regulus of antimony; but M. Cornette here extends it to copper, iron, zinc, and cobalt.

IX. Of the different salts obtained by lixiviation from the ashes of Tamarisk, procured in different places. By the same.—It has long been observed, that the ashes of this plant (Tamariscus Germanica Linn.) yield no fixed alkali, but only a vitriolic salt; but we here learn, for the first time, that this vitriolic salt will be almost entirely Glauber's salt, if the plant grows near the sea; and that in proportion as the tamarisk grows remote from the sea,
this salt will be more and more a salt of vitriolated tartar, so that in very inland situations it will afford no vestige of Glauber’s salt. The ashes of this plant are used for decomposing the mother water of saltpetre, and for procuring nitre. The place of its growth, therefore, is not matter of indifference. On the borders of the sea, M. Cornette observes, it will afford most quadrangular nitre; while, on the contrary, in inland situations, it will yield only true saltpetre.

x. Botanico-meteorological observations made in the Castle of Denainvilliers, near Pitiviers, in Gatinois, in the year 1778, by M. Du Hamel,

II. Memoirs of the Royal Medical Society at Paris, vol. III. (continued from page 253.)

An account of the means of obviating, by remedies equally simple, easy, and efficacious, certain bad effects of the small-pox and measles, which frequently occur when those disorders are of a malignant kind. By M. de Laffone.—— We have here an account of the efficacy of milk in the diarrhœa which accompanies the small-pox and measles; and in the former of these diseases,
diseases, we are advised to bathe the eyes with rose water, to prevent the eruption of pustules on those parts.—9. An essay concerning the fat of the human body, and its effects; together with an account of the depravities it is liable to, and the diseases these may give rise to. By M. Lorry.—This elaborate essay, which extends upwards of sixty pages, is divided into three parts. In the first, the author treats of the fat in its natural state; in the second, he describes the diseases which a vitiated state of this substance may occasion; and in the third, he considers the particular depravities to which it is liable in different parts of the body. M. Lorry shews that the fat consists of oily and mucilaginous parts, and that, in young animals, the latter is in the greatest proportion. Young persons, he remarks, lose and regain their fat sooner than old ones; and in the latter the fat is yellowish, very oily, in smaller quantity, and of little consistence.—Our author takes notice of the affinity between the fat and the bile; he shews, that the bile of certain birds is purely resinous, and that, in these animals, a little of any acid mixed with the fat, converts it into a resin. He mentions instances of persons, whose skin acquires a yellowish hue after their meals; and
and observes, that the flesh of full-fed poultry is yellow and bilious.—10. An account of the experiments made by M. M. de Jussieu, de Lalouette, Jeanroy, and Hallé, the committee appointed to ascertain the properties and effects of the root of the Plumbago Europaea in the cure of the itch. By M. Hallé.—The society, in 1778, having offered a premium for the best method of curing the itch, it was adjudged in favour of M. Sumeire, Physician at Marignan, in Provence. The remedy he proposed is a particular preparation of the root of the Plumbago Europaea Linn. All the botanic writers who have described this plant, speak of it as having an acrid caustic quality. It has long been employed in Provence against the itch. Garidel mentions it in his history of the plants that grow about Aix; but what he says of its acrimony tends rather to dissuade from than to recommend its use, as he had seen it bring on a general inflammation of the skin and violent fever. A similar observation was made by Sauvages in the Mem. de l'académie des sciences for 1739.

M. Sumeire's manner of preparing this remedy consists in pounding two or three good handfuls of the root, and a small handful of common salt, in a marble mortar, and then pouring on these
these ingredients at least a pound of boiling oil of olives. The whole of this mixture, after it has been well stirred for three or four minutes, is to be put on a piece of linen, and when the oil has passed through the linen, the root is to be pressed, and only part of it left in the cloth, which is to be tied in the form of a knot; with this knot, after it has been well soaked in the hot oil, we are directed to rub the whole surface of the body. This friction is to be repeated every twelve hours, till the disease disappears, and we are particularly cautioned to make the oil very hot each time. The first friction, we are told, generally increases the eruption, but the third or fourth commonly removes the complaint. This mode of treatment, it seems, was first employed by a quack, about forty years ago, and is said to be equally efficacious in cases of tinea. The committee, after trying its effects in several cases, allow that it answers the character given of it, and that it cures without any internal preparation, and more speedily than any other known remedy. M. Vicary, Physician at Avignon, has since informed the society, that the root of the Clematis vitalba, employed in the same manner, possesses similar virtues.
On a new manner of preparing the acid soaps, and on their use in Physic. By M. Cornette.—Acid soaps are made by combining any of the mineral acids with oils; but the vitriolic is said to mix with them more easily than any other.—The process recommended by our author for preparing a soap of this kind, consists in putting four ounces of olive oil into a glass or marble mortar, and pouring on it gradually, and at different times, two ounces and a half of concentrated vitriolic acid, taking care to keep the mixture constantly stirred, till it has acquired a considerable degree of consistence. M. Cornette observes, that if the process is cautiously and slowly conducted, no heat is generated, nor any sulphureous vapour raised; a proof, he thinks, that the oil is not changed by the operation. The superabundant acid may be removed, we are told, by two means, either by exposing the mass to a damp air, the moisture of which will be attracted by the acid, or by pouring on it boiling distilled water, as M. Acharde advises. When the latter method is adopted, the soap liquefies, and floats on the surface of the water, which is to be decanted when cold, and the same process is to be then repeated, if there should be still a superabundance
dance of acid. M. Cornette informs us, that soap, thus prepared, becomes white after a certain time, and that it renders water milky, like common soap, and dissolves in spirit of wine. When essentital oils are employed for this purpose, the process, we are told, is more difficult, on account of the heat that is generated; but our author has contrived to obviate this difficulty, by mixing the ingredients in a bath of sea salt and powdered ice. Soaps, thus prepared with essentital oils, are said to preserve the smell peculiar to the oil that is employed, and are of a brown colour. When they have been recently prepared, they are soluble in water; but become less so, and in some degree resinous, after a certain time. With regard to the medicinal properties of acid soaps, M. Cornette informs us, that he has given, with success, the olive oil soap, in a case of nephritic cholic, in doses of four grains twice a day; in this instance, it brought on a copious discharge of urine. He assures us, that some urinary calculi, after refilling the alkaline, have yielded to a course of the acid soaps. The author also mentions the good effects of this remedy, in two cases of scirrrous tumours. —

12. On the hydrocephalus internus, or dropy of

Vol. V. No. IV.

Y y

the
the ventricles of the brain. By M. Odier, Physician at Geneva.—From this memoir we learn, that, on an average, twelve or thirteen children die annually of this disease at Geneva. The description our author gives of it is chiefly from Whytt; and in the cure, he lays great stress on the use of blisters. He makes no mention of the use of mercury, administered so as to excite a salivation. He has seen some instances of recovery, which are related; but these, and perhaps we may venture to say, every other case of the kind hitherto published, are of a doubtful nature. M. Odier mentions twelve other cases that have occurred to him, in which the disease proved fatal; and in such of these as were submitted to dissection after death, water was found in the ventricles of the brain. One of these patients was a man, 35 years old, whose symptoms were such as usually accompany hydrocephalus. In this case, on dissection, a large loose hydatid, with a round hole in it, was found in the right ventricle.—Among the remote causes of hydrocephalus, our author enumerates eruptive diseases, such as small-pox, measles, and scarlatina. He has four times seen it come on soon after diseases of this kind. In some cases, he has been inclined to think, that
that the abuse of vomits might have contrib-
uted to bring on the disease; but in each of
these instances there appeared to be some other
more probable cause; thus, in one case where
a vomit had been administered for the chin-
cough, the patient had just before had the
small-pox; and in another instance, the patient
had had a fall.—13. On the vapour baths of
Russia, considered as a means of preserving health,
and of curing several diseases. By Antonio Ri-
beiro Sanchéz, formerly First Physician to the Em-
press of Russia.—The chief object of this essay
is to prove that the Russian baths surpass, in
utility and convenience, those of the ancient
Greeks and Romans, as well as those of the
modern Turks. The author first gives an his-
torical account of the structure and use of baths
among the ancients, and compares them with
those of modern times. He observes, that the
Turkish baths, such as they are constructed in
London, would be preferable to every other, if
the air and the vapour of the room in which
the patient sweats, were frequently renewed, as
in the Russian baths. As he has seen baths of
this kind at London, and also at Azoph, when
that place was taken by the Russians in 1736,
he enters into a particular description of them.
His account of the Greek and Roman baths is collected chiefly from Vitruvius. The Russian bath, he observes, in which every thing is done in one apartment, is an epitome of the Roman and Turkish baths, which require four or five.

Of the Russian baths, we are told, there are two sorts, the one public, the other private; the latter differs from the former only in having a chamber, with beds in it, contiguous to the bath. Both are heated by means of a furnace in the middle of the bath. The upper part of the furnace is filled with pebbles, which are supported on an iron grate over the fuel, and kept constantly almost red hot. Around the sides of the bath are several benches, rising one above the other, like those of an amphitheatre. When the wood in the furnace is reduced to ashes, the funnel, through which the smoke passes, is closed, and the bath is then heated to a degree which is intolerable to persons who have not been accustomed to it from their infancy. The bathers lie down naked on a straw mattress, on the first or second bench next the furnace; and by pouring cold water on the heated stones, the bath is instantly filled with a dense hot vapour. This vapour, which
may be augmented or renewed at pleasure, soon brings on profuse perspiration; and when the bather has sweated sufficiently, he is rubbed with soap and the branches of the lime tree, the leaves of which are covered with a down. He is next washed with warm water, and lastly with cold water; several pailfuls of which are poured on his head. They who bathe in the public baths, instead of being washed in the bath before they quit it, plunge into some pond or brook, in the open air, or roll themselves in the snow. They who make use of a private bath, have several pailfuls of cold water poured on their heads, and upon leaving the bath, go to bed in the room adjoining to it, which is moderately heated, and continue there till they have done sweating.

In the Turkish and Roman baths, our author observes, the vapour first raised remains unchanged, as in those there is no communication with the external air; while, in the Russian baths, the vapour is renewed every five or six minutes. In these last, the moment the person who bathes thinks he does not sweat sufficiently, or wants fresh air, he orders more water to be poured on the heated stones, and the vapour instantly passes
paßes out through two windows, which are opened occasionally for this purpose.

After describing the manner of bathing, our author points out the abuses committed by the Russians in this respect. The first of these, we are told, consists in their entering the bath too soon, that is, when it is filled only with the hot and dry smoke arising from the ashes. This abuse, he observes, is practised chiefly in the public baths, and by the lower sort of people; and as it almost always occasioned more or less of head-ache, and thirst, to allay which they often drink freely of cold water, its effects cannot fail to be injurious to health, and sometimes are even suddenly fatal. As proofs of this, the author mentions two instances of persons at Moscow, who died in the bath, after drinking ice water while they were sweating. Some, he observes, are so imprudent as to bathe immediately after a full meal. This he has found to be particularly hurtful to women, and in these he considers it as a frequent cause of irregular menstruation, fluor albus, and sterility. Some accustom themselves to be cupped in the bath every month, or six weeks: this practice, he observes, is often pernicious. The habit of plunging into cold water, or snow, he thinks,
thinks, can be allowable only in very robust habits; and he condemns the custom of exposing children, almost as soon as they are born, to the suffocating heat of a bath, filled with smoke; for it seems, that in Russia, as soon as a lying-in woman is able to walk, which is generally within twenty hours after delivery, she is obliged, by established custom, however inclement the season may happen to be, to go to a bath, where she and her infant undergo the usual process of sweating, rubbing, and cold bathing.

Of the efficacy of these baths, when properly administered, in different diseases, the author seems to entertain a very high opinion, particularly in the lues venerea, a disease to which, he thinks, three-fourths of the chronic complaints that prevail in Russia owe their origin.

—14. On the military fever which prevails frequently in different parts of Normandy. By M. Varnier.—15. Account of an aneurism of the axillary artery. By M. de Horne.—The subject of this case was a stout, active man, fifty years old, and extremely irascible. About ten years before his death, he was unusually agitated by a violent fit of passion; and a few days after complained of a pulsation of the right subcla-
vian artery. This seems to have been the beginning of the aneurism; which went on slowly increasing, and, at the end of about eight years, appeared externally forming a tumour of about the size of a walnut. In the course of the two succeeding years, it acquired a prodigious bulk, so as to occupy the whole of that part of the thorax which is covered by the great pectoral muscle, and extending likewise under the axilla to the lower costal of the scapula. At length, in March 1774, two years after the appearance of the aneurismal tumour, the patient died suddenly, and the tumour instantly disappeared. The dead body was opened by M. Sabatier. The aneurism was found to be of the subclavian artery, at that part where it passes out of the thorax, and begins to be distinguished by the name of axillary artery. The second and third of the true ribs, on which the pressure of the aneurism had been most considerable, were become so extremely thin, that they had given way, and were found broken. It was to this fracture that the sudden and fatal extravasation of blood into the cavity of the thorax, which occasioned the patient's death, was owing; the ends of the fractured bones having lacerated the fascia.
supposes the effect of the tumour on the ribs to have been purely mechanical, as no appearance of caries could be discovered. He has thought it right to observe, that at the time of the fit of passion, to which the origin of the disease was ascribed, the patient was under a course of mercury. — 16. Inquiries and observations concerning the Essential Epilepsy, or morbus facer of Hippocrates. By M. Saillant. — This writer gives the name of essential epilepsy to that species of the disease, the seeds of which he supposes the patient to bring into the world with him. This original predisposition, he observes, may be hereditary, although it may have remained dormant during one or more generations; or it may be acquired in utero from the passions of the mind, state of the fluids, &c. of the mother during pregnancy; and he quotes examples from authors in proof of its having been transmitted by the mother, in consequence of frights, &c. although she herself has not been affected with the disease. We need hardly point out how repugnant these quotations are to the present state of our knowledge with regard to the foetus in utero. M. Saillant allows, that the disease may be owing to original mal-conformation of the solids, but he thinks it is more
commonly the effect of a depraved state of the fluids; and his remarks, therefore, are confined chiefly to the disease, as arising from this cause.—17. On the inconveniences of Stables, when badly constructed. By Abbé Teffier.—

18. Historical account of the Epizootic disease, which prevailed in Picardy in 1779. By M. Vicq D’Azyr.—19. On the Glanders. By M. Chabert, Director and Inspector General of the Royal Veterinary School.—In this paper, the author endeavours to prove, that the glanders is a contagious disordered; that it is sporadic, and rarely epidemic. The horse, mule, asf, and zebra, are the only animals in which he has observed it.—20. On the irritability of the Lungs. By M. Varnier.—21. Reflections on the intention of Nature in the structure of the bones of the Cranium, peculiar to new-born Children; being an Essay on the advantages which may be attributed to that conformation. By M. Thouret.—This writer supposes that the futures not only serve to lessen the bulk of the child’s head, in its passage through the pelvis, but that by the equal compression of the brain, which is the consequence of this diminution of bulk, they are the means also of rendering the child torpid and insensible.—22. Observations on the phenomena which
which the urine exhibits in a state of health. By M. Hallé.—Physiologists have distinguished the urine discharged immediately after drinking, from that which is voided several hours after a meal. The former, which is a watery saline excretion, that deposits no sediment, they have termed urina potası; the latter they have stiled urina sanguinis; and it is this to which M. Hallé has chiefly confined his researches. The results of his observations are, that the substances separable from urine by a spontaneous decomposition, are, 1. a gelatinous substance, or mucus, which forms the first sediment; 2. a saline earthy substance; 3. a colouring substance; and 4. salts of different kinds.—23. Of the analysis and properties of the various constituent parts of Ipecacuanha. By Messieurs De Laflone, junior, & Cornette.—From these inquiries we learn, that the woody part of the root of Ipecacuanha is nearly as emetic as that which is separated from it; and that an extract, prepared by infusing the powder of this part in cold distilled water, possesseth the same property, though in a milder degree. These writers observe also, that the refined and extract prove emetic in the same doses, viz. of five or six grains; but that the former is generally more purgative than the
the latter.—24. Chemical inquiries concerning the processes hitherto employed in the preparation of Emetic Tartar. By M. Caille.—25. Observations and researches on the use of the Loadstone in Physic; being an Essay on Medical Magnetism. By Messieurs Andry and Thouret.—The first fifty pages of this paper relate to the history of medical magnetism. From this account we learn, that the first Greek writer who mentions the topical use of the loadstone, is Aetius, who speaks of its efficacy in gout and convulsions. The Greeks are supposed to have borrowed this remedy from the Egyptians. Neither Celsus, Pliny, or Galen, have written any thing concerning it. Alexander Trallianus affirms, that it removes pain, when worn about the neck; and Hali Abbas, according to Zwingier, attributes similar properties to it; as does Marcellus, who practised at Bourdeaux about the year 338.

Paracelsus, we are told, who often had recourse to the loadstone in nervous affections, entertained an opinion that it acts on the fluids and viscera; and Father Kircher relates, that, in his time, it was the custom in Holland, in cases of hernia, to make the patient swallow filings of iron, and then to apply to the hernia a plaister,
a plaister, composed of powdered loadstone, for
eight days; during which time the patient re-
mained in a proper posture. This process was
founded on a supposition, that the efforts of
the iron and magnet to unite, would be fa-
vourable to the reduction of the hernia. About
the beginning of the last century, when a taste
for experimental philosophy began to display
itself, the medicinal properties of the magnet
were not overlooked. Bonetus mentions a case
of furor uterinus, in which a cure was effected
by a loadstone worn at the pit of the stomach.
In the German Ephemerides for 1686, we have
an account of its utility in a case of gutta serena;
and in the Mercure de France for 1726, is re-
lated the case of a Monk, who, by wearing a
loadstone, experienced sudden relief in a spasm-
modic complaint, to which he had been sub-
ject for several years.

The discovery of the means of making ar-
tificial magnets, and of giving them a power
superior to natural ones, gave rise to more in-
quiries on the subject. In 1765, Dr. Klarich,
of Gottingen, ascertained its efficacy in tooth-
ach, and also tried it in pains of the limbs,
deafness, and palsy. In 1767, Dr. Weber com-
municated to the Royal Society of Gottingen,
an account of a painful affection of the eye, in a man aged 72, which had been cured in sixteen days, by applying a magnet three times a day, for the space of an hour each time, to the corner of the eye. In the same year, he published this and three other cases at Hanover, in a work, entitled, *Die wurgkung des kunstlichen magnets, &c.* The first of the three additional cases related in this work was a case of ophthalmia; the second was a case of gutta serena, and head-ach; and the third was a great weakness of the right eye. In all of these instances a cure was obtained. In 1772, Professor Ludwig printed a Thesís at Leipsic, entitled, *De magnetismo in corpore humano,* in which several facts relative to its efficacy in the cure of disease are stated. In 1774, it obtained additional reputation, through the means of Father Hell, of Vienna, who, having applied himself to this subject, made some excellent artificial magnets, with which he succeeded in a variety of cases, chiefly of painful and spasmodic affections. In these instances, the magnets were worn constantly by the patients for a considerable length of time, at the pit of the stomach, at the wrist, by way of bracelets, or in other forms. Father Hell, we are told, preferred a round shape to any other. In France, it seems,
the Abbé le Noble has particularly distinguished himself by the perfection to which he has brought the artificial magnet, and by his application of it to medical purposes. One of those which he has made, although it weighs only fifteen pounds, supports a weight of two hundred and thirty. In 1777, the Abbé requested the Society to try the effects of his magnets in diseases; and the authors of the paper now before us, which is the result of their enquiries, were appointed to make experiments on the subject.—Before they relate the cases in which they have tried the lodestone, they describe the methods of applying it.—The most common, which is what the Abbé calls the application en armure, consists in applying small bars of artificial magnet, of about an inch long, four tenths of an inch broad, and one and a half tenth of an inch thick, to different parts of the body, in the shape of bracelets, garters, necklace, bandage round the head or waist, &c. The bracelets are formed of five of these bars; the garters of twelve, and the necklaces of ten. They are all of them covered with black velvet, and secured by means of ribbands. Instead of these bars, magnetic plates (des plaques aimantées) are sometimes
sometimes applied naked to the skin, and their shape is adapted to the part of the body on which they are placed.

The first case in which our authors tried the effects of magnetism, has been in part related in the first volume of the Memoirs of the Society (See our 3d vol. p. 158). In that case, we are told, the pain has continued to return at times, with more or less violence, but is constantly alleviated by the application of a loadstone. Several other instances are added of its effects in tooth-ach, rheumatism, cramps, palpitations, and epilepsy; but in all of these complaints its effects seem to have been only palliative. The results of the inquiry, however, as given by the authors, are, 1. that the loadstone possesses a salutary property; 2. that this property is independent of its coldness, weight, or metallic properties; 3. that it seems to act on the nerves, but has no apparent influence on the fibres, fluids, or visceræ; 4. that it may be ranked among the antispasmodics.——26. Observations on the properties of the Bark of a Tree, known at Madagascar by the name of Bela-Aye. By M. Sonnerat.—We have already had occasion to mention this bark (see vol. III. p. 421). Our author, who brought
brought a considerable quantity of it from Madagascar, was not able to procure either the flower or the fruit of the tree that produces it. Administered twice a day, in doses of twenty-four grains, it is said to have cured a chronic diarrhoea, which had resisted a variety of remedies for the space of six years.

III. A Method of preventing or diminishing Pain, in several Operations of Surgery. By James Moore, Member of the Surgeons Company of London. 8vo. Cadell, London, 1784. 50 pages, with a copper-plate.

It is very properly observed by the ingenious writer of the work now before us, that the most essential improvements that can be made in surgery, are unquestionably those which render operations safer, and diminish the danger of the patient's life. But what can diminish the acuteness of the pain without increasing the danger, is also an improvement very much to be wished.

The common uneasy sensation which is included in the general term of pain, is indeed of little consequence. But when people con-
lifer the degree of pain given by some surgical operations, they must acknowledge, that to diminish or prevent a few minutes of such pain, is an object highly desirable, both to the patient and surgeon. Reflections of this kind struck our author, it seems, very early after he began to study his profession, and he made various experiments without success, in search of something which might mitigate the violence of the pain in surgical operations. Of late he resumed the subject, and reflecting on the nature of the nerves, and on some facts concerning them, he was led to an idea, which he flatters himself, will go a considerable way to the accomplishing the object he had in view.

The first thought that occurred to him was, that, to cut the trunk of a nerve going to a limb, might be done with little pain, and enable us to perform the amputation with no pain at all. But a very little reflection convinced him that this was impracticable.

He then thought his end might possibly be accomplished by compression; and was encouraged in this idea, by having often felt that sensation, which proceeds from compressing the sciatic nerve by fitting in a particular position.
It occurred to him at the same time, that the compression of the nerve might be made most effectually by means of a tourniquet.

Of the experiments Mr. Moore first made for this purpose, on his own person, the result was not such as he expected; a strong compression of the sciatic nerve, just as it passes over the lower edge of the ischium, having failed to deprive his leg and foot of their sensibility. This failure, as he afterwards discovered, was owing to the pressure not being continued during a sufficient length of time; for in a subsequent experiment, when the tourniquet remained on fourteen minutes, his foot was quite numbed; and in half an hour his foot, leg, and the outside of his thigh, were so perfectly insensible, that when he pricked them with pins, he felt nothing. Still, however, part of the inside of his thigh and leg retained some degree of feeling. This he ascribed to his not having compressed the crural and obturator nerves. He now slackened the tourniquet, and in a few minutes sensation, and the power of motion, returned to his limb.

He now caused a bandage to be made with two thick compresses, one of which was placed on the crural and obturator nerves, and the
other on the sciatic, at the upper part of the thigh. A tourniquet was applied and tightened, and in half an hour he had not the least feeling, upon pricking any part of his limb.

Mr. Moore acknowledges, that an uneasy sensation is produced by the compression, but how infinitely inferior this is to the pain of amputations, he thinks may be conceived from his having borne it easily for so long a period.

As the total stoppage of the circulation for so long a time as is necessary to render the limb completely insensible, may be considered as an objection to the use of a tourniquet, he has contrived an instrument, formed of a curved piece of iron, covered with leather, and of sufficient capacity to contain the thigh within its curve. At one end of this instrument, is a firm compress of leather, which is to be placed on the sciatic nerve. A screw passes through a tube at the other extremity of the instrument, and terminates in an oval compress, which is to be placed on the crural nerve. By this instrument the compression is confined to two points, which are nearly opposite to each other. All the rest of the limb is left free and uncompressed. An engraving is given of the compressor applied to the thigh, and likewise of
of a smaller one suited to the arm. The latter is directed to be applied to the plexus in the axilla, close to the humeral artery.

Mr. Moore very candidly allows, that in amputations of the lower limbs above the knee, the compreßor will not be able to diminish the pain in such a degree, as when the operation is to be performed below the knee; which is owing, he observes, to some branches of the lumbar nerves, to the obturator nerve, and to branches which the sciatic and crural nerves send off before they reach the thigh, not being compressed by the instrument. This defect, he thinks, may be supplied by applying a common tourniquet, and keeping it tight for fifteen or twenty minutes before the operation.

Our author gives a very accurate account of a case of amputation below the knee, in St. George's hospital, in which, by the favour of Mr. Hunter, he had an opportunity of trying the effect of his instrument. This experiment, which had all the success he expected, though far from being decisive, will, he thinks, be sufficient to excite a very thorough investigation of the subject.

It seems right to observe, however, that in this case a grain of opium was given to the patient
tient about a quarter of an hour before the operation, with a view, as we are told, to diminish the smarting of the wound after it.—Much stress, perhaps, cannot be laid on so small a dose of opium, even by those who may be most disposed to doubt of the efficacy of the author’s invention; but the experiment would certainly have been more satisfactory without it.

In the course of his pamphlet, Mr. Moore points out the advantages that may be expected to result from his invention, and attempts to obviate such objections as he thinks may be brought against it; but for these, and other particulars, we must refer our readers to the work itself.

IV. Observations on Poisons; and on the use of Mercury in the cure of obstinate Dysenteries. By Thomas Houlston, M. D. Physician to the Liverpool Infirmary, and Honorary Member of the Literary and Philosophical Society of Manchester. 8vo. Baldwin, London, 1784. 72 pages, 1s.

The observations on mineral poisons—the case of a boy poisoned by the roots of the
the hemlock dropwort*—the directions for giving assistance to persons dying from drinking spirits—and the observations on canine madness, which form the most considerable part of this little work, have already appeared in different periodical publications, and are here collected and re-printed, with an Introduction, in which the author gives a summary but judicious account of the several poisons, and of the means of counteracting their effects. An engraving is added of the *Bunium-bulbocastanum* and *Oenanthe-crocata*.

The papers on poisons are followed by a very interesting account, not before published, of the good effects produced by mercurials in three cases of obstinate dysentery, which seemed to depend on a disease of the liver.

The subject of the first of these cases was a seaman, who had been two years on the coast of Africa, where he had an intermittent fever of long duration, and who was admitted into the Liverpool infirmary for the cure of a dysentery, which he had laboured under for two years.—He was a stout-made man, about fifty-eight years of age, but had a very sallow complexion, and a prominent belly, the region of the liver being enlarged, and, on pressure, painful.

* See the 3d vol. of this Journal, page 40.
In this case, after the most probable and usual means of putting a stop to the dysentery had been pursued for the space of eight months, without any considerable good effect, our author began to reflect, that the dysentery might very probably originate from a diseased liver; and that if this were the case, it was not likely that the flux should be got the better of, unless the affection of the liver on which it depended was first removed. With this view, he directed the mercurial inunctions to be gradually applied, and, as no increase of the dysenteric symptoms followed their use, they were continued (a fortnight) till the mouth was affected, and a moderate salivation came on. When this took place, his stools became less frequent, more regular, natural, and free from blood. By the time it had ceased, he thought himself freed from all his complaints, and, at his own request, was discharged.

A fortnight after, he applied again for admission: his appetite was impaired, his gripings violent, his stools very frequent and bloody; and his belly, about the region of the liver, was swelled, hard, and painful. After prescribing a few gentle evacuants, the inunctions were repeated.
peated. For some days he was no better, and, being rather feverish, the mercury was omitted for a week, and then resumed, by which means a ptalism was produced. He was then very easy in his belly, his looseness was almost stopped, and he said himself he was much better than ever he had been since the beginning of his illness. The mercurials, after a little respite, were continued some time longer, and he was then discharged perfectly well, and so remained.

The second patient was likewise a mariner, 28 years old, of a sallow, bilious complexion, who had passed much of his life in hot climates, and who was admitted into the infirmary Sept. 23, 1779, for a dysentery of six years standing. As this man had been in different hospitals in London and other places, Dr. Houlston thought it unnecessary to attempt to succeed in his cure by the usual remedies, and therefore determined to try the effect of mercurials.

The patient was directed to rub in half a drachm of strong mercurial ointment every other evening; which he continued to do till October 9, when a ptalism was produced, which continued in a considerable degree ten
or twelve days. During this time he took only the Decoctum Album, and Castile Soap. In three days after the spitting began, his flux stopped, and his stools, of which he had not more than one or two in twenty-four hours, were natural, and without any griping. He had, however, a very acute head-ach, which gradually went off, and by the end of the month he could, without inconvenience, eat broths, and other things, which before this time used to render his complaint violent.

Still, however, the purging returned at times soon after, though not with the former violence. At his own request, therefore, he began again with the inunctions, Nov. 25, which excited salivation in less than a fortnight, and seemed to have carried off the complaint; but as the stomach and intestines were greatly debilitated, our author gave him, at different times, the sal maris, bark, and other astringents. Towards the end of January, 1780, he was attacked with a rheumatic complaint, which he ascribed to cold from changing his room, but which yielded soon to the Decoctum Guaiaci. About the middle of February, he was attacked with a slight tertian ague, to which he had been subject before, but which went off in a few
few days. In the beginning of March he was free from both, and having signified a desire of going to sea, was discharged from the infirmary.

The account he then gave of himself was as follows: "Of stools he had two or three in twenty-four hours, easy and natural, sometimes more costive than he wished, on account of his haemorrhoids. Perhaps once in a fortnight, he had a purging, which continued about twenty-four hours. His appetite was poor, but what he eat, (in which he was not very cautious) fat easier upon his stomach, and agreed better with him, than it had used to do, and his health and strength were much better than at any time since his disorder began."

The third patient was a German sailor, 22 years of age, who was admitted into the Liverpool infirmary for a dysentery, which began during his passage from Jamaica, and had continued about three months. In this case, our author, after having tried a variety of evacuant and astringent medicines for three months, with but very little advantage, and that not permanent, had recourse to a mercurial course. Half a drachm of the strongest mercurial ointment was rubbed in every night for a month,
when it was discontinued, on account of a tertian ague, which yielded to an emetic before the cold fit, and an opiate in the beginning of the hot one. No salivation had taken place, but his stools were regular, without pain or blood, and not more than two in twenty-four hours; so that he left the infirmary, and returned to his usual employment seemingly in perfect health.

These are the only cases, of which our author has preserved the particulars; but, it seems, that in several other cases of a similar nature, he has found the same mode of treatment equally successful.

Towards the conclusion of his work, Dr. Houlston offers some remarks on the dry vomit, recommended by the late Dr. Maryatt, which is a composition of equal parts of emetic tartar and blue vitriol. The dose of this mixture, commonly given, is five grains, on an empty stomach, in about half a tablespoonful of water. Dr. Houlston has given it in a variety of cases, and it hasacted so mildly, that he scarcely recollects an instance where it has been complained of as too violent; but he has met with several wherein five grains were not sufficient to produce any effect, and where he has
has found it necessary to increase the dose to seven or eight grains. The reason, he observes, why the compound acts more mildly than one of the ingredients would do alone, is not easy to ascertain. But it is sufficient, he adds, for medical purposes to know, that it is not only a safe but even a mild vomit; and he thinks, that in cases where we wish to evacuate bile, or to give a stimulus to the whole system, from the action of vomiting, the dry vomit will answer the same purpose as sea sickness.

Dr. Houlston takes occasion to give his testimony in favour of the method of cure recommended by Dr. Lind, in cases of intermittents, viz. the giving a vomit an hour before the cold fit, and a sufficient dose of Tinet. Thebaic. half an hour after the hot fit commences. In many intermittents of long continuance, both tertians and quartans, our author has known this method put a stop to the disease the very first time it was made use of. But although this will often not be the case, and it will be necessary to repeat the Tinet. Thebaic. on each accession of the hot fit, and to increase the dose of it, yet the great relief and the gradual diminution it occasions in the strength of the fits, are, he observes, strong inducements to perse-
were in the use of the remedy, till the disease is completely removed. This mode of treatment, it seems, has in general been so successful in the hands of our author, that he has very rarely had occasion to recur to the bark for the cure of agues, though he sometimes gives it after the complaint is removed, with a view to strengthen the habit.

This work is intended as a text-book for the author's lectures. In the former edition, Dr. Gregory confined himself to Physiology and Pathology; which he combined in such a manner, that after describing the nature and uses of any particular organ or part of the body, he proceeded to treat of its diseases. The same judicious arrangement is observed in the present
present edition; but this part of his work is considerably enlarged and improved, and he has now added a second part, de Therapia, which fills almost the whole of the second volume; so that the work, in its present form, whether we consider the value of the materials of which it is composed, or the clear and elegant style in which it is written, cannot be too warmly recommended to the notice of the medical student.

In a preface, which extends through the first 70 pages, the learned author treats of medical theory in general, and gives a concise but interesting account of the principal facts that have prevailed in Physic. In this part of his work he introduces a lively, but, we fear, too true a picture of the uncouth and barbarous style that distinguishes too many of the pseudo-latin writers, as he calls them, of the present age; and at the same time he takes occasion to point out the disadvantages resulting to medical science from the present too general diffuse of the Latin language, the cultivation of which he recommends with great earnestness to his readers. His observations on this head are certainly well founded; yet we are persuaded that the ingenious author, by permitting his work
work to appear in an English dress, will render it much more extensively useful, than it can otherwise be, in this country.

VI. An Inquiry into the present State of Medical Surgery; including the analogy betwixt external and internal disorders; and the inseparability of these branches of the same profession. By Thomas Kirkland, M. D. Member of the Royal Medical Society at Edinburgh. Vol. I. 8vo. Dodsley, London. 500 pages.

In this inquiry into the present state of medical surgery, the professed aim of Dr. Kirkland is to encourage the study of a branch of the profession which he thinks has hitherto not been duly attended to by modern writers.

An Essay on the inseparability of the different branches of physic is prefixed to the work, by way of introduction; and this is followed by a dissertation on the brain and nerves, and another on the sympathy of the nerves, prefixed to the author's treatise on the child-bed fever, and here re-printed, with additions; after which he treats of irritability in general; of the
the pulse; and of the nature and cure of fevers. His observations on the last of these subjects are comprised in a short practical abstract of a work he formerly published, on fevers.

The remainder of the volume consists of a treatise on inflammation, and its consequences.

Dr. Kirkland begins this part of his work with remarks on inflammation in general; after which he considers the manner in which nature herself terminates different kinds of inflammation, and then proceeds to treat, in the following order, of a simple inflammation of the skin—erysipelas in general, and its varieties—cure of erysipelas—local erysipelas—critical erysipelata, including those occasioned by contagious miasmata—inflamatory and nervous rheumatism—phlegmonoid rheumatism—gout—inflammatory oedema—and lastly, ophthalmia.

Of the plan and merits of this performance, as a systematic work, no precise idea can be formed, till the whole is published. Whether it is to be completed in one or more volumes, the author has omitted to inform us.

To the author's opinion concerning the inseparability of the different branches of physic,
as well as to some points of theory in the present volume, objections might, perhaps, with good reason be made; but such objections would appear trifling to the practical reader, who will find interspersed through the volume a great number of valuable observations, such as might be expected from the abilities and experience of the ingenious and respectable author.

In treating of erysipela, occasioned by contagious miasmata, he introduces some very valuable observations on the *scarlatina anginosa*, which prevailed in 1779, and has been so well described by the learned Dr. Withering of Birmingham.

Under the head of inflammatory rheumatism, he mentions a remarkable instance of the good effects of purging in that disease.

As a proof that the gout is hereditary, he mentions his having seen it inherited by a common labourer, who was the natural son of a gentleman.

Dr. Kirkland is of opinion, that all the preparations of mercury are decomposed in the *prime vitæ*; and that giving small doses of this remedy adds to its efficacy, because a grain of quicksilver, he observes, taken twice a day, very often affects the teeth, if not prevented,
in a very short time; whereas a large quantity passes off sometimes without any remarkable effect. As an instance of this, he mentions the case of a boy, who swallowed three pounds of quicksilver, by mistake, with his milk-porridge. The boy’s master, who was a barometer-maker, kept the boy at home, and provided conveniences for collecting his evacuations, in which he expected the quicksilver to appear: but in this he was mistaken, for a blueish smut only, which seemed to come from every part of his body, appeared on the sheets, and he never experienced any particular sensations from this enormous dose of mercury.

SECTION II.

ESSAYS AND OBSERVATIONS.

The following particulars concerning a patient of mine, Mr. Charles Noble, who died the other day in this city, are very much
at your service, if you think they merit a place in the London Medical Journal. His body was opened in my presence, and the largest stone taken out of his bladder, that I can recollect ever to have seen or heard of. It filled the whole pelvis, and the bladder was so thickened in its coats, and its vessels so distended, that at first sight it resembled a uterus. The stone, which was nowhere attached, was of a depressed oval figure, with the smallest end downwards, tolerably regular in its shape, very compact, and weighed seventeen ounces, aver-dupoisé. It measures twelve inches in circumference; is two inches thick at its broadest end, and two and a half at the narrowest, towards the neck of the bladder. From the smaller extremity was broken off a small fragment, which had partly sunk into the beginning of the urethra, and with a quantity of gritty sand, which seemed to have been detached with it, would have weighed about half an ounce more, if we had been curious in collecting it.

Mr. Noble began to feel symptoms of the stone about twenty years since, and being a man of uncommon resolution, took, in succession, all the lithotriptics, that have acquired any character, with the utmost perseverance.
During the last five years of his life, however, every medicine of that sort had been laid aside, and my sole object was to keep him as easy as, under such circumstances, he could be; and in this I succeeded so far, by means of a very abstemious and bland diet, and by keeping his bowels lax, as to enable him to enjoy the company of his friends over a game of quadrille every evening, during the winter, and to walk about our rugged streets this summer.

For several weeks before he died, he was in constant pain, notwithstanding a liberal use of opiates, and I conjecture that the breaking off of the fragment, was the cause that I could never get him easy again, as I had done before. But I believe the immediate cause of his death was the bursting of a vomica; the foundation of which was laid in a pneumonia last autumn.

Canterbury, September 16, 1784.

II. An account of a remarkable spasmodic affection. Communicated in two letters to Dr. Simmons, by
by Mr. William Hulke, Surgeon at Deal, in Kent.

M. a maiden lady, aged 40, of a healthy complexion, in the beginning of the year 1782, began to be troubled with a singular complaint, which she described in the following manner: Every night, soon after she had fallen asleep in bed, she was suddenly awakened, she said, by a sensation of cold and numbness in the outer side of her right foot, which numbness gradually extended up her leg and thigh to her stomach, unless she prevented it, by rising from her bed instantly, and placing her foot on the floor; as she always found that this gave her relief, and prevented the progress of the disorder to her stomach. Supposing her complaint to be the cramp, she took no notice of it, till after a fit of the gout, which attacked her in both feet, in March 1783, and lasted near three months, during which time she passed her nights comfortably; but when the gouty paroxysm went off, her former complaint returned with increased violence, and obliged her to have recourse to medicine. All the remedies usually given in nervous cases were tried, and, among others (by the advice of
of a neighbouring physician) the application of blisters to the leg and foot, but without mitigating the complaint in the slightest degree. The numbness and stoppage of circulation (as she expresses it) spread now with great quickness from the foot upwards, and, if not timely prevented from reaching the stomach, impede respiration, and bring on slight spasms. To prevent or remove this degree of the paroxysm, a person is constantly with her, that she may, as soon as she is attacked, be got out of bed, and place her foot on the floor, as this alone gives her immediate relief. She was once affected in the day-time, when she had fallen asleep in her chair. During each paroxysm, she sweats violently; and when the fit has been severe, constantly throws up a quantity of taftelefs, viscid phlegm. Her menfes have hitherto been regular; her appetite is good, and till attacked with this disorder, she enjoyed an uninterrupted state of good health.

Deal,
Sept. 16, 1784.

To the account of the cafe I communicated to you in September laft, I now beg leave to add,
add, that the patient, after trying a variety of remedies, without success, has lately applied to an Empiric, who happened to be in this part of the world. He has given her some fecund pills, which she takes at night; an emetic mixture, which she takes in the morning, and an ointment with which she rubs her foot. This method (whether from the force of imagination or not, I will not pretend to determine) has relieved her; her paroxysms being now both more slight and less frequent than before.

Deal,
Nov. 21, 1784.

III. Case of a Fistula in Ano, cured by means of a Caustic. Communicated in a letter to Dr. Simmons, by Mr. P. Dillon, late Surgeon of the 105th Regiment of Foot.

A SOLDIER's wife, belonging to the late 105th regiment, applied to me on account of a discharge, which had originated in the last month of pregnancy, and which, through motives of delicacy, she had kept to herself, for the space of seven months, till her health
health was so affected, that she thought herself in danger of dying. She informed me, that large quantities of matter came away with her stools; and on examination, I found three large openings on the right side of the anus, about an inch from the sphincter, which discharged a great deal of matter; a small quantity of pus was also to be seen about the extremity of the rectum, which convinced me that the three openings communicated with the intestine.—On introducing a probe into the central opening, I found that it reached a considerable way; but no communication with the rectum could be perceived by the whole length of my forefinger; though on injecting milk and water into the abscesses, I found that it came out at the anus. I also found that the two lateral openings tended towards the central one; and on introducing three probes, one into each opening, I found that they communicated with each other, about two inches and a half below the surface, in a right line with the rectum.

In making an incision to this depth, such an haemorrhage ensued, as induced syncope; but in about ten minutes after the bleeding was stopped, the patient’s breathing and pulse began to return. After dressing the wound, I
gave her a saline draught, with a few drops of Thebaic Tincture, and she rested well that night. In two days after the operation, I opened the wound, and found the anterior abscesses in a state of inflammation, and going on as well as I could expect, no discharge coming from the posterior abscesses, which I think proceeded from the general inflammation excited in the parts.

Previous to the operation, an emollient clyster had been administered; and after the operation, the patient continued to be pretty free in her body, took the bark largely, and went on well, till about the eighth day, when the discharge began to be profuse again from the posterior abscesses.

I now introduced a peffary into the rectum, and found the communication between it and the posterior abscesses about two inches deeper than the posterior part of the wound already made. The apprehension of wounding a second time any considerable branches of an artery, deterred me from making any farther use of the knife; but as the poor woman was sinking under the violence of the discharge, I determined to attempt a cure, by destroying the texture of the part. For this purpose, I introduced
duced a caustic bougie into the wound, and suffered it to remain there an hour, during which time the patient was in violent pain. On withdrawing it, I was in hopes that enough, though not more than I wished, of the parts was destroyed. The wound was dressed lightly, and an inflammation ensued in the abdomen, attended with slight spasms; but these were less violent than I expected, and were removed by a few anodyne draughts.

At the end of three days, an inflammation appeared round the edges of the slough, which separated entirely in seven or eight days after, and granulations began to form from the edges towards the center of the wound, which, in the course of twenty days, entirely filled it up. The external openings remained longer than I could have expected; but the patient persevering in the use of the bark, very soon began to recover her strength, and in the course of six weeks the wound was completely healed. She continues well, and seems to be in no danger of a return of her complaint.

The success that attended this method of cure in the above case, and the probability there is of its succeeding in other cases of the same kind, which have hitherto been deemed incurable,
incurable, and under which we have seen so many patients sink, will, I hope, recommend it to the notice of practitioners. I think, that in such cases, the Surgeon should never carry his knife so far, as to risk either the patient’s life or his own character; and that in deeply-seated fistulae (and such only) the cure by caustic may be attempted with a much greater chance of success.

Edinburgh,
September 14, 1784.

IV. Case of an extra Uterine Fatus. By Mr. Cammel, Surgeon at Bungay, in Suffolk. Communicated to Dr. Simmons by Dr. Denman.

M. S. a healthy woman, about thirty-five years of age, had been married several years, but had never reason to suspect herself pregnant. In the beginning of May, 1782, she had a profuse menstrual discharge, which continued for fourteen successive weeks, but from the time of its cessation, she did not menstruate for six months.

In the month of October following, I saw her for the first time, and was informed that she
She had been frequently liable to a painful suppression of urine, for the relief of which it had often been necessary to introduce the catheter. On examination, I could readily distinguish a tumour of a considerable size, between the vagina and rectum, and the os uteri turned upwards and forwards towards the pubes. I immediately concluded she was with child, and that the uterus was retroverted. It was agreed that nothing should be done, except it should be necessary to draw off the urine with the catheter, or to obviate any troublesome symptom which might arise. On the following day, I returned to London, and did not see the patient again before June 1783, when she told me the suppression of urine had not returned since the time of my first visiting her, but that she had continually increased in size; and she was now as big as women usually are in the eighth month of pregnancy. I was permitted to make another examination, and found the tumour between the vagina and rectum. The os uteri was pressed low into the vagina, but the cervix was of the length and in the state it is in when women are not with child. She also informed me that she had menstruated regularly since the beginning of February, and as I perceived the abdomen to be more
more distended on the right than on the left side, I laid aside my opinion of her being pregnant, and suspected that the enlargement and disease of the right ovarium was the cause of the distension, and by mechanical pressure, of the other symptoms. During the time of this gradual enlargement, she had frequent and sometimes violent pains in the abdomen; but as these changed their situation, she could not fix upon any one part as particularly affected.

In this state, or without much alteration, she continued till April 1784; then the pains became more violent, attended with a hectic fever, and very frequent stools, in which there was always a quantity of fainious and sometimes putrid matter, by which the size of the abdomen was somewhat lessened. I attributed these symptoms to the progress of the disease in the ovarium, which I supposed to have become cancerous; and, together with other medicines, I gave her the bark, and opiates whenever the violence of the pain required them. About the latter end of May, after complaining of a pricking sensation in the rectum, she voided a small bone, by stool. When I examined the state of that part, I discovered, very far within the rectum, an aperture through the intestine, leading
leading to the right side of the pelvis, where the aperture was most obvious, and where I discovered many other small bones, which I then suspected must have been those of an extrauterine fetus. With a pair of forceps used in lithotomy, these were extracted; but the bones of the head being too large, I broke them in pieces, before I attempted to extract them. In two hours, I had removed all the bones, except one of the parietal, which was so firmly embraced, as to render the extraction very difficult. As she was very much fatigued with what was already done, I waited two days before I took away this bone. Nothing farther remarkable happened after the operation, except that a large quantity of mucous water was discharged with the stools; but this in a short time decreased, and then ceased entirely.—Within a short time, the diarrhoea and fever abated, and in about six weeks she was able to return to her usual employment, and is now perfectly well.

V. A short History of three Cases of Women, who were inoculated for the Small-pox during Pregnancy. By Mr. Benjamin Roberts, Surgeon at
MARY Hickes, near the ninth month of her pregnancy, was inoculated on the 14th day of November, 1783. Her arm inflamed, and every appearance promised the most favourable termination to the disease. On the 21st, the eruptive fever commenced, and the small-pox, which were not very numerous, came out on the third day. When these began to dry, she had one violent rigor, followed by other symptoms, which denoted the death of the child. Being costive, an opening medicine was given, by which, and some diaphoretics, she was much relieved. On the 28th, she fell into labour, and on the 29th, was delivered of a dead child. The body of the child was covered with the small-pox; the bases of which were in a gangrenous state.

Elizabeth Boon, in the eighth month of her pregnancy, was inoculated on the 15th of November, 1784. On the 20th, the eruption appeared, and the fever did not abate. Six ounces of blood were taken away, and a saline mixture was given. On the 27th, her pains
came on, and she was in a few hours delivered of a living child. There was not the least trace of eruptions on any part of the body of the child, which died in about ten days with a complaint in its bowels.

Mary Jeffery, in the eighth month of her pregnancy, was inoculated on the same day with Elizabeth Boon. She passed through all the stages of the disease with as little disturbance as any person I ever saw; and three weeks afterwards, was delivered of a living child, without any appearance of the disease upon it.

I was induced to inoculate these patients by their own earnest desire, and because it was scarcely possible for them to escape the natural infection, the disease being at that time spread through almost every family in Wilton, the place where they lived.

VI. Case of Obstruction of the Bowels, with Remarks. Communicated in a letter to Dr. Simmons, by Robert Willan, M. D. Physician to Vol. V. No. IV. the
the Finsbury Dispensary, and to the Public Dispensary in Carey-street.

A LADY, fifty-two years old, of an irritable habit, subject to frequent attacks of pain in her bowels, and generally colicky, was seized in the evening of April 2, 1784, with the usual symptoms of colic, attended with almost incessant vomiting.—She had had a slight evacuation by stool the preceding morning.

A purging mixture, with Sal. Glauber. and Pulv. Jalap. was first prescribed, and properly retained, but without producing the desired effect. She continued very restless and uneasy all that night. The vomiting also returned, but was stopped in the morning, by an anodyne draught, which contained forty drops of Tinct. Theb.

In the course of the next day, she had clysters of afflatus and Sal. Cathartic. and in the evening took a scruple of Extract. Caibaric. ten grains of calomel, and a grain of Extract Thebaic. made into pills.

April 4. No alteration had taken place in her complaint. The pain returned in very severe paroxysms, with some intervals of ease. About
About four ounces of blood were drawn from the abdomen; by cupping; and a large blister applied. Oily clysters, with affafœtida, were also given, and the pills continued.

5th. No good effect yet appeared from the above applications. She remained in the same state for some days longer, during which she took different purgative mixtures; with Resin. Jalap. Ol. Ricin, &c. and Extr. Thebaic. occasionally. The warm bath was also employed repeatedly, and a tobacco clyster administered. She complained of a disagreeable taste in her mouth from the tobacco, as she had before done of the affafœtida. Still, however, our hopes were disappointed, no evacuation being produced. It is singular, that in a disorder of this kind, which had now continued six days, there should have been no heat or fever, no hardness or mark of irritation in the pulse; the patient herself, in the intervals of ease from excruciating pain, being always cool, collected, and sensible.

During the last three days, she had had frequent hiccup, but that symptom went off again.

As it seemed in vain to pursue the purgative plan any farther, the application of cold water,
as recommended by many eminent physicians, was the measure next adopted. It was judged, however, more convenient to apply it in the form of ice, properly guarded. This being done accordingly, April the 8th, the bore the application for thirty-five minutes, though the pain occasioned by it was excessive, more especially so from the recent formations of the blister. It excited much commotion in her bowels, and borborygms, yet no evacuation of faeces or wind followed. We found her the next day in her usual state, but low, and unwilling to try the effects of medicine any farther.

She had been seen thus far, at different times, by Drs. W. Saunders, Lettsom, and Grant: the two latter now discontinued their attendance, thinking the case hopeless. Dr. Saunders and myself agreed to visit her occasionally, and watch any opportunity that might offer for relief. She was directed in the mean time to take light nourishing food, with a little wine; and had anodyne emollient clysters injected twice a day.

April 10. In the morning she broke wind downwards once or twice, and seemed on the whole easier and better. Finding circumstances thus favourable, and being importuned by her anxious
anxious friends to attempt something more, we gave directions to make trial of quicksilver.—She took it in doses of two drachms, to the amount of six ounces; but from the sense of weight and uneasiness it occasioned, she could not be prevailed on to take more of it. Cospitious watery injections were likewise thrown up to second its effect.

On the 12th, a few small globules of quicksilver appeared in a clyster, which had been retained four hours. This encouraged us again to prescribe a purgative mixture of *Infus. Senna* & *Pulv. Scammon* which being disagreeable to her stomach, was exchanged for the *Pil. e Colocynth. cum Aloe*, & Calomel.

On the 17th and 18th, there seemed to be a small quantity of feculent matter brought off in the clysters. There was also several times a considerable mucous discharge, which came off spontaneously. From this time, though the same plan was persisted in, no evacuation could be produced, nor did any more of the quicksilver appear.

She now refused to make farther trial of medicines; and wished to resign herself to her fate. The pains continued to return at frequent and irregular intervals: her pulse was often very low and
and intermitting, but generally better every other day. Once or twice she found herself so well, that she got up, and, with a little assistance, took several turns round the room.—At the request of her friends, who were unwilling to omit any possible means of relief, she submitted to be electrified; and bore with great firmness several smart shocks, passed through the abdomen in different directions. This was not, however, attended with any particular effect.

April 23d. Her abdomen was considerably diminished in size, and less tense. We had before frequently observed a variety in this respect, though without any discharge of flatus either way.

She continued much in the same state till the 11th of May; when, after a very restless night, she was seized with most excruciating fits of pain, and died about six o'clock in the morning.

She had herself requested that her body should be opened and inspected after death; which was accordingly performed the day following, by her Surgeon, Mr. Lowdell, of Queen-street, Southwark. We found the bowels amazingly distended throughout, particularly
particularly the caput cacum coli, and containing, on the whole, not less than four gallons of feculent matter, in a fluid state. The whole tract of the intestines was inflamed, in many places sphacelated, and too tender to bear the slightest handling.

The constriction was found to be at the lower part of the sigmoid flexure of the colon, near the top of the os sacrum, and at the beginning of the rectum. For about the length of an inch, the intestine was contracted, so that nothing could pass. The stricture had probably formed very gradually, this portion of the bowels being quite hard and callous. Some quicksilver was found above the stricture; a part of it seemed also to have been triturated with the mucus of the bowels into a black gelatinous mass. The other abdominal viscera were in a natural state. One circumstance, however, deserves to be particularly remarked, which is, that we observed several tubercles of considerable size adhering to the fundus uteri on the outside, which, upon examination, were found to be very hard, and of an osseous nature.
Observations and Deductions.

1st, It appears from this case, that extensive inflammation, and even mortification, may take place from a gradual distention of the bowels, without producing heat, fever, or any of the common inflammatory symptoms.

2dly, The time during which it is possible to subsist under such a disorder, without any alvine discharge, merits attention. This patient remained without any evacuation by stool, upwards of thirty days; whereas in similar cases, recorded by Morgagni and Lieutaud, we find that the patients seldom survived above ten or twelve days.—She made water freely all the time, and in proper quantity.—The vomitings which occasionally occurred, seemed only to ease the stomach of a temporary load, no feculent matter ever appearing in the fluids discharged.

3dly, The different size, and degree of tension, of the abdomen, without any evident cause, are not so easy to be explained. Perhaps these might be owing merely to a change of place in the flatus, to its being more or less diffused through the bowels at different times.

4thly,
4thly, The hard bony substances found on the uterus might probably occasion first a spasm or contraction of the intestine, and afterwards, by their repeated irritation, that callous state of the coats which appeared on dissection. With respect to the origin of these tubercles, little judgement could be formed. We only learnt that her bowel complaints came on, and her general health was much impaired, in consequence of a severe labour several years before, and the delivery of a dead child, by the use of instruments.

5thly, Quicksilver, taken into the bowels in considerable quantity, though retained for some time, does not always produce dangerous effects from its bulk or momentum. It is triturated up with the mucus of the bowels, by their constant peristaltic motion, and soon loses its proper form.

6thly, Constrictions in the larger intestines are not attended with the same acute and violent symptoms, viz. of fever, sharp pain, perpetual vomiting, hiccup, great prostration of strength, &c. which generally soon prove fatal in contractions or spasms of the smaller bowels. This observation may contribute towards ascertaining more nearly the place of such obstruc-

Vol. V. No. IV. Ff f tions.
tions. They are not so usual in the larger intestines. L'Heurtau has collected some instances of them in the colon and rectum, and also of large tumors filling up the whole cavity whereby the passage of feculent matter was prevented. In all these cases, the symptoms were not very urgent, and the patients subsisted under the disorder from seven to eighteen days, and upwards; whereas the coalescence, or constrictions of the small intestines, mentioned by him, proved fatal in two, three, or four days; which is conformable to our common experience.

7thly, When, from this diagnostic, or other circumstances, the obstacle is concluded to be somewhere in the great intestines, if active purgatives and stimulant enemas fail on their first application, we should be cautious of persisting in the use of such irritating remedies, which often give unnecessary pain, and rather tend to aggravate the disorder. The next proper measure is to examine the state of the large intestines, so far as it can be done conveniently, by means of a candle, or bougie of a proper size; and thence to form our judgement more exactly concerning the seat of the disorder. If it be within reach, suitable means must be made use of, according to the nature of the case, as whether
ther it be from contraction of the coats, hard tumors, or indurated excrement. There will be much nicety and difficulty with respect to the use of force, and the direction in which it should be applied, if dilatation be thought necessary. From the situation of the contraction in the present case, and the state of the intestinal coats, it would have been impracticable. It was, indeed, proposed in consultation, to try some experiments of this kind, but we were prevented by the scruples of the patient, and the circumstance of copious watery injections being easily retained for some hours; whence it might be concluded, that the seat of the disorder was out of our reach.

Tumors in the rectum, which by their size block up the cavity of the intestine, also admit but of little relief. I lately met with an unfortunate case of this kind in Mrs. Wetherell, of St. John-street, Smithfield, who had been for some time liable to obstinate costiveness, and floppage of urine.

On the 7th of October last, having been five days without a stool, she took half a drachm of Extract Cathartic, and four grains of Calomel; and the day following, an ounce and a half of
Caffor Oil, in divided doses, without any effect. An examination was then made, according to the plan above mentioned, by Mr. Andree, Surgeon, who found a hard resisting tumor about five inches from the verge of the anus. Having passed this with much difficulty, another swelling presented itself, of equal size and firmness with the former, and created an obstacle totally impassable by any instrument he could make use of. The patient languished in great misery about seven days longer. Nothing preternatural was discovered in the bladder, by using the catheter. However, we were at no loss in accounting for the nature of these swellings, as she had been previously subject to hemorrhoidal affections.

VII. Case of a Luxation of the Thigh Bone. Communicated to Dr. Simmons by Mr. William Cribb, Surgeon at Bishop-Stortford, in Hertfordshire.

As accounts of cases in Surgery cannot be too frequently repeated, while there are any doubts of the possibility of the accident, I will, with your permission, state the following,
ing, in addition to the case published in the last Number * of the Medical Journal, of a compleat luxation of the femur. A boy, about nine years old, was the subject of this accident.—The head of the bone was situated in the foramen ovale, and the knee was drawn upwards and inwards by the strong action of the flexor muscles, which situation of the bone rendered the leg and thigh longer on the affected side than the other; and on bringing the knees together, the dislocated bone protruded near three inches beyond its fellow. As I consider a fixed counter extension as a matter never to be neglected in our attempts to reduce a luxated bone, I made my patient firm to a staple at his head, and also to the table on which he was laid, by cloths passed between his thighs, and round his body. Mr. G. Cooper, Surgeon, of Haddam, who was so obliging as to assist me, made a steady extension in the direction in which the limb itself was drawn, while, with a napkin round the upper part of the thigh, I extended outwards and upwards, at the same time making a lever of the bone, by placing my hand on the knee; it was readily replaced, with a noise which was perceptible to every person.

* See page 312.
perfon present, and the boy immediately walked
across the room, and in the course of a week
was out at play when I called to see him.

As Wiseman, and other eminent Surgeons,
have wholly denied the possibility of a luxation
of the femur from the acetabulum, a relation
of cases, which tend to overturn this erroneous
hypothesis, become the more necessary, to put
others on their guard, that they may not too
readily subscribe to an opinion, which repeated
facts have so often proved to be ill grounded.

Bishop-Stortford,
Herts, December 7, 1784.

SECTION III.

MEDICAL AND PHILOSOPHICAL NEWS.

The Royal Society at Montpellier have
given notice, that one of their members
(M. Broussonet, of Paris, F. R. S.) has re-
mitted to them the sum of 300 livres, as a
premium for the best Eulogium of Peter
Richer de Bellevile, the first Professor of An-
atomy and Botany in the University of Mont-
pellier.
pellier. This Professor, to whom the University is indebted for the establishment of its botanic garden in 1598, expended his whole fortune in the cultivation of botany. A considerable number of plates, intended for a very extensive botanic work, which he did not live to complete, are still extant, and are said to be engraved with a degree of accuracy unequalled before his time. The pieces on this subject must be written in Latin or French, and sent to M. de Ratte, Secretary of the Society, before the 30th of Sept. 1785.

The Royal Medical Society at Paris have proposed the following prize question, for a prize of 600 livres: "What are the characteristic symptoms of nervous disorders, properly so called, such as hysteria, hypochondria, &c.; how far do they differ from other analogous diseases, such as melancholia, for example; what are their principal causes, and the general indications to be observed in their treatment?" Dissertations on this subject must be sent to M. Vicq D'Azyr, secretary of the Society, before the 1st of January, 1786.

M. Geoffroy
M. Geoffroy formerly procured five ounces of water from eight ounces of spirit of wine; but M. Lavoisier has lately, by combustion, not only converted the whole of the spirit of wine he employed in his experiment into water, but has done even more, having from 16 oz. of spirit procured 18 oz. of pure water. The addition was the result of the decomposition of the air employed in the combustion of the spirit of wine.

The Globularia Alpum of Linnaeus has lately been recommended as a purgative remedy, by M. Ramel, junior, Physician at Aubagne, in Provence, where it is said to be in common use. An ounce of the leaves of this shrub, which grows in many parts of Provence, are directed to be boiled for this purpose a quarter of an hour in a few ounces of water. This decoction is spoken of as an excellent bitter purge. In smaller doses, it is given with success in intermittents.

In the Journal de Paris for Oct. 17, M. Alphonso le Roy has published a farther account of
of the case of the section of the symphysis pubis, mentioned in a former part of this volume (page 312). From this subsequent account we learn, that the patient, who is said to be perfectly recovered, was able on the eleventh day after the operation to get out of bed, and on the thirtieth to walk through the streets of Paris.

The Abbé Fontana, in a letter to M. Gibe-lin, inserted in the Abbé Rozier's *Journal de Physique* for June 1784, gives an account of some farther experiments on the poison of the viper, which may serve as a supplement to his late work on that subject, (see page 1). These experiments, which were made in consequence of the accounts published in some of the Italian Journals, of cures performed by injecting spirit of hartshorn into the veins, prove that no dependence can be placed on this method of treatment.

In the same letter also the learned Abbé gives some additions to his observations on the nerves. He has examined, with a lens of great magnifying powers, the gelatinous matter he had formerly mentioned as filling the nervous cyl-
inders, (see page 26), and he finds it to be
composed of minute grains, four or five times less in diameter than the red globules of the blood. This elastic graniform substance he has observed in the nerves of different animals; and if these minute grains may be supposed to constitute the animal spirits, he thinks we may explain the phenomena of animal motion, by supposing this elastic substance to be continued throughout the whole length of the nervous cylinders, and to have an insensible vibration similar to that of the air in the propagation of sounds.

To Dr. Simmons.

Sir,

A letter I have lately received from a friend on the Continent, containing much useful and curious information, seems to me so exactly to coincide with the intention of that part of the London Medical Journal, comprised under the head of Medical News, that I have taken the liberty of sending to you an extract of it, even without waiting the permission of the writer.—If it appears to you in the same light that it does to me, you will probably willingly give it a place.
a place in the next Number. It comes from an English Physician established in Italy, a gentleman of great erudition, found judgement, and unimpeached integrity. These circumstances I have thought fit to premise, as having suppressed his name, and as they may tend to impress a due degree of confidence on what he has advanced.

I am, Sir, very respectfully,

Your obedient, humble servant,

Liverpool, THOMAS HOULSTON.

Nov. 15, 1784.

I thank you for your Observations on Poisons, and am well pleased with your success in cases of dysentery, depending on old liver-cases, in treating which I certainly will follow your example the first opportunity. The action of poisons, if well understood, might throw much light on practical physic; but the various effects produced by them in various persons, mix with our knowledge much confusion. One at Paris swallowed an ounce, or more, of aqua-fortis; the consequences were, a suspension of stools and urine many days, without pain; then a train of painful symptoms, which, however, declining sensibly for near six weeks,
weeks, gave hope of recovery, when the friend from whom I have the account lost sight of him. Another here swallowed less, I believe, than a drachm of aqua-fortis, and though soap and milk were pretty quickly administered, died in about forty hours.—A person here chewed and swallowed five cantharides, and went about his usual business. Two or three hours afterwards, feeling a heat in his stomach, he applied to me to know if any mischief would ensue. I had him bled, and filling his stomach with oil, made him vomit, which he did pretty copiously, bringing up considerable quantities of membranes, which appeared to be the best part of the lining of the oesophagus and stomach. Half of his tongue was stripped. I ordered him to drink milk copiously; though I confess now, without much hope; and a strangury coming on, I rubbed the pubis and perineum with camphor, and covered all with warm fomentations. The strangury went compleatly off in less than two hours, and next morning he had an erection, which was not troublesome, nor continued above half an hour. He felt a soreness in the stomach for two or three days, but no farther inconvenience.—How different this, from the usual histories of those who
who have taken cantharides even in a much less
dose!

"We have lately seen here one, who, in the
hydrophobia canina, had an interval of sixteen
or more hours, in which he drank, easily and
without agitation, large quantities of various
liquors.—Of nine persons in the same prison,
bit by the same dog, one only was attacked
with the hydrophobia; and he neither the first
nor the last that was bit, nor the most wounded.
He fell sick more than four months after the
bite, was under my care, and died hydropho-
bous and convulsed, but without delirium.—
Not long ago a gentleman died here, who had
resisted incredible quantities of arsenic. It
seems he had taken, in eight or ten times, about
one third of an ounce, without its producing
the desired effect, or even bringing on such
symptoms as to raise suspicion of poison. At
last, a whole ounce was put into a saucepan of
broth, of which he drank a good cupfull. I
think he did not swallow then, at once, so little
as half a drachm of arsenic, yet he survived
four or five days. I don't, however, infer, from
the irregularity and incertitude of the action of
poisons, that we ought not, or cannot, coun-
teract them. Perhaps even every poison may
have
have its specific antidote, as simple as the poison itself, but till we know these, we must content ourselves with making the best use we can of the means we are possessed of, though generally imperfect. These you have well displayed in your account, &c. where you have very justly observed, that frequently life depends on a very quick evacuation of the poisonous substance, one of the first effects of which is to render the stomach paralytic. If people did but think of it, it would seldom be necessary to lose time in sending to an apothecary for an active vomit; a pinch of snuff, or a little powdered tobacco, would do the business.

"We are here attacking cancers with the raw flesh of the common small lizard, in the dose of two or three in a day, (see p. 97). Our neighbours boast of success in the true cancer. I think I have found great advantage from it in a terrible cutaneous cancer, in which the face, and part of the head, were covered with confluent ulcerated warts; yet I will not chime in with those who extol it, till I am surer of its real efficacy.

"People in England seem to be, in one point, under a mistake, with regard to the red Peruvian bark. This is not the sort esteemed either in
in Spain or in Peru; at least it is not what is sent thence, by the Governor, for the use of the King and royal family, nor what comes in presents to the great people. I have had several samples of what is sent to the Duke Grimaldi, and have now before me some ounces of what was sent by the King of Spain for the use of the Duke and Duchess of Parma. These samples are in quills, about the size of my little finger, and such as I remember most esteemed in England. We have here the chief, and second apothecary of the late Jesuits in Alcala, who both tell me, that such is the bark most esteemed by those Fathers, and by the Spaniards in general. The red bark certainly comes in chests promiscuously with the rest, and those chests have hitherto been sold cheapest, which had the greatest proportion of red bark. Not more than eighteen months ago, when the quill bark separately sold here for three shillings and sixpence, sterling, the pound, the red bark was sold at fourteen pence. I am, however, convinced, from my own experience, that the red bark best stops agues. There are sometimes mixed with the bark, pieces of a knotty root, called calaguela, which is said to have performed lately, at Rome, wonders in dropical cases. I have
have sent to Cadiz for some of it, and will endeavour to give it a fair trial.

"You know, that in preparing sweet sublimate of mercury, a red powder is found, in part, sublimed at the bottom of the cake, and in part loose in the bottom of the subliming vessel. This powder has been taken for crocus of iron, but is in fact silver, as you may easily prove, by reducing it with the black flux. I don't wonder how the silver comes there, but I cannot account for its subliming in that form and manner.

"You must not expect medical news of much consequence from Italy in these days.—If anything of this kind, worth reading, is published, I generally find it is some doctrine broached in the English schools, and attempted to be explained in Italian."

Laceration of the uterus in parturition is an accident which fortunately does not often occur, as it has hitherto in almost every instance proved speedily fatal. In one case, however, which happened some time ago, under the care of Dr. Garthshore, one of the Physicians of the British Lying-in Hospital, the patient lived twenty-
twenty-six days after this dreadful accident; and in another and still more recent instance of the same kind, under the care of Dr. Douglas, one of the Physicians of the London Lying-in Charity, the patient recovered without any alarming symptom, and is now alive and in good health. In both these cases, the foetus, and in the latter of the two the secundines also, which had escaped into the cavity of the abdomen, were brought back through the laceration, and extracted by the natural passages.

Dr. Hope, Professor of Botany at Edinburgh, has lately transmitted to the Royal Society a botanical description and drawings of the species of *ferula* that produces asfæœtida, (see vol. IV. p. 421). The figure given of this plant by Kæmpfer, in his *Aemoeniat. Exotic.* is now found to be inaccurate.—Dr. Percival, of Manchester, has communicated to the Society some observations on the acid of tar; the strength of which, compared with that of the acid of vitriol, he finds to be as 1 to 14. Dr. Percival thinks it likely to be of useful application in pharmacy,
pharmacy, particularly in the preparation of the sugar and extract of lead.

PROMOTIONS.

Lately, Charles Blagden, M. D. S. R. S. to be a corresponding member of the Royal Academy of Sciences at Paris.—Dr. Alexander Stevenson, of Glasgow, and Dr. Andrew Duncan, of Edinburgh, to be physicians to his Royal Highness the Prince of Wales for Scotland.—Dr. Henry Cullen to be one of the physicians to the Infirmary at Edinburgh.—Dr. Frank to be professor of physic at Gottingen.—Dr. Weickard, physician to the Prince Bishop of Fulde, to be physician to the Empress of Russia.

1784. Jan. 17. Dr. F. J. Voltelen to be professor of chemistry at Leyden.

doctors of physic in the University of Glasgow.—29. Dr. William Watson, and Dr. Richard Saunders, to be Fellows of the Royal College of Physicians, London.

Oct. 1. Mr. Richard Fletcher to be surgeon of the 5th regiment of dragoons, in the room of Mr. Robert Smithwick.—2. Mr. William Wood, late surgeon of the 96th, to be surgeon of the 78th regiment of foot.—9. Mr. John Weir to be surgeon to the troops at Jamaica.—Mr. West Hill to be surgeon to the troops at St. Vincent’s.—11. Dr. Nicholas Paradys to be professor of physic at Leyden.

Nov. 24. Dr. F. Milman to be physician extraordinary, and Daniel Gib, Esq; to be surgeon extraordinary to the King’s Household.

Dec. 11. Dr. Richard Dennison to be one of the physicians of the London Lying-in Charity.—15. Mr. Henry Cline to be surgeon to St. Thomas’s Hospital, in the room of the late Mr. Thomas Smith.—23. Gilbert Blane, M.D. to be F. R. S.

* For the names of the gentlemen promoted to the degree of Doctor of Physic at Edinburgh, in the years 1783 and 1784, see the Quarterly Catalogue at the end of the present Volume.

H h h 2 DEATHS.
DEATHS.

Lately, at Paris, Mr. James Daran, one of the Surgeons in ordinary to the King of France. He was born at St. Frajon in Gascony, March 6, 1701, and after serving for some time as a Surgeon of the army, fixed his residence at Marseilles, where he acquired so much reputation by the use of his bougies in obstructions of the urethra, that the late M. de la Peyronie invited him to Paris. His practice in that metropolis was so considerable, that in the course of a few years he is said to have amassed upwards of two millions of livres; but some unsuccessful projects, in which he afterwards engaged, deprived him of almost the whole of this vast fortune. His *Obi. Chirurg. sur les Maladies de l'Uretbre*, which have gone through several editions, were first published in 1745. He was also the author of a Treatise on the Gonorrhoea, printed at Paris in 1756; and a few years before his death, he communicated to the public his method of preparing bougies.—At Tunbridge Wells, in Suffex, Mr. Henry Kipling, Surgeon.

1782.
1782. At Breslaw, in Silesia, Michael Morgenbecker, M. D. senior member of the College of Physicians of that city.

1783. Aug. 10. At Caffel, J. Philip Berchelmann, M. D.

Nov. 18. At Leipzic, aged 63, Ant. Ridiger, M. D.

1784. May. In the island of Tobago, aged 35, Mr. William Wallace, member of the Corporation of Surgeons of London.

July. At Bristol Hot-wells, of a pulmonary consumption, aged 40, Mr. Thomas Meremoth, of Sandwich, in Kent, Surgeon.—At Chatenois, in Franche Comté, aged 49, Francis Xavier Girod, M. D. Physician at Bézancourt, and member of the Royal Medical Society at Paris.

Sept. 1. At Nîmes, aged 81, John Francis Seguier, a celebrated Botanist and Antiquary. His father, who was an advocate at Nîmes, designed him for his own profession; but when he was a young man, Signor Scipio Maffei, an Italian Nobleman, prevailed on him to accompany him to Verona, where he passed twenty-five years, and during his residence there, published his Bibliotheca Botanica * and his Plantae Veronenses †, two works in great estimation

* 4th. 1749.
† 8vo. 3 vols. 1745-54.

among
among botanists. Several years before his death, he made a present of his library and museum to the Academy of Sciences at Nîmes, of which he had for many years been secretary; and in return for this benefaction, as well as from the regard which they thought due to his extraordinary merit, the Academy, after the decease of the late Bishop of Nîmes, elected him to be their President.—12. At Strasburgh, of an apoplexy, George Lauth, M.D.—19. At Paisley, near Glasgow, Mr. William Stuart, Surgeon.—29. At Lambeth, Mr. Robert Carson, Surgeon.

Oct. At Paris, Francis Bernard, Doctor Regent of the Faculty of Physic; and J. J. Peter de la Haye, M.D.—At Sudbury, in Suffolk, Mr. John Deeks, Surgeon.—20. At Leicester, aged 48, James Macvie, M.B. in the University of Louvaine, and one of the Physicians of the Infirmary at Leicester.

Nov. At Wentworth, in Yorkshire, Stephen Simpson, M.D.—At Preston, in Lancashire, Mr. William Barton, Apothecary.—27. At Stamford, in Lincolnshire, Mr. Price, Apothecary.—29. At Camberwell, in Surrey, aged 59, Mr. Thomas Smith, senior Surgeon of St. Thomas's
Thomas's Hospital, and one of the Court of Assistants of the Corporation of Surgeons of London.

SECTION IV.

QUARTERLY CATALOGUE.

1. An Essay to investigate the causes of the general mortality by Feyers, deduced from the knowledge of the nature of the blood, and the circulation: with miscellaneous observations on ancient and modern writers. By W. Charley, M.D. 8vo. Kearsley, London, 1783. 87 pages. 1s. 6d.

2. A short Essay on the nature and symptoms of the Gout, with a view to recommend a medicine to the attention of those who are afflicted with
with that species of it, called the irregular or flying gout. By James Rymer, Surgeon. 8vo. Evans, London, 1784. 4d.

3. A Letter from a medical gentleman in town to his friend in the country; containing an authentic account of the difference between the Medical Society of Crane-Court, and Dr. Whitehead, during the late canvass for a Physician to the London Hospital. With a true copy of all the papers, both written and printed, which have passed between the contending parties. 8vo. March, London, 1784. 31 pages. 6d.

5. A short Treatise on the plant called Goose Grass, or Clivers, and its efficacy in the cure of the most inveterate scurvy. With the recipe for preparing and taking this simple and excellent medicine; and references to those cured of the disorder. By John Edwards, F. S. A. 8vo. Dixwell, London, 1784. 1s.

26. Diff.
I i i 2
35. Diff.

52. Dis-

60. Differ-

64. Tentamen Medicum Inaugurale de usu Corticis Peruviani in Morbis Hydropicis. Auctore Antonio Henrico van Novbuys, Sylvæ ducenti. 4to. Lugdunæ Batav. 1782, p. 42.

65. Spe-
IN addition to the Case of fractured Scull, described in a former part of this volume (page 278), we think it right to observe, that the mode of treatment adopted in that case was first suggested by Mr. Wilmer, an ingenious Surgeon at Coventry, in his Cases and Remarks in Surgery, published in 1779. In that work he contends, that it is not absolutely necessary to remove any portion of the scalp, even when the skull is extensively fractured; and in proof of this, he observes, that in several cases of fractured scull, in which it was necessary to apply the trephine more than once, he has seen the cure accomplished, without removing any portion of the scalp. Mr. Wilmer adds, that the wounds were healed in half the time that must have been employed if excision had taken place; and that he has seen but one case, thus treated, where the exfoliation of the bone was necessary.—The case related by our correspondent merits attention, as it affords an additional proof of the safety and efficacy of the method of cure recommended by Mr. Wilmer.

INDEX.
INDEX.

A

AIKIN, J. de lactis secretione in puerperis, 328

Anatomy, botanic, attempt to recommend the study of, 248

Anatomy, syllus of, from Mono, Winlow, &c. 104

Arvidson, P. A. de chemise progressu, 110

B.

Banks, Sir Joseph, his Collectanea Hugoniana, 253

Barclay, J. de inflammatione, 415

Bartolozei, F. physiologicae experimenta, 222

Baths, Russian, an account of, 335

Baumer, J. W. fundamenta chemiae, 336

Beccaria, Padre, eloquio del, 111

Beckwith, R. de morbo phthisico, 435

Bell, Tho. de diseas, 427

Bergman, Sir Thob. outlines of mineralogy, 106

de analysi lithomargara, 110

terra abscinsa, ibid.

chemise progressu, ibid.

his phical essays, English translation of, 219

Berkenhout, Dr. J. on the hydrophobia, 326

Berry, And. de phrenitide vera, 437

Bew, George, his experiments on latent heat, 235

Blagden, Dr. Charles, on the congelation of quicksilver, 233

Bleynend, Janus, de artereolarum lymphaticarum existentia, 439

Bonafide, F. de inoculazione de Vacuolo, 241

Bonnet, Charles, ouvres d'histoire naturelle, 222

Brambilla, J. A. instrumentarium chirurgicum, 331

Buchanan, F. de febribus intermittibus, 434

Butler, Dr. W. on arteriologica, 387

C.

Cammel, Mr. case of extra-uterine foetus, 295

Camper, P. over de selenen in de pthiaas, 221

Cavendish, Henry, on the congelation of quicksilver, 230

Cevadilla, natural history of, 323

Chambon, de Montaux, M. des maladies des femmes 224

Chandler, Dr. B. of a stone of the bladder, 327

Charley, Dr. W. on the mortality of fever, 329

Chavins, N. on the cure of chronic dysenteria, 224

Chaulmes, Duc de, on the fatal state of urine, 222

Clerke, J. de cancer, 434

Clerke, J. de cancer, 434

Colds and coughs, address to the public concerning, 103

Collier, J. de febribus intermittibus, 427

Comus, Sieur, his experiments in medical electricity, 58

Coombes, A. de scarlatina syphunctica, 424

Cornet, M. chemical essays, ib., 345, 347, 352

Cribb, W. case of laxation of the thigh, 422

Cowen, Dr. E. his translation of Bergman's essays, 219

Vol. V, No. IV k k k Outry.
INDEX.

Carrey, J. de humorum assimilatione, 437
Currit, W. catalogus of plants, 234

D.
Daniel, Dr. S. case of painful menstruation, 183
Deese, W. his account of a fatal case of ganglionic, 172
Deaths, 105, 211, 318, 418
Dennman, Dr. on the spontaneous evolution of the fetus, 64, 301
Dewell, T. philosopha of physic, 104
Dickson, S. de Somno, 434
Dijon, Nouveaux med. de l'acad. de, 133
Dillon, P. on the cure of fistula in ano by caustic, 394
Donley, H. de veicantium uti, 328
Donnell, J. Mac, de submersis, 438
Donovan, J. de hemorragia pulmonum, 437
Droft, Love, foreign medecine for, 106
Dudley, J. de vifo, 434
Duncan, Dr. his abridgement of Haffman's practice of physic, 160
Durand, M. Flore de Bourgogne, 109
--- on the solvency of gallstones, 126, 134
Durer, Sed, de acidulis freudenthalenfibus, 336
Dyentery, observations on, 137, 375

E.
Edmonstone, W. on the prevention of gonorrhoea, 434
Edwards, John, on the efficacy of goat's graze, ibid.
Ehrler, C. P. Beytrage zur fieberlehre, 412
Emmet, Tho. Addis, de acre fixo, 437
Epilepsy, observations on, 58, 361

F.
Fergus, P. G. de variolis, 434
Ferris, S. de sanguinis putredine, 437
Firenze, constitution and epidemic di, 224
Fontana, abbé, on poisons, 228, 418
Fox, E. L. de voce humana, 435
Fulham, T. de febre quaperaram, 438
Fuller, J. hints for restoring animation, 328

G.
Gallstones, solvency of, 226, 134
Ganglionic, fatal case of, 172
Gardan, M. on the colic of seamen, 223
Garlick, W. his account of two dissections, 286
Gastibius, J. D. anecdotes of, 119
Gerard, J. de differentiis inter fetus et adultum, 438
Gillibert, J. on the virtues of certain plants, 129
Gout, remarkable cure of, 86
Gregory, J. accepit medicins theoreticae, 362
Groot, Rob. de hysteria, 434
Guaraldi, Hieron, opuscula anatomica, 214

Hamilton,
I N D E X

<table>
<thead>
<tr>
<th>H.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamilton, Dr. R. on the efficacy of opium in gangrene</td>
<td>75, 196</td>
</tr>
<tr>
<td>Harding, Rob. de amenorrhoea</td>
<td>425</td>
</tr>
<tr>
<td>Harrison, Edw. de opio</td>
<td>426</td>
</tr>
<tr>
<td>Harwood, Rev. Dr. cafe of</td>
<td>318</td>
</tr>
<tr>
<td>Hemlock dropwort, instance of its poisonous effects</td>
<td>192</td>
</tr>
<tr>
<td>Henderson, Gul. de vita marina</td>
<td>438</td>
</tr>
<tr>
<td>Henry, Thomas, his experiments on latent heat</td>
<td>89</td>
</tr>
<tr>
<td>translation of M. Lavolfer's essays</td>
<td>159</td>
</tr>
<tr>
<td>Hodou, Thomas, his obf. on Stern's medical advice</td>
<td>103</td>
</tr>
<tr>
<td>Hoffman, F. abridgment of his medicina rationalis systematica</td>
<td>101</td>
</tr>
<tr>
<td>Hortus Uptoniensis</td>
<td>108</td>
</tr>
<tr>
<td>Houillon, Dr. Thomas, his account of a mineral spring at Wigan</td>
<td>311</td>
</tr>
<tr>
<td>————</td>
<td>311</td>
</tr>
<tr>
<td>obf. on poisons, and on the use of mercury in dyentery</td>
<td>374</td>
</tr>
<tr>
<td>————</td>
<td>374</td>
</tr>
<tr>
<td>letter to, from a physician in Italy</td>
<td>419</td>
</tr>
<tr>
<td>Houillon, William, cafe of injury of the brain</td>
<td>292</td>
</tr>
<tr>
<td>Houlloumi reliquiae</td>
<td>233</td>
</tr>
<tr>
<td>Howard, John, on the cure of hydrocele by Seton</td>
<td>61</td>
</tr>
<tr>
<td>Hulke, William, cafe of remarkable spasmodic affection</td>
<td>389</td>
</tr>
<tr>
<td>Hydrophobia, cafes of, and obs. relative to</td>
<td>85, 220, 344, 354, 421</td>
</tr>
<tr>
<td>I.</td>
<td></td>
</tr>
<tr>
<td>Jacob, Edward, cafe of luxation of the os femoris</td>
<td>312</td>
</tr>
<tr>
<td>Influenza of 1782, account of</td>
<td>312</td>
</tr>
<tr>
<td>Jones, William, cafe of a fractured skull</td>
<td>279</td>
</tr>
<tr>
<td>Itch, new remedy for the cure of</td>
<td>350</td>
</tr>
<tr>
<td>Joffeu, Jophud de, anecdotes of</td>
<td>337</td>
</tr>
<tr>
<td>K.</td>
<td></td>
</tr>
<tr>
<td>Kentish, R. de phthis pulmonali idiopathica</td>
<td>436</td>
</tr>
<tr>
<td>Knogb, D. de idero</td>
<td>435</td>
</tr>
<tr>
<td>Kiernan, R. de scorbuto</td>
<td>433</td>
</tr>
<tr>
<td>Kippis, Rev. Dr. his life of Sir John Pringle</td>
<td>140</td>
</tr>
<tr>
<td>Kirkland, Dr. Tho. on the present state of medical surgery</td>
<td>384</td>
</tr>
<tr>
<td>Kirwan, R. on the attractive power of the mineral acids</td>
<td>29</td>
</tr>
<tr>
<td>Kilham, B. de utero gravidio</td>
<td>435</td>
</tr>
<tr>
<td>L.</td>
<td></td>
</tr>
<tr>
<td>Landriani, M. on phlogisticated alkali and Prussian blue</td>
<td>222</td>
</tr>
<tr>
<td>Languth, J. F. de catarrho epidemic A. 1781</td>
<td>335</td>
</tr>
<tr>
<td>Lauro-creasus, remarks on</td>
<td>18</td>
</tr>
<tr>
<td>Lawlon, J. de Corde, et Sanguinis circuitu</td>
<td>436</td>
</tr>
<tr>
<td>Leveiling, H. M. de atmosphere pressione varia</td>
<td>336</td>
</tr>
<tr>
<td>Lewis, Dr. W. his abridgement of Hoffman's practice of physic</td>
<td>160</td>
</tr>
<tr>
<td>Lierberkohn, J. M. dijarretiones anatomica</td>
<td>217</td>
</tr>
<tr>
<td>Lieutsaut, Joseph, anecdotes of</td>
<td>117</td>
</tr>
<tr>
<td>Linné, Charles von, supplementum plantarum</td>
<td>256</td>
</tr>
<tr>
<td>————</td>
<td>256</td>
</tr>
<tr>
<td>anecdotes of</td>
<td>256</td>
</tr>
<tr>
<td>Logan, J. M. de morbo vehere</td>
<td>438</td>
</tr>
<tr>
<td>Lubbock, Ric. de principio forhli</td>
<td>438</td>
</tr>
<tr>
<td>Ludwig, C. F. de fuscusonis per acum curatione</td>
<td>329</td>
</tr>
</tbody>
</table>

K k

Macqueen,
Index

<table>
<thead>
<tr>
<th>M.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacQueen, Dr. Malcolm, on angina pectoris,</td>
<td>162</td>
</tr>
<tr>
<td>Magellan, J. H. de, description of his glass apparatus, &c.</td>
<td>105</td>
</tr>
<tr>
<td>Magnetism, animal, works relative to,</td>
<td>266, 339, 334</td>
</tr>
<tr>
<td>———— medical, inquiries relative to,</td>
<td>364</td>
</tr>
<tr>
<td>Mayon, Bened. pharmaceutic manualis,</td>
<td>326</td>
</tr>
<tr>
<td>Mann, Archb. history of his recovery from the gout,</td>
<td>326</td>
</tr>
<tr>
<td>Martet, M. on the colic of gall stones,</td>
<td>124</td>
</tr>
<tr>
<td>Martinneau, Mr. case of dropy of the ovarium,</td>
<td>375</td>
</tr>
<tr>
<td>Martinet, M. ouf. sur les cancers,</td>
<td>109</td>
</tr>
<tr>
<td>Marty, J. F. de Menibus,</td>
<td>433</td>
</tr>
<tr>
<td>Matthews, Stephen, on hepatic diseases,</td>
<td>104</td>
</tr>
<tr>
<td>Mathesis, M. de, on the cure of the hydrophobia,</td>
<td>219</td>
</tr>
<tr>
<td>Meéderier, M. J. J. de rabie canina,</td>
<td>224</td>
</tr>
<tr>
<td>Mercier, G. de pathematibus animi,</td>
<td>435</td>
</tr>
<tr>
<td>Mercury, its efficacy in dysesteries depending on a diseased liver,</td>
<td>375</td>
</tr>
<tr>
<td>———— large quantity of, swallowed with impunity,</td>
<td>387</td>
</tr>
<tr>
<td>Michaelis, Dr. F. on hydrophobia, page 286. On the decussion of the optic nerves</td>
<td>239</td>
</tr>
<tr>
<td>Moore, James, his method of diminishing pain in surgical operations</td>
<td>369</td>
</tr>
<tr>
<td>Morozzo, Count, his letter to M. Macquer,</td>
<td>259</td>
</tr>
<tr>
<td>Morin, J. Mac, de Typho,</td>
<td>439</td>
</tr>
<tr>
<td>Moseau, J. B. metodo per curare hydropisia,</td>
<td>369</td>
</tr>
<tr>
<td>———— P. ful fangue fluido e rappelle,</td>
<td>323</td>
</tr>
<tr>
<td>Mölb, William, on the management of children,</td>
<td>354</td>
</tr>
<tr>
<td>———— medical survey of Liverpool,</td>
<td>347</td>
</tr>
<tr>
<td>Muñoz, G. de Tetano,</td>
<td>433</td>
</tr>
<tr>
<td>Murphy, J. de Íceria,</td>
<td>ibid.</td>
</tr>
<tr>
<td>Mustinna, C. L. on the dysentery,</td>
<td>137</td>
</tr>
<tr>
<td>Mynors, Robert, remarks on a case of fractured skull</td>
<td>284</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Naismith, J. de affe,</td>
<td>433</td>
</tr>
<tr>
<td>Nerves, reproduction of experiments relative to,</td>
<td>25</td>
</tr>
<tr>
<td>———— structure of, as examined with a microscopé</td>
<td>25</td>
</tr>
<tr>
<td>———— optic, decussion of in quadrupeás,</td>
<td>285</td>
</tr>
<tr>
<td>Newman, J. W. on the principles of the medical profession,</td>
<td>105</td>
</tr>
<tr>
<td>Noohuyis, A. H. Van, de ufa cort. Peruv. in morbi, hydropoëis,</td>
<td>439</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Odier, M. on the hydrocephalus internus,</td>
<td>353</td>
</tr>
<tr>
<td>Owen, Hugo, de contagione,</td>
<td>433</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain in surgical operations, mode of preventing,</td>
<td>369</td>
</tr>
<tr>
<td>Palfyn, Jean, eloge de,</td>
<td>329</td>
</tr>
<tr>
<td>Paris, memoirs of the royal medical society at,</td>
<td>213, 248, 344</td>
</tr>
<tr>
<td>———— academy of sciences at,</td>
<td>324</td>
</tr>
<tr>
<td>Pateron, J. de vaporationine,</td>
<td>325</td>
</tr>
<tr>
<td>Pearson, Dr. G. on the waters of Buxton,</td>
<td>220</td>
</tr>
<tr>
<td>Pellisser, Alex. de pulsa arteriarum,</td>
<td>438</td>
</tr>
<tr>
<td>Index</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Peterburgh, memoirs of the Imperial academy at</td>
<td>129</td>
</tr>
<tr>
<td>Pharmacopoeia Edinensis,</td>
<td>44</td>
</tr>
<tr>
<td>Phlogiston, experiments relative to,</td>
<td>238</td>
</tr>
<tr>
<td>Pitcairne, Dr. Arch. life of,</td>
<td>316</td>
</tr>
<tr>
<td>Platina, shewn to be not a perfect metal,</td>
<td>344</td>
</tr>
<tr>
<td>Plenck, J. J. pharmacologia chirurgica,</td>
<td>109</td>
</tr>
<tr>
<td>Poisons, observations on,</td>
<td>193, 374, 416</td>
</tr>
<tr>
<td>Potter, J. de sectentarius vitis malei,</td>
<td>436</td>
</tr>
<tr>
<td>Priestley, Dr. J. his experiments relative to phlogiston,</td>
<td>278</td>
</tr>
<tr>
<td>Pringle, Sir John, anecdotes of,</td>
<td>254</td>
</tr>
<tr>
<td>Promotions,</td>
<td>98, 209, 316, 456</td>
</tr>
<tr>
<td>Pulteney, Dr. R. on the poisonous effects of hemlock, dropwort,</td>
<td>196</td>
</tr>
<tr>
<td>Questions, prize,</td>
<td>79, 80, 81, 82, 199, 200, 201, 309, 310, 423, 424</td>
</tr>
<tr>
<td>R.</td>
<td></td>
</tr>
<tr>
<td>Reill, J. C. de polycholia,</td>
<td>239</td>
</tr>
<tr>
<td>Roberts, Benj. cases of three women inoculated during pregnancy,</td>
<td>399</td>
</tr>
<tr>
<td>Robertson, Dr. R. on the jail fever,</td>
<td>219</td>
</tr>
<tr>
<td>---</td>
<td>A. G. de hydropoe,</td>
</tr>
<tr>
<td>Robwood, C. G. de terra abestina,</td>
<td>435</td>
</tr>
<tr>
<td>Roffe, Chevalier, letters concerning his doctrine,</td>
<td>116</td>
</tr>
<tr>
<td>Ryan, Mich. de raphania,</td>
<td>476</td>
</tr>
<tr>
<td>---</td>
<td>Thom. de asthmate spasmodeo,</td>
</tr>
<tr>
<td>Rymer, James, on the scurvy, page 103. On the gout,</td>
<td>412</td>
</tr>
<tr>
<td>S.</td>
<td></td>
</tr>
<tr>
<td>Samoilowitze, M. sur la peste,</td>
<td>335</td>
</tr>
<tr>
<td>Samez, Antonio Nunes Ribeiro, life of,</td>
<td>92</td>
</tr>
<tr>
<td>Samez, Antonio Nunes Ribeiro, on the Russian baths,</td>
<td>355</td>
</tr>
<tr>
<td>Sarcocele, species of in Senegal, described,</td>
<td>260</td>
</tr>
<tr>
<td>Schotte, Dr. on the farocele of Senegal,</td>
<td>ibid.</td>
</tr>
<tr>
<td>Synochus strabiliola,</td>
<td>ibid.</td>
</tr>
<tr>
<td>Sheldon, John, history of the absorbent system,</td>
<td>137</td>
</tr>
<tr>
<td>Sherwin, Mr. on the marine scurvy,</td>
<td>385</td>
</tr>
<tr>
<td>Soaps, acid, use of and mode of preparing,</td>
<td>352</td>
</tr>
<tr>
<td>Somers, Edm. de fonis et auditu,</td>
<td>435</td>
</tr>
<tr>
<td>Spens, Thom. de amenorrhea,</td>
<td>436</td>
</tr>
<tr>
<td>Spleen, 'case of enlargement of</td>
<td>335</td>
</tr>
<tr>
<td>Stackens, J. C. Hebammenunterricht in Gefrachen,</td>
<td>112</td>
</tr>
<tr>
<td>Stranger, C. de fantiata,</td>
<td>413</td>
</tr>
<tr>
<td>Stack, J. de male hypochondriaco,</td>
<td>ibid.</td>
</tr>
<tr>
<td>Sympathy defended,</td>
<td>214</td>
</tr>
<tr>
<td>Symphysis pubis, section of performed,</td>
<td>345</td>
</tr>
<tr>
<td>Systema vegetabilium of Linné, English translation of,</td>
<td>107</td>
</tr>
<tr>
<td>T.</td>
<td></td>
</tr>
<tr>
<td>Tanis, Count, his eulogy of father Beccaria,</td>
<td>111</td>
</tr>
<tr>
<td>Thouret, M. on the cranium of the fetus,</td>
<td>365</td>
</tr>
<tr>
<td>Tillett, M. on platina,</td>
<td>344</td>
</tr>
<tr>
<td>Toxicodendron, experiments relative to the poisonous effects of,</td>
<td>29</td>
</tr>
<tr>
<td>Transactions, philosophiac,</td>
<td>29, 216</td>
</tr>
</tbody>
</table>